io.py 53.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
22
from functools import reduce
23

24 25 26
import paddle
import paddle.reader
from paddle.reader import *
27
from paddle.fluid import layers
X
Xin Pan 已提交
28
from paddle.fluid.executor import Executor
29
from paddle.fluid.evaluator import Evaluator
30
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, program_guard
T
tangwei12 已提交
31
from paddle.fluid.compiler import CompiledProgram
32
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
33 34
from . import reader
from .reader import *
K
fix bug  
Kexin Zhao 已提交
35
from . import core
36
from .. import compat as cpt
37

38 39
batch = paddle.batch

40
__all__ = [
T
tangwei12 已提交
41
    'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
42 43
    'load_persistables', 'save_inference_model', 'load_inference_model', 'batch'
] + reader.__all__ + paddle.reader.__all__
44

45 46
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
47

48 49

def is_parameter(var):
F
fengjiayi 已提交
50 51
    """
    Check whether the given variable is an instance of Parameter.
52 53

    Args:
F
fengjiayi 已提交
54
        var(Variable): The variable to be checked.
55 56

    Returns:
F
fengjiayi 已提交
57 58 59 60 61 62
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

63
            import paddle.fluid as fluid
F
fengjiayi 已提交
64 65
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
66
    """
67 68 69 70
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

84
            import paddle.fluid as fluid
85
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
86 87
            res = fluid.io.is_persistable(param)
    """
88
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
89 90
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
91
        return False
92 93 94 95 96
    return var.persistable


def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)
112 113


114 115 116 117 118
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
119
              filename=None):
120
    """
F
fengjiayi 已提交
121 122
    Save variables to the given directory by executor.

123 124 125 126
    There are two ways to specify variables to be saved: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be saved. The first way has a higher priority. In other words, if `vars`
F
fengjiayi 已提交
127
    are assigned, the `main_program` and the `predicate` will be ignored.
128

129 130 131
    The `dirname` are used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the folder `dirname`,
    set `filename` None; if you prefer to save all variables in a single file,
F
fengjiayi 已提交
132
    use `filename` to specify it.
133

F
fengjiayi 已提交
134 135 136
    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
137 138
        main_program(Program|None): The program whose variables will be saved.
                                    If it is None, the default main program will
F
fengjiayi 已提交
139 140
                                    be used automatically.
                                    Default: None
141
        vars(list[Variable]|None): The list that contains all variables to save.
F
fengjiayi 已提交
142 143
                                   It has a higher priority than the `main_program`.
                                   Default: None
144 145 146 147
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be saved. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
148 149
                                  `vars` is None).
                                  Default: None
150
        filename(str|None): The file which to save all variables. If you prefer to save
F
fengjiayi 已提交
151 152 153 154 155 156 157 158 159 160 161 162
                            variables separately, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

163 164 165 166 167 168 169 170 171 172 173 174
            import paddle.fluid as fluid
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
175

176
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
177 178 179 180
            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
181
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
182
                               vars=None, predicate = name_has_fc)
F
fengjiayi 已提交
183 184 185 186 187
            # All variables in `main_program` whose name includes "fc" will be saved.
            # And variables are going to be saved separately.


            # The second usage: using `vars` to specify variables
188 189
            var_list = [w, b]
            path = "./my_paddle_vars"
190
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
191 192
                               filename="vars_file")
            # var_a, var_b and var_c will be saved. And they are going to be
193
            # saved in the same file named 'var_file' in the path "./my_paddle_vars".
194
    """
L
lujun 已提交
195
    save_dirname = os.path.normpath(dirname)
T
tangwei12 已提交
196

197
    if vars is None:
198
        if main_program is None:
Y
Yu Yang 已提交
199
            main_program = default_main_program()
200
        if not isinstance(main_program, Program):
201 202 203 204
            raise TypeError("program should be as Program type or None")

        save_vars(
            executor,
205
            main_program=main_program,
L
lujun 已提交
206
            dirname=save_dirname,
207
            vars=list(filter(predicate, main_program.list_vars())),
208
            filename=filename)
209 210 211
    else:
        save_program = Program()
        save_block = save_program.global_block()
212

213 214 215 216 217
        if main_program is None:
            main_program = default_main_program()
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

