test_momentum_op.py 36.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
sidgoyal78 已提交
15
import unittest
16 17

import numpy
S
sidgoyal78 已提交
18
import numpy as np
W
wanghuancoder 已提交
19
from eager_op_test import OpTest
20

J
Jiawei Wang 已提交
21
import paddle
22 23
from paddle import fluid
from paddle.fluid import core
24
from paddle.fluid.op import Operator
S
sidgoyal78 已提交
25 26


27 28 29 30 31 32 33 34 35 36
def calculate_momentum_by_numpy(
    param,
    grad,
    mu,
    velocity,
    use_nesterov,
    learning_rate,
    regularization_method=None,
    regularization_coeff=1.0,
):
37 38 39 40 41 42 43 44 45 46 47
    if regularization_method == "l2_decay":
        grad = grad + regularization_coeff * param

        velocity_out = mu * velocity + grad
        if use_nesterov:
            param_out = param - (grad + velocity_out * mu) * learning_rate
        else:
            param_out = param - learning_rate * velocity_out
    else:
        velocity_out = mu * velocity + grad
        if use_nesterov:
48 49 50
            param_out = (
                param - grad * learning_rate - velocity_out * mu * learning_rate
            )
51 52 53 54 55 56
        else:
            param_out = param - learning_rate * velocity_out

    return param_out, velocity_out


W
wanghuancoder 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
def momentum_wrapper(
    param,
    grad,
    velocity,
    learning_rate=1.0,
    master_param=None,
    mu=0.0,
    use_nesterov=False,
    regularization_method="",
    regularization_coeff=0.0,
    multi_precision=False,
    rescale_grad=1.0,
):
    return paddle._C_ops.momentum_(
        param,
        grad,
        velocity,
        learning_rate,
        master_param,
        mu,
        use_nesterov,
        regularization_method,
        regularization_coeff,
        multi_precision,
        rescale_grad,
    )


K
kavyasrinet 已提交
85
class TestMomentumOp1(OpTest):
S
sidgoyal78 已提交
86 87
    def setUp(self):
        self.op_type = "momentum"
W
wanghuancoder 已提交
88
        self.python_api = momentum_wrapper
W
Wu Yi 已提交
89 90
        self.dtype = np.float32
        self.init_dtype()
S
sidgoyal78 已提交
91

W
Wu Yi 已提交
92 93 94
        param = np.random.random((123, 321)).astype(self.dtype)
        grad = np.random.random((123, 321)).astype(self.dtype)
        velocity = np.zeros((123, 321)).astype(self.dtype)
95
        learning_rate = np.array([0.001]).astype(np.float32)
S
sidgoyal78 已提交
96
        mu = 0.0001
K
kavyasrinet 已提交
97
        use_nesterov = False
S
sidgoyal78 已提交
98 99 100 101 102

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
103
            'LearningRate': learning_rate,
S
sidgoyal78 已提交
104 105 106 107
        }

        self.attrs = {'mu': mu}

108 109 110 111 112 113
        param_out, velocity_out = calculate_momentum_by_numpy(
            param=param,
            grad=grad,
            mu=mu,
            velocity=velocity,
            use_nesterov=use_nesterov,
114 115
            learning_rate=learning_rate,
        )
K
kavyasrinet 已提交
116 117 118

        self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

W
Wu Yi 已提交
119 120 121
    def init_dtype(self):
        pass

K
kavyasrinet 已提交
122 123 124 125
    def test_check_output(self):
        self.check_output()


W
Wu Yi 已提交
126 127 128 129 130 131 132 133
class TestMomentumOpFp16(TestMomentumOp1):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        self.check_output(atol=1e-3)


K
kavyasrinet 已提交
134
class TestMomentumOp2(OpTest):
135
    '''Test Momentum with default values for attributes'''
K
kavyasrinet 已提交
136 137 138

    def setUp(self):
        self.op_type = "momentum"
W
wanghuancoder 已提交
139
        self.python_api = momentum_wrapper
K
kavyasrinet 已提交
140 141 142 143 144 145 146 147 148 149 150 151

        param = np.random.random((123, 321)).astype("float32")
        grad = np.random.random((123, 321)).astype("float32")
        velocity = np.zeros((123, 321)).astype("float32")
        learning_rate = np.array([0.001]).astype("float32")
        mu = 0.0001
        use_nesterov = True

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
152
            'LearningRate': learning_rate,
K
kavyasrinet 已提交
153 154
        }

