test_split_op.py 24.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yancey 已提交
15
import unittest
16

Y
Yancey 已提交
17
import numpy as np
18
from op_test import OpTest, convert_float_to_uint16
19 20

import paddle
21
import paddle.fluid as fluid
22
from paddle.fluid import Program, core, program_guard
H
hong 已提交
23
from paddle.fluid.framework import _test_eager_guard
Y
Yancey 已提交
24 25 26 27


class TestSplitOp(OpTest):
    def setUp(self):
T
fix ut  
typhoonzero 已提交
28
        self._set_op_type()
29
        self.dtype = self.get_dtype()
Y
Yancey1989 已提交
30
        axis = 1
31 32 33 34
        if self.dtype == np.uint16:
            x = np.random.random((4, 5, 6)).astype(np.float32)
            out = np.split(x, [2, 3], axis)
            self.inputs = {'X': convert_float_to_uint16(x)}
35 36 37 38 39 40
            self.outputs = {
                'Out': [
                    ('out%d' % i, convert_float_to_uint16(out[i]))
                    for i in range(len(out))
                ]
            }
41 42 43 44
        else:
            x = np.random.random((4, 5, 6)).astype(self.dtype)
            out = np.split(x, [2, 3], axis)
            self.inputs = {'X': x}
45 46 47
            self.outputs = {
                'Out': [('out%d' % i, out[i]) for i in range(len(out))]
            }
Y
Yancey1989 已提交
48
        self.attrs = {'axis': axis, 'sections': [2, 1, 2]}
Y
Yancey 已提交
49

50
    def get_dtype(self):
51
        return "float64"
52

T
typhoonzero 已提交
53 54 55
    def _set_op_type(self):
        self.op_type = "split"

Y
Yancey 已提交
56 57 58
    def test_check_output(self):
        self.check_output()

Y
Yancey1989 已提交
59 60
    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])
Y
Yancey 已提交
61 62


63 64 65 66 67 68 69 70 71 72
# test with attr(num)
class TestSplitOp_2(OpTest):
    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {'X': self.x}
        self.attrs = {
            'axis': self.axis,
            'sections': self.sections,
73
            'num': self.num,
74 75 76
        }

        out = np.split(self.x, self.indices_or_sections, self.axis)
77
        self.outputs = {'Out': [('out%d' % i, out[i]) for i in range(len(out))]}
78 79 80 81 82 83 84 85 86

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 2
        self.sections = []
        self.num = 3
        self.indices_or_sections = 3

    def get_dtype(self):
87
        return "float64"
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


# attr(axis) is Tensor
class TestSplitOp_AxisTensor(OpTest):
    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {
            'X': self.x,
107
            'AxisTensor': np.array([self.axis]).astype("int32"),
108 109 110 111
        }
        self.attrs = {'sections': self.sections, 'num': self.num}

        out = np.split(self.x, self.indices_or_sections, self.axis)
112
        self.outputs = {'Out': [('out%d' % i, out[i]) for i in range(len(out))]}
113 114 115 116 117 118 119 120 121

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 2
        self.sections = []
        self.num = 3
        self.indices_or_sections = 3

    def get_dtype(self):
122
        return "float64"
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


# attr(sections) is list containing Tensor
class TestSplitOp_SectionsTensor(OpTest):
    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {'X': self.x}

        sections_tensor = []
        for index, ele in enumerate(self.sections):
144 145 146
            sections_tensor.append(
                ("x" + str(index), np.ones((1)).astype('int32') * ele)
            )
147 148 149 150 151 152

        self.inputs['SectionsTensorList'] = sections_tensor

        self.attrs = {
            'axis': self.axis,
            'sections': self.sections_infer,
153
            'num': self.num,
154 155 156
        }

        out = np.split(self.x, self.indices_or_sections, self.axis)
157
        self.outputs = {'Out': [('out%d' % i, out[i]) for i in range(len(out))]}
158 159 160 161 162 163 164 165 166 167