218
        save_var_map = {}
219
        for each_var in vars:
220 221 222
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
223
            new_var = _clone_var_in_block_(save_block, each_var)
224
            if filename is None:
225 226 227 228
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
L
lujun 已提交
229 230 231
                    attrs={
                        'file_path': os.path.join(save_dirname, new_var.name)
                    })
232 233 234
            else:
                save_var_map[new_var.name] = new_var

235
        if filename is not None:
236 237 238 239
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

240
            save_block.append_op(
241 242
                type='save_combine',
                inputs={'X': save_var_list},
243
                outputs={},
L
lujun 已提交
244
                attrs={'file_path': os.path.join(save_dirname, filename)})
245

246 247 248
        executor.run(save_program)


249
def save_params(executor, dirname, main_program=None, filename=None):
250
    """
F
fengjiayi 已提交
251 252 253
    This function filters out all parameters from the give `main_program`
    and then save them to the folder `dirname` or the file `filename`.

254 255 256
    Use the `dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set `filename` None; if you would
    like to save all parameters in a single file, use `filename` to specify
F
fengjiayi 已提交
257 258
    the file name.

259 260 261
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
262 263 264
    and `load_persistables()` instead. If you want to save your model for
    the inference, please use the `save_inference_model` API. You can refer
    to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
265 266 267 268 269 270 271 272

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program|None): The program whose parameters will be
                                    saved. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
273 274
        filename(str|None): The file to save all parameters. If you prefer
                            to save parameters in differnet files, set it
F
fengjiayi 已提交
275 276 277 278 279 280 281 282 283
                            to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
284 285
            import paddle.fluid as fluid

F
fengjiayi 已提交
286 287 288
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
289
            fluid.io.save_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
290
                                 main_program=None)
291 292 293 294
    """
    save_vars(
        executor,
        dirname=dirname,
295
        main_program=main_program,
296
        vars=None,
297
        predicate=is_parameter,
298
        filename=filename)
299 300


301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

323
            import paddle.fluid as fluid
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
        recive params on pserver through rpc.
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
            origin_var = None
            is_slice = False
            slice_vars = [0] * len(remote_params)
            slice_var_names = [""] * len(remote_params)
            endpoints = [""] * len(remote_params)

            for idx, optimizer in enumerate(remote_params):
                origin = optimizer.origin
                slice = optimizer.slice
                is_slice = optimizer.is_slice
                block_id = optimizer.block_id
                endpoint = optimizer.endpoint

                if idx == 0:
                    origin_var = block.create_var(
                        name=origin.name,
                        type=origin.type,
                        shape=origin.shape,
                        dtype=origin.dtype,
                        persistable=True)

                slice_var = block.create_var(
                    name="{}.slice.{}".format(slice.name, idx),
                    type=slice.type,
                    shape=slice.shape,
                    dtype=slice.dtype,
                    persistable=True)

                index = block_id if is_slice else idx
                slice_vars[index] = slice_var
                slice_var_names[index] = slice.name
                endpoints[index] = endpoint

            if is_slice:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": slice_vars},
                    attrs={
                        "epmap": endpoints,
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
                block.append_op(
                    type='concat',
                    inputs={'X': slice_vars},
                    outputs={'Out': origin_var},
                    attrs={})
            else:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": [origin_var]},
                    attrs={
                        "epmap": endpoints[:1],
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
            block.append_op(
                type='save',
                inputs={'X': [origin_var]},
                outputs={},
                attrs={'file_path': os.path.join(dirname, origin_var.name)})
            block.append_op(type='delete_var', inputs={'X': slice_vars})
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                        var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                        var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
T
tangwei12 已提交
448
        raise TypeError("'main_program' should be an instance of Program.")
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


482
def save_persistables(executor, dirname, main_program=None, filename=None):
483
    """
484 485
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then saves these variables to the folder `dirname`
F
fengjiayi 已提交
486 487
    or file `filename`.

488 489 490
    The `dirname` is used to specify the folder where persistable variables
    are going to be saved. If you would like to save variables in separate
    files, set `filename` None; if you would like to save all variables in a
F
fengjiayi 已提交
491 492 493 494 495
    single file, use `filename` to specify the file name.