155
        self.attrs = {'mu': mu, 'use_nesterov': use_nesterov}
K
kavyasrinet 已提交
156

157 158 159 160 161 162
        param_out, velocity_out = calculate_momentum_by_numpy(
            param=param,
            grad=grad,
            mu=mu,
            velocity=velocity,
            use_nesterov=use_nesterov,
163 164
            learning_rate=learning_rate,
        )
S
sidgoyal78 已提交
165 166 167 168 169 170 171

        self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

    def test_check_output(self):
        self.check_output()


172 173 174
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
175 176
class TestLarsMomentumOpWithMP(OpTest):
    def setUp(self):
L
limingshu 已提交
177
        self.config()
178 179 180 181 182 183
        self.op_type = "lars_momentum"
        mu = 0.0001
        lars_coeff = 0.001
        lars_weight_decay = 0.0005
        rescale_grad = 1.0

L
limingshu 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
        params = []
        grads = []
        velocitys = []
        learning_rates = []
        master_params = []
        param_outs = []
        velocity_outs = []
        master_param_outs = []
        for i in range(self.params_num):
            master_param = np.random.random((123, 321)).astype("float32")
            param = master_param.astype("float16")
            grad = np.random.random((123, 321)).astype("float16")
            velocity = np.zeros((123, 321)).astype("float32")
            learning_rate = np.array([0.001]).astype("float32")

            fp32_grad = grad.astype("float32")
            pnorm = np.sqrt(np.square(master_param).sum())
            gnorm = np.sqrt(np.square(fp32_grad).sum())
202 203 204 205 206 207
            local_lr = (
                learning_rate
                * lars_coeff
                * pnorm
                / (gnorm + lars_weight_decay * pnorm)
            )
L
limingshu 已提交
208 209
            fp32_grad = fp32_grad * rescale_grad
            velocity_out = mu * velocity + local_lr * (
210 211
                fp32_grad + lars_weight_decay * master_param
            )
L
limingshu 已提交
212 213 214 215 216 217 218 219 220 221 222 223
            p_new = master_param - velocity_out
            param_out = p_new.astype("float16")
            master_param_out = p_new

            params.append(("SubParam_" + str(i), param))
            grads.append(("SubGrad_" + str(i), grad))
            velocitys.append(("SubVelocity_" + str(i), velocity))
            learning_rates.append(("SubLearning_rate_" + str(i), learning_rate))
            velocity_outs.append(("SubVelocity_out_" + str(i), velocity_out))
            param_outs.append(("SubParam_out_" + str(i), param_out))
            master_params.append(("SubMasterParam_" + str(i), master_param))
            master_param_outs.append(
224 225
                ("SubMasterParamOut_" + str(i), master_param_out)
            )
L
limingshu 已提交
226

227
        self.inputs = {
L
limingshu 已提交
228 229 230 231 232
            'Param': params,
            'Grad': grads,
            'Velocity': velocitys,
            'LearningRate': learning_rates,
            'MasterParam': master_params,
233 234 235 236 237
        }

        self.attrs = {
            'mu': mu,
            'lars_coeff': lars_coeff,
L
limingshu 已提交
238
            'lars_weight_decay': [lars_weight_decay],
239
            'multi_precision': True,
240
            'rescale_grad': rescale_grad,
241 242 243
        }

        self.outputs = {
L
limingshu 已提交
244 245
            'ParamOut': param_outs,
            'VelocityOut': velocity_outs,
246
            'MasterParamOut': master_param_outs,
247 248 249 250 251 252 253
        }

    def test_check_output(self):
        paddle.enable_static()
        if core.is_compiled_with_cuda():
            place = fluid.CUDAPlace(0)
            if core.is_float16_supported(place):
W
wanghuancoder 已提交
254
                self.check_output_with_place(place, check_dygraph=False)
255

L
limingshu 已提交
256 257 258
    def config(self):
        self.params_num = 1

259

260 261
class TestLarsMomentumOp(OpTest):
    def setUp(self):
L
limingshu 已提交
262
        self.config()
263 264 265 266 267
        self.op_type = "lars_momentum"
        mu = 0.0001
        lars_coeff = 0.001
        lars_weight_decay = 0.0005