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 1
        self.sections = [2, 1, 2]
        self.sections_infer = [-1, -1, -1]
        self.num = 0
        self.indices_or_sections = [2, 3]

    def get_dtype(self):
168
        return "float64"
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


class TestSplitOp_unk_section(OpTest):
    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {'X': self.x}
        self.attrs = {
            'axis': self.axis,
            'sections': self.sections,
189
            'num': self.num,
190 191 192
        }

        out = np.split(self.x, self.indices_or_sections, self.axis)
193
        self.outputs = {'Out': [('out%d' % i, out[i]) for i in range(len(out))]}
194 195 196 197 198 199 200 201 202

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 2
        self.sections = [2, 1, -1]
        self.num = 0
        self.indices_or_sections = [2, 3]

    def get_dtype(self):
203
        return "float64"
204 205 206 207 208 209 210 211 212 213 214

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


T
typhoonzero 已提交
215 216 217 218 219
class TestSplitByrefOp(OpTest):
    def _set_op_type(self):
        self.op_type = "split_byref"


220
# ----------------Split Fp16----------------
221 222 223


def create_test_fp16(parent):
224 225 226
    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
227 228 229 230 231 232 233 234 235 236 237 238 239 240
    class TestSplitFp16(parent):
        def get_dtype(self):
            return np.float16

        def test_check_grad(self):
            pass

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
    TestSplitFp16.__name__ = cls_name
    globals()[cls_name] = TestSplitFp16


create_test_fp16(TestSplitOp)

241
# ----------------Split Bf16----------------
242 243 244


def create_test_bf16(parent):
245 246 247
    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
    class TestSplitBf16(parent):
        def get_dtype(self):
            return np.uint16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            self.check_output_with_place(place)

        def test_check_grad(self):
            pass

    cls_name = "{0}_{1}".format(parent.__name__, "Bf16")
    TestSplitBf16.__name__ = cls_name
    globals()[cls_name] = TestSplitBf16


create_test_bf16(TestSplitOp)

266

267
class TestSplitAPI(unittest.TestCase):
268 269
    def test_api(self):
        input_1 = np.random.random([4, 5, 6]).astype("int32")
270 271 272
        positive_1_int32 = fluid.layers.fill_constant([1], "int32", 1)
        positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1)
        positive_2_int64 = fluid.layers.fill_constant([1], "int64", 2)
273 274 275 276
        x_1 = fluid.data(shape=[4, 5, 6], dtype='int32', name='x_1')
        x_2 = fluid.data(shape=[4, 5, None], dtype='int32', name='x_2')

        out_0, out_1, out_2 = fluid.layers.split(
277 278
            input=x_1,
            num_or_sections=[positive_2_int64, positive_1_int32, -1],
279 280
            dim=positive_1_int64,
        )
281

282 283 284
        out_3, out_4, out_5 = fluid.layers.split(
            input=x_1, num_or_sections=[2, 1, 2], dim=positive_1_int32
        )
285 286 287
        fluid.layers.split(input=x_2, num_or_sections=2, dim=2)

        exe = fluid.Executor(place=fluid.CPUPlace())
288 289 290 291 292
        [res_0, res_1, res_2, res_3, res_4, res_5] = exe.run(
            fluid.default_main_program(),
            feed={"x_1": input_1, "x_2": input_1},
            fetch_list=[out_0, out_1, out_2, out_3, out_4, out_5],
        )
293 294 295 296 297 298 299 300 301 302

        out = np.split(input_1, [2, 3], 1)
        assert np.array_equal(res_0, out[0])
        assert np.array_equal(res_1, out[1])
        assert np.array_equal(res_2, out[2])
        assert np.array_equal(res_3, out[0])
        assert np.array_equal(res_4, out[1])
        assert np.array_equal(res_5, out[2])


303
class TestSplitOpError(unittest.TestCase):
304 305 306 307 308 309 310 311 312
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The type of axis in split_op should be int or Variable.
            def test_axis_type():
                x6 = fluid.layers.data(shape=[4], dtype='float16', name='x3')
                fluid.layers.split(input=x6, num_or_sections=2, dim=3.2)

            self.assertRaises(TypeError, test_axis_type)

