dense_tensor.cc 8.3 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/core/dense_tensor.h"
16

17 18 19 20
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/complex.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/compat/convert_utils.h"
21

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/**
 * [ Why still include the fluid headers? ]
 *
 * We hope to organize the basic implementation of Tensor and the logic related
 * to Tensor computation into an independent library, which we call
 * [Tensor Operation Library, phi], so we extract or rewrite the original
 * Kernels.
 *
 * In the future, the training library, inference library and custom operators
 * will link to this Tensor Operation library.
 *
 * However, if we directly split the link relation, we need to make too many
 * changes, which will affect the stability of the framework, so here we still
 * rely on the implementation of the framework, which is a intermediate state.
 *
 * In the future, the necessary components will be moved to the this library,
 * or the corresponding components will be re-implemented.
 */
40
#include "paddle/fluid/memory/malloc.h"
41

42
namespace phi {
43

44
DenseTensor::DenseTensor(Allocator* a, const DenseTensorMeta& meta)
45
    : meta_(meta), holder_(a->Allocate(SizeOf(dtype()) * numel())) {}
46

47
DenseTensor::DenseTensor(Allocator* a, DenseTensorMeta&& meta)
48
    : meta_(std::move(meta)), holder_(a->Allocate(SizeOf(dtype()) * numel())) {}
49

50
DenseTensor::DenseTensor(const std::shared_ptr<phi::Allocation>& holder,
51
                         const DenseTensorMeta& meta)
52
    : meta_(meta), holder_(holder) {}
53

54
DenseTensor::DenseTensor(const DenseTensor& other) : meta_(other.meta()) {
55
  holder_ = other.holder_;
56
  inplace_version_counter_ = other.inplace_version_counter_;
57 58 59

#ifdef PADDLE_WITH_MKLDNN
  format_ = other.format_;
60
  mem_desc_ = other.mem_desc_;
61 62
#endif
}
63

64 65
DenseTensor& DenseTensor::operator=(const DenseTensor& other) {
  meta_ = other.meta();
66
  holder_ = other.holder_;
67
  inplace_version_counter_ = other.inplace_version_counter_;
68 69
#ifdef PADDLE_WITH_MKLDNN
  format_ = other.format_;
70
  mem_desc_ = other.mem_desc_;
71
#endif
72 73 74
  return *this;
}

75 76
DenseTensor& DenseTensor::operator=(DenseTensor&& other) {
  meta_ = std::move(other.meta_);
77
  std::swap(holder_, other.holder_);
78
  std::swap(inplace_version_counter_, other.inplace_version_counter_);
79 80 81 82
#ifdef PADDLE_WITH_MKLDNN
  format_ = other.format_;
  mem_desc_ = other.mem_desc_;
#endif
83 84 85
  return *this;
}

86 87 88 89 90 91 92 93
int64_t DenseTensor::numel() const {
  if (meta_.is_scalar) {
    return 1;
  }
  return product(meta_.dims);
}

bool DenseTensor::IsSharedWith(const DenseTensor& b) const {
94
  return holder_ && holder_ == b.Holder();
95 96
}

97 98 99 100 101
void* DenseTensor::AllocateFrom(Allocator* allocator,
                                DataType dtype,
                                size_t requested_size) {
  PADDLE_ENFORCE_NOT_NULL(
      allocator,
102
      phi::errors::InvalidArgument(
103 104 105 106 107 108 109
          "Required allocator shall not be nullptr, but received nullptr."));
  if (this->dtype() != dtype) {
    VLOG(10) << "change data type in mutbale_data, target dtype - " << dtype;
    meta_.dtype = dtype;
  }
  PADDLE_ENFORCE(
      valid(),
110
      phi::errors::PreconditionNotMet(
111 112 113 114 115
          "The meta data must be valid when call the mutable data function."));
  size_t bytes = numel() * SizeOf(this->dtype());
  if (requested_size) {
    PADDLE_ENFORCE_GE(requested_size,
                      bytes,
116
                      phi::errors::InvalidArgument(
117 118 119 120 121 122
                          "The reserved size %d should be enough to meet the "
                          "volume required by metadata %d.",
                          requested_size,
                          bytes));
    bytes = requested_size;
  }
123 124 125
  // NOTE(paddle-dev): In case of the allocator of storage_ is different with
  // the incoming allocator, we will re-alloc data using the incoming
  // allocator. See DeviceContext.Alloc in core/device_context.cc.
126 127 128 129 130 131 132 133 134 135
  if (!holder_ || holder_->size() < bytes + meta_.offset) {
    meta_.offset = 0;
    VLOG(10) << "Allocate data with bytes: " << bytes;
    ResetHolder(allocator->Allocate(bytes));
  }