L
limingshu 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280
        params = []
        grads = []
        velocitys = []
        param_outs = []
        velocity_outs = []
        learning_rates = []
        for i in range(self.params_num):
            param = np.random.random((123, 321)).astype("float32")
            grad = np.random.random((123, 321)).astype("float32")
            velocity = np.zeros((123, 321)).astype("float32")
            learning_rate = np.array([0.001]).astype("float32")
            pnorm = np.sqrt(np.square(param).sum())
            gnorm = np.sqrt(np.square(grad).sum())
281 282 283 284 285 286
            local_lr = (
                learning_rate
                * lars_coeff
                * pnorm
                / (gnorm + lars_weight_decay * param)
            )
287
            velocity_out = mu * velocity + local_lr * (
288 289
                grad + lars_weight_decay * param
            )
L
limingshu 已提交
290 291 292 293 294 295 296 297 298
            param_out = param - velocity_out

            params.append(("SubParam_" + str(i), param))
            grads.append(("SubGrad_" + str(i), grad))
            velocitys.append(("SubVelocity_" + str(i), velocity))
            learning_rates.append(("SubLearning_rate_" + str(i), learning_rate))
            velocity_outs.append(("SubVelocity_out_" + str(i), velocity_out))
            param_outs.append(("SubParam_out_" + str(i), param_out))

299
        self.inputs = {
L
limingshu 已提交
300 301 302
            'Param': params,
            'Grad': grads,
            'Velocity': velocitys,
303
            'LearningRate': learning_rates,
304 305 306 307 308
        }

        self.attrs = {
            'mu': mu,
            'lars_coeff': lars_coeff,
309
            'lars_weight_decay': [lars_weight_decay],
310
        }
L
limingshu 已提交
311
        self.outputs = {'ParamOut': param_outs, 'VelocityOut': velocity_outs}
312 313

    def test_check_output(self):
314
        paddle.enable_static()
315 316
        self.check_output()

L
limingshu 已提交
317 318 319
    def config(self):
        self.params_num = 1

320

321 322 323
class TestSparseMomentumOp(unittest.TestCase):
    def setUp(self):
        self.use_nesterov = False
324 325
        self.regularization_method = ""
        self.regularization_coeff = 1.0
326 327 328 329 330 331 332 333 334 335

    def check_with_place(self, place):
        self.init_kernel()
        scope = core.Scope()
        # create and initialize Grad Variable
        height = 10
        rows = [0, 4, 7]
        row_numel = 12
        mu = 1.0
        use_nesterov = self.use_nesterov
336 337
        regularization_method = self.regularization_method
        regularization_coeff = self.regularization_coeff
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355

        # create and initialize Param Variable
        param = scope.var('Param').get_tensor()
        param_array = np.full((height, row_numel), 5.0).astype("float32")
        param.set(param_array, place)
        param_out = scope.var("ParamOut").get_tensor()
        param_out_array = np.full((height, row_numel), 0.0).astype("float32")
        param_out.set(param_out_array, place)

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        grad_np_array = np.ones((len(rows), row_numel)).astype("float32")
        grad_np_array[0, 0] = 2.0
        grad_np_array[2, 8] = 4.0
        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(grad_np_array, place)

D
dzhwinter 已提交
356 357 358 359
        velocity = scope.var('Velocity').get_tensor()
        velocity_np_array = np.ones((height, row_numel)).astype("float32")
        velocity.set(velocity_np_array, place)
        velocity_out = scope.var('VelocityOut').get_tensor()
360 361 362
        velocity_out_np_array = np.full((height, row_numel), 0.0).astype(
            "float32"
        )
D
dzhwinter 已提交
363
        velocity_out.set(velocity_out_np_array, place)
364

365
        # create and initialize LearningRate Variable
366 367 368 369 370
        lr = scope.var('LearningRate').get_tensor()
        lr_array = np.full((1), 2.0).astype("float32")
        lr.set(lr_array, place)

        # create and run operator
371 372 373 374 375 376 377 378 379 380 381 382 383
        op = Operator(
            "momentum",
            Param='Param',
            Grad='Grad',
            Velocity='Velocity',
            ParamOut='ParamOut',
            VelocityOut='VelocityOut',
            LearningRate='LearningRate',
            mu=mu,
            use_nesterov=use_nesterov,
            regularization_method=regularization_method,
            regularization_coeff=regularization_coeff,
        )
384 385 386 387
        op.run(scope, place)

        # get and compare result
        param_out_np_array = np.array(param_out)
D
dzhwinter 已提交
388
        velocity_out_np_array = np.array(velocity_out)
389 390 391

        # TODO(dzh): add a more suitable general numpy interface
        # for sparse update.
D
dzhwinter 已提交
392 393 394
        _grad_np_array = np.full((height, row_numel), 0.0).astype("float32")
        for i in range(len(rows)):
            _grad_np_array[rows[i]] = grad_np_array[i]
395