    Args:
        executor(Executor): The executor to run for saving persistable variables.
        dirname(str): The directory path.
496 497
        main_program(Program|None): The program whose persistbale variables will
                                    be saved. If it is None, the default main
F
fengjiayi 已提交
498 499
                                    program will be used automatically.
                                    Default: None
500
        filename(str|None): The file to saved all variables. If you prefer to
F
fengjiayi 已提交
501 502 503 504 505 506 507 508 509
                            save variables in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
510 511
            import paddle.fluid as fluid

F
fengjiayi 已提交
512 513
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
514
            # `prog` can be a program defined by the user
F
fengjiayi 已提交
515
            prog = fluid.default_main_program()
516
            fluid.io.save_persistables(executor=exe, dirname=param_path,
517
                                       main_program=prog)
518
    """
519 520 521 522 523 524 525 526 527 528 529 530 531

    if main_program and main_program._is_distributed:
        _save_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)

    else:
        save_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
532 533


534 535 536 537 538
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
539
              filename=None):
540
    """
F
fengjiayi 已提交
541 542
    Load variables from the given directory by executor.

543 544 545 546
    There are two ways to specify variables to be loaded: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be loaded. The first way has a higher priority. In other words if `vars`
F
fengjiayi 已提交
547 548
    are assigned, the `main_program` and the `predicate` will be ignored.

549 550 551
    The `dirname` are used to specify the folder where to load variables.
    If variables were saved in separate files in the folder `dirname`,
    set `filename` None; if all variables were saved in a single file,
F
fengjiayi 已提交
552
    use `filename` to specify it.
553

F
fengjiayi 已提交
554 555 556
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
557 558
        main_program(Program|None): The program whose variables will be loaded.
                                    If it is None, the default main program will
F
fengjiayi 已提交
559 560
                                    be used automatically.
                                    Default: None
561
        vars(list[Variable]|None): The list that contains all variables to load.
F
fengjiayi 已提交
562 563
                                   It has a higher priority than the `main_program`.
                                   Default: None
564 565 566 567
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be loaded. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
568 569
                                  `vars` is None).
                                  Default: None
570
        filename(str|None): The file which saved all required variables. If variables
F
fengjiayi 已提交
571 572 573 574 575 576 577 578 579 580 581 582
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

583 584 585 586 587 588 589 590 591 592 593 594
            import paddle.fluid as fluid
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
595

596
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
597 598 599 600
            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
601 602 603
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
604
                               vars=None, predicate=name_has_fc)
F
fengjiayi 已提交
605 606 607 608
            # All variables in `main_program` whose name includes "fc" will be loaded.
            # And all the variables are supposed to have been saved in differnet files.

            # The second usage: using `vars` to specify variables
609 610 611 612
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
613
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
614
                               filename="vars_file")
615 616
            # w and b will be loaded. And they are supposed to haven
            # been saved in the same file named 'var_file' in the path "./my_paddle_vars".
617
    """
L
lujun 已提交
618
    load_dirname = os.path.normpath(dirname)
T
tangwei12 已提交
619

620
    if vars is None:
621
        if main_program is None:
Y
Yu Yang 已提交
622
            main_program = default_main_program()
623
        if not isinstance(main_program, Program):
624 625 626 627
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
L
lujun 已提交
628
            dirname=load_dirname,
T
tangwei12 已提交
629
            main_program=main_program,
630
            vars=list(filter(predicate, main_program.list_vars())),
631
            filename=filename)
632 633 634
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
635

636 637
        if main_program is None:
            main_program = default_main_program()
T
tangwei12 已提交
638

639 640 641
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

642
        load_var_map = {}
643 644
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
645 646
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
647
            new_var = _clone_var_in_block_(load_block, each_var)
648
            if filename is None:
649 650 651 652
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
L
lujun 已提交
653 654 655
                    attrs={
                        'file_path': os.path.join(load_dirname, new_var.name)
                    })
656 657 658
            else:
                load_var_map[new_var.name] = new_var

659
        if filename is not None:
660 661 662 663
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

664
            load_block.append_op(
665
                type='load_combine',
666
                inputs={},
667
                outputs={"Out": load_var_list},
L
lujun 已提交
668
                attrs={'file_path': os.path.join(load_dirname, filename)})
669 670 671
        executor.run(load_prog)


672
def load_params(executor, dirname, main_program=None, filename=None):
673
    """
F
fengjiayi 已提交
674
    This function filters out all parameters from the give `main_program`
F
fengjiayi 已提交
675
    and then trys to load these parameters from the folder `dirname` or
F
fengjiayi 已提交
676 677
    the file `filename`.