  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
                                 meta_.offset);
}

136 137
template <typename T>
const T* DenseTensor::data() const {
138
  check_memory_size();
H
hong 已提交
139 140 141
  PADDLE_ENFORCE_EQ(
      dtype(),
      paddle::experimental::CppTypeToDataType<T>::Type(),
142
      phi::errors::InvalidArgument(
143 144 145 146 147
          "The type of data we are trying to retrieve does not match the "
          "type of data currently contained in the container."));
  return static_cast<const T*>(data());
}

148 149 150 151 152
template <typename T>
T* DenseTensor::data() {
  check_memory_size();
  PADDLE_ENFORCE(
      (dtype() == paddle::experimental::CppTypeToDataType<T>::Type()),
153
      phi::errors::InvalidArgument(
154 155
          "The type of data we are trying to retrieve does not match the "
          "type of data currently contained in the container."));
156
  return static_cast<T*>(data());
157 158
}

159
void* DenseTensor::data() {
160
  check_memory_size();
161
  PADDLE_ENFORCE_NOT_NULL(
162
      holder_,
163
      phi::errors::PreconditionNotMet(
164 165
          "The storage must be valid when call the data function."));
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
166
                                 meta_.offset);
167 168
}

169
const void* DenseTensor::data() const {
170
  check_memory_size();
171
  PADDLE_ENFORCE_NOT_NULL(
172
      holder_,
173
      phi::errors::PreconditionNotMet(
174
          "The storage must be valid when call the data function."));
175
  return reinterpret_cast<const void*>(
176
      reinterpret_cast<uintptr_t>(holder_->ptr()) + meta_.offset);
177 178
}

179 180
void DenseTensor::set_meta(DenseTensorMeta&& meta) {
  PADDLE_ENFORCE(!meta_.valid(),
181
                 phi::errors::InvalidArgument(
182 183 184
                     "Only when the original attribute of Tensor is "
                     "incomplete, can it be reset."));
  meta_ = std::move(meta);
石晓伟 已提交
185 186
}

187 188 189
void DenseTensor::set_meta(const DenseTensorMeta& meta) {
  PADDLE_ENFORCE(
      meta.valid(),
190
      phi::errors::InvalidArgument(
191 192 193 194 195 196 197 198 199
          "Input meta is invalid, please check the meta attribute."));
  meta_.dims = meta.dims;
  meta_.dtype = meta.dtype;
  meta_.is_scalar = meta.is_scalar;
  meta_.layout = meta.layout;
  meta_.lod = meta.lod;
  meta_.offset = meta.offset;
}

200 201 202 203 204 205 206 207 208 209
/* @jim19930609: This interface will be further modified util we finalized the
   design for Allocator - Allocation
   For now, we have to temporarily accommodate two independent use cases:
   1. Designed behaviour: DenseTensor constructed with its underlying storage_
   initialized
   2. Legacy behaviour(fluid): DenseTensor constructed using default
   constructor, where
                               storage_ won't be initialized until the first
   call to mutable_data(place)
   */
210
void DenseTensor::ResizeAndAllocate(const DDim& dims) {
石晓伟 已提交
211
  meta_.dims = dims;
212 213
  if (holder_ != nullptr && place().GetType() != AllocationType::UNDEFINED) {
    mutable_data(place());
214
  }
石晓伟 已提交
215 216
}

217 218
void DenseTensor::ResetLoD(const LoD& lod) { meta_.lod = lod; }

219 220 221
#define DATA_MEMBER_FUNC_INSTANTIATION(dtype)      \
  template const dtype* DenseTensor::data() const; \
  template dtype* DenseTensor::data();
222 223 224 225 226 227 228 229 230 231

DATA_MEMBER_FUNC_INSTANTIATION(bool);
DATA_MEMBER_FUNC_INSTANTIATION(int8_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint8_t);
DATA_MEMBER_FUNC_INSTANTIATION(int16_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint16_t);
DATA_MEMBER_FUNC_INSTANTIATION(int32_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint32_t);
DATA_MEMBER_FUNC_INSTANTIATION(int64_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint64_t);
232 233
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::bfloat16);
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::float16);
234 235
DATA_MEMBER_FUNC_INSTANTIATION(float);
DATA_MEMBER_FUNC_INSTANTIATION(double);
236 237
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::complex<float>);
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::complex<double>);
238 239 240

#undef DATA_MEMBER_FUNC_INSTANTIATION

241
}  // namespace phi