313 314 315 316 317 318 319 320
            # The type of axis in split_op should be int or Variable.
            def test_axis_variable_type():
                x9 = fluid.layers.data(shape=[4], dtype='float16', name='x9')
                x10 = fluid.layers.data(shape=[1], dtype='float16', name='x10')
                fluid.layers.split(input=x9, num_or_sections=2, dim=x10)

            self.assertRaises(TypeError, test_axis_variable_type)

321 322 323 324 325 326 327
            # The type of num_or_sections in split_op should be int, tuple or list.
            def test_num_or_sections_type():
                x6 = fluid.layers.data(shape=[4], dtype='float16', name='x4')
                fluid.layers.split(input=x6, num_or_sections=2.1, dim=3)

            self.assertRaises(TypeError, test_num_or_sections_type)

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
            def test_num_or_sections_type_tensor():
                x7 = fluid.layers.data(shape=[4], dtype='float16', name='x5')
                paddle.split(input=x7, num_or_sections=2.1, dim=3)

            self.assertRaises(TypeError, test_num_or_sections_type_tensor)

            def test_axis_type_tensor():
                x8 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
                paddle.split(input=x8, num_or_sections=2, dim=3.2)

            self.assertRaises(TypeError, test_axis_type_tensor)


class API_TestSplit(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data1 = fluid.layers.data('data1', shape=[4, 6, 6], dtype='float64')
            data2 = fluid.layers.data('data2', shape=[1], dtype='int32')
346
            x0, x1, x2 = paddle.split(data1, num_or_sections=3, axis=data2)
347 348 349 350
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([4, 6, 6]).astype('float64')
            input2 = np.array([2]).astype('int32')
351 352 353
            r0, r1, r2, = exe.run(
                feed={"data1": input1, "data2": input2}, fetch_list=[x0, x1, x2]
            )
354
            ex_x0, ex_x1, ex_x2 = np.split(input1, 3, axis=2)
355 356 357
            np.testing.assert_allclose(ex_x0, r0, rtol=1e-05)
            np.testing.assert_allclose(ex_x1, r1, rtol=1e-05)
            np.testing.assert_allclose(ex_x2, r2, rtol=1e-05)
358 359 360 361 362 363


class API_TestSplit2(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data1 = fluid.layers.data('data1', shape=[4, 6, 6], dtype='float64')
364
            x0, x1, x2 = paddle.split(data1, num_or_sections=3, axis=2)
365 366 367
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([4, 6, 6]).astype('float64')
368 369 370 371 372
            (
                r0,
                r1,
                r2,
            ) = exe.run(feed={"data1": input1}, fetch_list=[x0, x1, x2])
373
            ex_x0, ex_x1, ex_x2 = np.split(input1, 3, axis=2)
374 375 376
            np.testing.assert_allclose(ex_x0, r0, rtol=1e-05)
            np.testing.assert_allclose(ex_x1, r1, rtol=1e-05)
            np.testing.assert_allclose(ex_x2, r2, rtol=1e-05)
377 378 379 380 381 382


class API_TestSplit3(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.layers.data('data', shape=[-1, 10], dtype='float64')
383
            x0, x1 = paddle.split(data, num_or_sections=(3, 7), axis=1)
384 385 386 387
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([1, 10]).astype('float64')
            r0, r1 = exe.run(feed={"data": input1}, fetch_list=[x0, x1])
388
            ex_x0, ex_x1 = np.split(input1, (3,), axis=1)
389 390
            np.testing.assert_allclose(ex_x0, r0, rtol=1e-05)
            np.testing.assert_allclose(ex_x1, r1, rtol=1e-05)
391 392 393 394 395 396 397


class API_TestSplit4(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.layers.data('data', shape=[-1, 10], dtype='float64')
            index = fluid.layers.data('index', shape=[1], dtype='int32')
398
            x0, x1 = paddle.split(data, num_or_sections=(3, index), axis=1)
399 400 401 402
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([1, 10]).astype('float64')
            input2 = np.array([7]).astype('int32')
403 404 405 406
            r0, r1 = exe.run(
                feed={"data": input1, "index": input2}, fetch_list=[x0, x1]
            )
            ex_x0, ex_x1 = np.split(input1, (3,), axis=1)
407 408
            np.testing.assert_allclose(ex_x0, r0, rtol=1e-05)
            np.testing.assert_allclose(ex_x1, r1, rtol=1e-05)
409 410