678 679 680
    Use the `dirname` to specify the folder where parameters were saved. If
    parameters were saved in separate files in the folder `dirname`, set
    `filename` None; if all parameters were saved in a single file, use
F
fengjiayi 已提交
681 682
    `filename` to specify the file name.

683 684 685 686
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
    and `load_persistables()` instead.
687 688 689
    If you want to load the pre-trained model structure and parameters
    for the inference, please use the `load_inference_model` API. You can
    refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
690 691 692 693 694 695 696 697

    Args:
        executor(Executor): The executor to run for loading parameters.
        dirname(str): The directory path.
        main_program(Program|None): The program whose parameters will be
                                    loaded. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
698
        filename(str|None): The file which saved all parameters. If parameters
F
fengjiayi 已提交
699 700 701 702 703 704 705 706 707
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

708
            import paddle.fluid as fluid
F
fengjiayi 已提交
709 710 711
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
712
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
713
                                main_program=None)
714 715
    """
    load_vars(
716 717 718
        executor,
        dirname=dirname,
        main_program=main_program,
719
        predicate=is_parameter,
720
        filename=filename)
721 722


723
def load_persistables(executor, dirname, main_program=None, filename=None):
724
    """
725 726
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then trys to load these variables from the folder
F
fengjiayi 已提交
727 728
    `dirname` or the file `filename`.

729 730 731
    Use the `dirname` to specify the folder where persistable variables were
    saved. If variables were saved in separate files, set `filename` None;
    if all variables were saved in a single file, use `filename` to specify
F
fengjiayi 已提交
732 733 734 735 736
    the file name.

    Args:
        executor(Executor): The executor to run for loading persistable variables.
        dirname(str): The directory path.
737 738
        main_program(Program|None): The program whose persistbale variables will
                                    be loaded. If it is None, the default main
F
fengjiayi 已提交
739 740
                                    program will be used automatically.
                                    Default: None
741
        filename(str|None): The file which saved all variables. If variables were
F
fengjiayi 已提交
742 743 744 745 746 747 748 749 750
                            saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

751
            import paddle.fluid as fluid
F
fengjiayi 已提交
752 753 754
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
755
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
756
                                       main_program=None)
757
    """
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

789
            import paddle.fluid as fluid
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                origin = load_block.create_var(
                    name="{}.load".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)

                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

T
tangwei12 已提交
837 838 839 840
                dim1_flatten = 1
                if len(slice.shape) >= 2:
                    dim1_flatten = reduce(lambda x, y: x * y, slice.shape[1:])

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
                start = int(offset / dim1_flatten)
                end = int(offset / dim1_flatten + slice.shape[0])

                load_block.append_op(
                    type="slice",
                    inputs={'Input': origin},
                    outputs={'Out': slice},
                    attrs={'axes': [0],
                           'starts': [start],
                           'ends': [end]})

                need_delete_vars.append(origin)
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
T
tangwei12 已提交
875
        raise TypeError("'main_program' should be an instance of Program.")
876 877 878 879 880 881 882 883 884 885 886 887 888 889

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
890 891


892 893 894
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
895 896 897
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
898 899
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
900 901 902
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
903

904
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
905
        out = global_block.var(name)
W
Wu Yi 已提交
906
        global_block._prepend_op(
K
Kexin Zhao 已提交
907 908
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
909
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
910 911 912
            attrs={'col': i})


913 914 915
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
916 917
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
918 919 920
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
921

922
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
923 924 925 926 927 928 929
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


930 931 932 933
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
934
                         main_program=None,
935
                         model_filename=None,
936
                         params_filename=None,
T
tangwei12 已提交
937 938
                         export_for_deployment=True,
                         program_only=False):
939
    """
F
fengjiayi 已提交
940 941
    Prune the given `main_program` to build a new program especially for inference,
    and then save it and all related parameters to given `dirname` by the `executor`.
942 943 944 945
    If you just want to save parameters of your trained model, please use the
    `save_params` API. You can refer to :ref:`api_guide_model_save_reader_en` for
    more details.