D
dzhwinter 已提交
396
        _param = param_array
397 398 399 400 401 402 403 404 405

        _param_out, _velocity_out = calculate_momentum_by_numpy(
            param=_param,
            grad=_grad_np_array,
            mu=mu,
            velocity=velocity_np_array,
            use_nesterov=use_nesterov,
            learning_rate=lr_array,
            regularization_method=regularization_method,
406 407
            regularization_coeff=regularization_coeff,
        )
408

409
        self.assertTrue((_velocity_out == velocity_out_np_array).all())
D
dzhwinter 已提交
410
        self.assertTrue((_param_out == param_out_np_array).all())
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427

    def init_kernel(self):
        pass

    def test_sparse_momentum(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place)


class TestSparseMomentumOp2(TestSparseMomentumOp):
    def init_kernel(self):
        self.use_nesterov = True


428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
class TestSparseMomentumOpWithMultiPrecision(unittest.TestCase):
    def setUp(self):
        self.init_args()
        self.regularization_method = ""
        self.regularization_coeff = 1.0

    def check_with_place(self, place):
        scope = core.Scope()
        # create and initialize Grad Variable
        height = 10
        rows = [0, 4, 7]
        row_numel = 12
        mu = 1.0
        use_nesterov = self.use_nesterov
        regularization_method = self.regularization_method
        regularization_coeff = self.regularization_coeff

        # create and initialize Param Variable
        param_array = np.full((height, row_numel), 5.0).astype("float32")
        param_out_array = np.full((height, row_numel), 0.0).astype("float32")

        param = scope.var('Param').get_tensor()
        param.set(param_array.astype("float16"), place)
        param_out = scope.var("ParamOut").get_tensor()
        param_out.set(param_out_array.astype("float16"), place)

        master_param = scope.var('MasterParam').get_tensor()
        master_param.set(param_array, place)
        master_param_out = scope.var("MasterParamOut").get_tensor()
        master_param_out.set(param_out_array, place)

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        grad_np_array = np.ones((len(rows), row_numel)).astype("float32")
        grad_np_array[0, 0] = 2.0
        grad_np_array[2, 8] = 4.0
        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(grad_np_array.astype("float16"), place)

        velocity = scope.var('Velocity').get_tensor()
        velocity_np_array = np.ones((height, row_numel)).astype("float32")
        velocity.set(velocity_np_array, place)
        velocity_out = scope.var('VelocityOut').get_tensor()
472 473 474
        velocity_out_np_array = np.full((height, row_numel), 0.0).astype(
            "float32"
        )
475 476 477 478 479 480 481 482
        velocity_out.set(velocity_out_np_array, place)

        # create and initialize LearningRate Variable
        lr = scope.var('LearningRate').get_tensor()
        lr_array = np.full((1), 2.0).astype("float32")
        lr.set(lr_array, place)

        # create and run operator
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
        op = Operator(
            "momentum",
            Param='Param',
            Grad='Grad',
            Velocity='Velocity',
            MasterParam='MasterParam',
            ParamOut='ParamOut',
            VelocityOut='VelocityOut',
            MasterParamOut='MasterParamOut',
            LearningRate='LearningRate',
            mu=mu,
            use_nesterov=use_nesterov,
            regularization_method=regularization_method,
            regularization_coeff=regularization_coeff,
            multi_precision=True,
            rescale_grad=1.0,
        )
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
        op.run(scope, place)

        # get and compare result
        param_out_np_array = np.array(param_out)
        velocity_out_np_array = np.array(velocity_out)

        _grad_np_array = np.full((height, row_numel), 0.0).astype("float32")
        for i in range(len(rows)):
            _grad_np_array[rows[i]] = grad_np_array[i]

        _param = param_array

        _param_out, _velocity_out = calculate_momentum_by_numpy(
            param=_param,
            grad=_grad_np_array,
            mu=mu,
            velocity=velocity_np_array,
            use_nesterov=use_nesterov,
            learning_rate=lr_array,
            regularization_method=regularization_method,
520 521
            regularization_coeff=regularization_coeff,
        )
522 523 524 525 526 527 528 529 530 531 532 533 534

        self.assertTrue((_velocity_out == velocity_out_np_array).all())
        self.assertTrue((_param_out == param_out_np_array).all())

    def init_args(self):
        self.use_nesterov = False

    def test_sparse_momentum(self):
        if core.is_compiled_with_cuda():
            self.check_with_place(fluid.CUDAPlace(0))


class TestSparseMomentumOpWithMultiPrecision2(
535 536
    TestSparseMomentumOpWithMultiPrecision
):
537 538 539 540
    def init_args(self):
        self.use_nesterov = True