C
Charles-hit 已提交
411 412
class API_TestSplit5(unittest.TestCase):
    def test_out(self):
413 414 415
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
C
Charles-hit 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                input_1 = np.random.random([5, 4]).astype("int32")
                # input is a variable which shape is [5, 4]
                input = paddle.to_tensor(input_1)
                n = paddle.full([1], 5, dtype='int32')
                out = paddle.split(input, [n])
                exe = paddle.static.Executor(place=place)
                re = exe.run(fetch_list=[out])
                re = re[0]
                ex_out = np.split(input_1, [5])
                ex_out = ex_out[0]
                np.testing.assert_allclose(ex_out, re, rtol=1e-05)


431 432 433 434 435 436 437 438 439
class API_TestSplit6(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.layers.data('data', shape=[-1, 10], dtype='float64')
            x0, x1 = paddle.split(data, num_or_sections=[1, 1], axis=0)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([2, 10]).astype('float64')
            r0, r1 = exe.run(feed={"data": input1}, fetch_list=[x0, x1])
440
            ex_x0, ex_x1 = np.split(input1, (1,), axis=0)
441 442 443 444
            np.testing.assert_allclose(ex_x0, r0, rtol=1e-05)
            np.testing.assert_allclose(ex_x1, r1, rtol=1e-05)


C
Charles-hit 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
class API_TestDygraphFluidSplit(unittest.TestCase):
    def test_out1(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
            input = paddle.to_tensor(input_1)
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
            with _test_eager_guard():
                # input is a variable which shape is [4, 6, 6]
                input = paddle.to_tensor(input_1)
                input.stop_gradient = False
                x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=1)
                eager_x0_out = x0.numpy()
                eager_x1_out = x1.numpy()
                eager_x2_out = x2.numpy()
                loss = x0.sum()
                loss.backward()
                manul_grad = np.zeros_like(input_1)
                manul_grad[:, :2, :] = 1
468 469 470
                np.testing.assert_allclose(
                    input.gradient(), manul_grad, rtol=1e-05
                )
C
Charles-hit 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
                np.testing.assert_allclose(ex_x0, eager_x0_out, rtol=1e-05)
                np.testing.assert_allclose(ex_x1, eager_x1_out, rtol=1e-05)
                np.testing.assert_allclose(ex_x2, eager_x2_out, rtol=1e-05)

        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)

    def test_out2(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
            input = paddle.to_tensor(input_1)
            x0, x1, x2 = fluid.layers.split(input, [2, 2, 2], dim=1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
            with _test_eager_guard():
                # input is a variable which shape is [4, 6, 6]
                input = paddle.to_tensor(input_1)
                input.stop_gradient = False
                x0, x1, x2 = fluid.layers.split(input, [2, 2, 2], dim=1)
                eager_x0_out = x0.numpy()
                eager_x1_out = x1.numpy()
                eager_x2_out = x2.numpy()
                loss = x0.sum()
                loss.backward()
                manul_grad = np.zeros_like(input_1)
                manul_grad[:, :2, :] = 1
501 502 503
                np.testing.assert_allclose(
                    input.gradient(), manul_grad, rtol=1e-05
                )
C
Charles-hit 已提交
504 505 506 507 508 509 510 511 512
                np.testing.assert_allclose(ex_x0, eager_x0_out, rtol=1e-05)
                np.testing.assert_allclose(ex_x1, eager_x1_out, rtol=1e-05)
                np.testing.assert_allclose(ex_x2, eager_x2_out, rtol=1e-05)

        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)