F
fengjiayi 已提交
946 947 948

    Args:
        dirname(str): The directory path to save the inference model.
949
        feeded_var_names(list[str]): Names of variables that need to be feeded data
F
fengjiayi 已提交
950
                                     during inference.
951
        target_vars(list[Variable]): Variables from which we can get inference
F
fengjiayi 已提交
952 953
                                     results.
        executor(Executor): The executor that saves the inference model.
954 955
        main_program(Program|None): The original program, which will be pruned to
                                    build the inference model. If is setted None,
F
fengjiayi 已提交
956 957
                                    the default main program will be used.
                                    Default: None.
958 959
        model_filename(str|None): The name of file to save the inference program
                                  itself. If is setted None, a default filename
F
fengjiayi 已提交
960
                                  `__model__` will be used.
961 962
        params_filename(str|None): The name of file to save all related parameters.
                                   If it is setted None, parameters will be saved
F
fengjiayi 已提交
963
                                   in separate files .
X
Xin Pan 已提交
964 965 966 967 968
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
T
tangwei12 已提交
969
        program_only(bool): If True, It will save inference program only, and do not save params of Program.
970

F
fengjiayi 已提交
971
    Returns:
F
flame 已提交
972
        target_var_name_list(list): The fetch variables' name list
F
fengjiayi 已提交
973 974 975 976 977 978 979

    Raises:
        ValueError: If `feed_var_names` is not a list of basestring.
        ValueError: If `target_vars` is not a list of Variable.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
980

981 982
            import paddle.fluid as fluid

F
fengjiayi 已提交
983 984
            path = "./infer_model"

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
            # User defined network, here a softmax regresssion example
            image = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

            # In this example, the function will prune the default main program
            # to make it suitable for infering the `predict` var. The pruned
1007
            # inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
1008
            # and parameters are going to be saved in separate files under folder
1009
            # "./infer_model".
1010 1011

    """
M
minqiyang 已提交
1012
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
1013
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
1014
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1015
        if len(feeded_var_names) > 0:
1016
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1017
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1018
                    isinstance(name, six.string_types)
1019
                    for name in feeded_var_names)):
M
minqiyang 已提交
1020
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1021 1022

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1023
        target_vars = [target_vars]
X
Xin Pan 已提交
1024
    elif export_for_deployment:
1025 1026
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1027 1028
            raise ValueError("'target_vars' should be a list of Variable.")

1029
    if main_program is None:
Y
Yu Yang 已提交
1030
        main_program = default_main_program()
D
dzhwinter 已提交
1031
        if main_program._is_mem_optimized:
D
dzhwinter 已提交
1032 1033 1034 1035 1036 1037
            warnings.warn(
                "save_inference_model must put before you call memory_optimize. \
                                            the memory_optimize will modify the original program, \
                                            is not suitable for saving inference model \
                                            we save the original program as inference model.",
                RuntimeWarning)
X
Xin Pan 已提交
1038

T
tangwei12 已提交
1039 1040 1041
    elif not isinstance(main_program, Program):
        raise TypeError("program should be as Program type or None")

1042 1043 1044 1045 1046
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1047
        for i, var in enumerate(target_vars):
1048
            if isinstance(var, Variable):
F
flame 已提交
1049 1050 1051
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
1052
        target_vars = uniq_target_vars
F
flame 已提交
1053
    target_var_name_list = [var.name for var in target_vars]
1054

1055
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1056
    save_dirname = dirname
1057
    try:
L
lujun 已提交
1058 1059
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1060 1061 1062 1063
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1064 1065 1066 1067
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1068
    model_basename = os.path.join(save_dirname, model_basename)
1069

X
Xin Pan 已提交
1070 1071 1072 1073
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1074 1075 1076

    origin_program = main_program.clone()

X
Xin Pan 已提交
1077
    if export_for_deployment:
X
Xin Pan 已提交
1078 1079
        main_program = main_program.clone()
        global_block = main_program.global_block()
1080
        need_to_remove_op_index = []
X
Xin Pan 已提交
1081 1082 1083
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1084 1085 1086 1087 1088
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1089
        main_program.desc.flush()
X
Xin Pan 已提交
1090

X
Xin Pan 已提交
1091 1092
        main_program = main_program._prune(targets=target_vars)
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1093 1094
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1095 1096 1097 1098 1099
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1100 1101 1102
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1103 1104
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1105

T
tangwei12 已提交
1106 1107 1108 1109 1110 1111
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1112 1113
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1114 1115
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1116

L
lujun 已提交
1117
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1118
    return target_var_name_list
X
fix  
Xin Pan 已提交
1119