J
Jiawei Wang 已提交
541 542 543 544 545 546 547
class TestMomentumV2(unittest.TestCase):
    def test_momentum_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear = paddle.nn.Linear(13, 5)
        # This can be any optimizer supported by dygraph.
548 549 550
        adam = paddle.optimizer.Momentum(
            learning_rate=0.01, momentum=0.9, parameters=linear.parameters()
        )
J
Jiawei Wang 已提交
551 552 553 554 555 556
        out = linear(a)
        out.backward()
        adam.step()
        adam.clear_gradients()

    def test_momentum(self):
557
        paddle.enable_static()
J
Jiawei Wang 已提交
558 559 560
        place = fluid.CPUPlace()
        main = fluid.Program()
        with fluid.program_guard(main):
G
GGBond8488 已提交
561 562
            x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
            y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
C
Charles-hit 已提交
563
            y_predict = paddle.static.nn.fc(x, size=1, activation=None)
564 565 566
            cost = paddle.nn.functional.square_error_cost(
                input=y_predict, label=y
            )
567
            avg_cost = paddle.mean(cost)
J
Jiawei Wang 已提交
568

569 570 571
            rms_optimizer = paddle.optimizer.Momentum(
                learning_rate=0.1, momentum=0.9
            )
J
Jiawei Wang 已提交
572 573 574
            rms_optimizer.minimize(avg_cost)

            fetch_list = [avg_cost]
575 576 577
            train_reader = paddle.batch(
                paddle.dataset.uci_housing.train(), batch_size=1
            )
J
Jiawei Wang 已提交
578 579 580 581 582 583 584
            feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            for data in train_reader():
                exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

    def test_raise_error(self):
585 586 587
        self.assertRaises(
            ValueError, paddle.optimizer.Momentum, learning_rate=None
        )
J
Jiawei Wang 已提交
588 589 590
        self.assertRaises(ValueError, paddle.optimizer.Momentum, momentum=None)


591 592 593
class TestMomentumOpWithDecay(OpTest):
    def setUp(self):
        self.op_type = "momentum"
W
wanghuancoder 已提交
594
        self.python_api = momentum_wrapper
595 596 597 598 599 600 601 602 603
        self.dtype = np.float32
        self.use_nesterov = True
        self.regularization_method = 'l2_decay'
        self.regularization_coeff = 0.9
        self.init_config()

        param = np.random.random((123, 321)).astype(self.dtype)
        grad = np.random.random((123, 321)).astype(self.dtype)
        velocity = np.zeros((123, 321)).astype(self.dtype)
604
        learning_rate = np.array([0.001]).astype(np.float32)
605 606 607 608 609 610 611 612 613
        mu = 0.0001
        use_nesterov = self.use_nesterov
        regularization_method = self.regularization_method
        regularization_coeff = self.regularization_coeff

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
614
            'LearningRate': learning_rate,
615 616 617 618 619 620
        }

        self.attrs = {
            'mu': mu,
            'use_nesterov': use_nesterov,
            'regularization_method': regularization_method,
621
            'regularization_coeff': regularization_coeff,
622 623 624 625 626 627 628 629 630 631
        }

        grad = grad + regularization_coeff * param

        param_out, velocity_out = calculate_momentum_by_numpy(
            param=param,
            grad=grad,
            mu=mu,
            velocity=velocity,
            use_nesterov=use_nesterov,
632 633
            learning_rate=learning_rate,
        )
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683

        self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

    def init_config(self):
        pass

    def test_check_output(self):
        paddle.enable_static()
        self.check_output()


class TestMomentumOpWithDecayFP16(TestMomentumOpWithDecay):
    def init_config(self):
        self.dtype = np.float16

    def test_check_output(self):
        paddle.enable_static()
        self.check_output(atol=1e-3)


class TestMomentumOpWithDecay2(TestMomentumOpWithDecay):
    def init_config(self):
        self.use_nesterov = False


class TestSparseMomentumOpWithDecay(TestSparseMomentumOp):
    def setUp(self):
        self.use_nesterov = False
        self.regularization_method = 'l2_decay'
        self.regularization_coeff = 0.9


class TestSparseMomentumOpWithDecay2(TestSparseMomentumOpWithDecay):
    def init_kernel(self):
        self.use_nesterov = True