513
class API_TestDygraphSplit(unittest.TestCase):
514 515 516 517
    def test_out1(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
H
hong 已提交
518
            input = paddle.to_tensor(input_1)
519 520 521 522 523
            x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
H
hong 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536

            with _test_eager_guard():
                # input is a variable which shape is [4, 6, 6]
                input = paddle.to_tensor(input_1)
                input.stop_gradient = False
                x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1)
                eager_x0_out = x0.numpy()
                eager_x1_out = x1.numpy()
                eager_x2_out = x2.numpy()
                loss = x0.sum()
                loss.backward()
                manul_grad = np.zeros_like(input_1)
                manul_grad[:, :2, :] = 1
537 538 539
                np.testing.assert_allclose(
                    input.gradient(), manul_grad, rtol=1e-05
                )
540 541 542
                np.testing.assert_allclose(ex_x0, eager_x0_out, rtol=1e-05)
                np.testing.assert_allclose(ex_x1, eager_x1_out, rtol=1e-05)
                np.testing.assert_allclose(ex_x2, eager_x2_out, rtol=1e-05)
H
hong 已提交
543

544 545 546
        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)
547 548 549 550 551

    def test_out2(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("bool")
            # input is a variable which shape is [4, 6, 6]
H
hong 已提交
552
            input = paddle.to_tensor(input_1)
553 554 555 556 557
            x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
558 559 560
        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)
561

C
Charles-hit 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
    def test_out3(self):
        with fluid.dygraph.guard():
            np.random.seed(2021)
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
            input = paddle.to_tensor(input_1)
            out_dy = paddle.split(input, [6], axis=1)
            out_dy = out_dy[0]
            out_dy_np = out_dy.numpy()
            ex_out = np.split(input_1, [6], axis=1)
            ex_out = ex_out[0]
            with _test_eager_guard():
                input = paddle.to_tensor(input_1)
                out_eager = paddle.split(input, [6], axis=1)
                out_eager = out_eager[0]
                out_eager_np = out_dy.numpy()
                np.testing.assert_allclose(ex_out, out_eager_np, rtol=1e-05)
        np.testing.assert_allclose(ex_out, out_dy_np, rtol=1e-05)

581 582 583 584
    def test_out_tensor_input(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
H
hong 已提交
585
            input = paddle.to_tensor(input_1)
586
            num1 = paddle.full(shape=[1], fill_value=2, dtype='int32')
587 588 589
            x0, x1, x2 = paddle.split(
                input, num_or_sections=[num1, 2, 2], axis=1
            )
590 591 592 593
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
594 595 596
        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)
597 598

    def test_axis_tensor_input(self):
599 600 601
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
H
hong 已提交
602
            input = paddle.to_tensor(input_1)
603
            num1 = paddle.full(shape=[1], fill_value=1, dtype='int32')
604 605 606
            x0, x1, x2 = paddle.split(
                input, num_or_sections=[2, 2, 2], axis=num1
            )
607 608 609 610
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
611 612 613
        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)
614

615 616 617 618 619 620 621 622
    def func_negative_one_section(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
            input = paddle.to_tensor(input_1)
            num1 = paddle.full(shape=[1], fill_value=1, dtype='int32')
            x0 = paddle.split(input, num_or_sections=[-1], axis=num1)
            x0_out = x0[0].numpy()
623
        np.testing.assert_array_equal(x0_out, input.numpy())
624 625 626 627 628 629

    def test_negative_one_section(self):
        with _test_eager_guard():
            self.func_negative_one_section()
        self.func_negative_one_section()

630

631 632 633 634 635 636 637 638 639 640
class API_TestEmptySplit(unittest.TestCase):
    def test_axis_input_empty_section(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([8, 6, 6]).astype("float32")
            # input is a variable which shape is [8, 6, 6]
            input = paddle.to_tensor(input_1)
            x0, x1, x2 = paddle.split(input, num_or_sections=[5, 0, 3])
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
641 642 643 644 645 646 647
            ex_x0, ex_x1, ex_x2 = np.split(
                input_1,
                [
                    5,
                    5,
                ],
            )
648 649 650
        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)
651 652


Y
Yancey 已提交
653
if __name__ == '__main__':
654
    paddle.enable_static()
Y
Yancey 已提交
655
    unittest.main()