1120

1121 1122 1123
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1124 1125
                         params_filename=None,
                         pserver_endpoints=None):
1126
    """
1127 1128 1129 1130
    Load inference model from a directory. By this API, you can get the model
    structure(inference program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the `load_params` API.
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1131

F
fengjiayi 已提交
1132 1133 1134 1135
    Args:
        dirname(str): The directory path
        executor(Executor): The executor to run for loading inference model.
        model_filename(str|None): The name of file to load inference program.
1136
                                  If it is None, the default filename
F
fengjiayi 已提交
1137 1138 1139
                                  '__model__' will be used.
                                  Default: None
        params_filename(str|None): The name of file to load all parameters.
1140 1141 1142
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
F
fengjiayi 已提交
1143
                                   files, set it as 'None'.
1144 1145 1146 1147
        pserver_endpoints(list|None): This only need by distributed inference.
                                    When use distributed look up table in training,
                                    We also need it in inference.The parameter is
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1148 1149 1150

    Returns:
        tuple: The return of this function is a tuple with three elements:
1151 1152 1153 1154 1155
        (program, feed_target_names, fetch_targets). The `program` is a
        Program, it's the program for inference. The `feed_target_names` is
        a list of str, it contains Names of variables that need to feed
        data in the inference program. The `fetch_targets` is a list of
        Variable. It contains variables from which we can get inference
F
fengjiayi 已提交
1156 1157 1158 1159 1160 1161 1162 1163
        results.

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
            import paddle.fluid as fluid
            import numpy as np
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
1177
            path = "./infer_model"
1178 1179 1180
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
1181 1182
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
F
fengjiayi 已提交
1183 1184 1185 1186
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1187 1188
            # endpoints is your pserver endpoints list, the above is just an example
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1189
            # if we need lookup table, we will use:
1190
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1191 1192
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1193
                                              pserver_endpoints=endpoints))
1194

1195
            # In this example, the inference program was saved in the
1196
            # "./infer_model/__model__" and parameters were saved in
1197
            # separate files in "./infer_model".
1198 1199
            # After getting inference program, feed target names and
            # fetch targets, we can use an Executor to run the inference
F
fengjiayi 已提交
1200
            # program to get the inference result.
1201
    """
L
lujun 已提交
1202 1203
    load_dirname = os.path.normpath(dirname)
    if not os.path.isdir(load_dirname):
1204 1205
        raise ValueError("There is no directory named '%s'", dirname)

1206 1207
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
1208
    else:
1209
        model_filename = "__model__"
L
lujun 已提交
1210
    model_filename = os.path.join(load_dirname, model_filename)
1211 1212 1213

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1214

1215
    with open(model_filename, "rb") as f:
1216 1217
        program_desc_str = f.read()

1218
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1219
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1220 1221 1222
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1223
    load_persistables(executor, load_dirname, program, params_filename)
1224

T
tangwei12 已提交
1225
    if pserver_endpoints:
T
tangwei12 已提交
1226
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1227

1228 1229
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1230 1231 1232 1233 1234
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1235 1236


T
tangwei12 已提交
1237 1238 1239
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1240 1241
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1242
    program._sync_with_cpp()
T
tangwei12 已提交
1243
    return program
T
tangwei12 已提交
1244 1245


X
xuwei06 已提交
1246 1247
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1259

F
fengjiayi 已提交
1260 1261
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1262

1263
            import paddle.fluid as fluid
F
fengjiayi 已提交
1264 1265 1266
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1267

X
xuwei06 已提交
1268
    """
X
xuwei06 已提交
1269 1270
    assert is_parameter(para)

X
xuwei06 已提交
1271 1272 1273 1274 1275 1276 1277 1278
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1279
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1280

F
fengjiayi 已提交
1281 1282 1283 1284 1285 1286 1287
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1288

F
fengjiayi 已提交
1289 1290
    Returns:
        numpy.array: The parameter's values.
1291

F
fengjiayi 已提交
1292 1293 1294 1295 1296
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
1297

F
fengjiayi 已提交
1298 1299 1300
    Examples:
        .. code-block:: python

1301
            import paddle.fluid as fluid
F
fengjiayi 已提交
1302 1303
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1304 1305
    """
    if program is None:
Y
Yu Yang 已提交
1306
        program = default_main_program()
X
xuwei06 已提交
1307 1308
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)