class TestMomentumOpWithDecayAPI(unittest.TestCase):
    def _test_momentum_dygraph_common(self, regularization):
        paddle.disable_static()
        inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
        linear = paddle.nn.Linear(10, 10)
        inp = paddle.to_tensor(inp)
        out = linear(inp)
        loss = paddle.mean(out)
        # This can be any optimizer supported by dygraph.
        momentum = paddle.fluid.contrib.optimizer.Momentum(
            learning_rate=0.01,
            momentum=0.9,
            parameter_list=linear.parameters(),
684 685
            regularization=regularization,
        )
686 687 688 689 690
        momentum.minimize(loss)

    def test_momentum_dygraph_1(self):
        self._test_momentum_dygraph_common(
            regularization=paddle.fluid.regularizer.L2Decay(
691 692 693
                regularization_coeff=0.1
            )
        )
694 695 696 697 698 699

    def test_momentum_static(self):
        paddle.enable_static()
        place = fluid.CPUPlace()
        main = fluid.Program()
        with fluid.program_guard(main):
G
GGBond8488 已提交
700 701
            x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
            y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
C
Charles-hit 已提交
702
            y_predict = paddle.static.nn.fc(x, size=1, activation=None)
703 704 705
            cost = paddle.nn.functional.square_error_cost(
                input=y_predict, label=y
            )
706
            avg_cost = paddle.mean(cost)
707 708

            momentum_optimizer = paddle.fluid.contrib.optimizer.Momentum(
709 710
                learning_rate=0.1, momentum=0.9
            )
711 712 713
            momentum_optimizer.minimize(avg_cost)

            fetch_list = [avg_cost]
714 715 716
            train_reader = paddle.batch(
                paddle.dataset.uci_housing.train(), batch_size=1
            )
717 718 719 720 721 722 723
            feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            for data in train_reader():
                exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)


724 725 726 727
class TestFusedMomentumWithDecayAPI(unittest.TestCase):
    def get_program(self, weight_attr, bias_attr=False):
        main_program = paddle.static.Program()
        startup_program = paddle.static.Program()
728 729 730
        with paddle.static.program_guard(
            main_program=main_program, startup_program=startup_program
        ):
731
            x = paddle.static.data(name='x', shape=[10, 10])
732 733 734
            linear = paddle.nn.Linear(
                10, 10, weight_attr=weight_attr, bias_attr=bias_attr
            )
735 736 737 738 739
            out = linear(x)
            loss = paddle.mean(out)
            optimizer = paddle.optimizer.Momentum(
                learning_rate=0.01,
                momentum=0.9,
740 741
                weight_decay=paddle.regularizer.L2Decay(0.5),
            )
742 743 744 745 746 747 748 749
            optimizer.minimize(loss)
        return main_program

    def test_param_has_l2decay(self):
        paddle.enable_static()
        weight_attr = paddle.ParamAttr(
            name="weight",
            initializer=paddle.nn.initializer.Constant(value=0.5),
750 751
            regularizer=paddle.regularizer.L2Decay(0.1),
        )
752 753 754 755 756 757 758 759 760 761 762 763 764 765
        program = self.get_program(weight_attr, bias_attr=False)
        ops = program.global_block().ops

        self.assertEqual(ops[-1].attr('regularization_method'), 'l2_decay')
        self.assertEqual(ops[-1].attr('regularization_coeff'), np.float32(0.1))
        for i in range(len(ops)):
            self.assertTrue('sum' not in ops[i].type)
            self.assertTrue('scale' not in ops[i].type)

    def test_param_has_l1decay(self):
        paddle.enable_static()
        weight_attr = paddle.ParamAttr(
            name="weight",
            initializer=paddle.nn.initializer.Constant(value=0.5),
766 767
            regularizer=paddle.regularizer.L1Decay(0.1),
        )
768 769
        bias_attr = paddle.ParamAttr(
            name="bias",
770 771 772
            initializer=paddle.nn.initializer.Constant(value=0.0),
            regularizer=None,
        )
773 774 775 776 777 778 779 780
        program = self.get_program(weight_attr, bias_attr)
        ops = program.global_block().ops

        self.assertEqual(ops[-1].type, 'momentum')
        self.assertEqual(ops[-2].type, 'momentum')
        self.assertEqual(ops[-3].type, 'sum')
        self.assertEqual(ops[-4].type, 'scale')
        self.assertEqual(ops[-5].type, 'sign')
781
        self.assertEqual(ops[-6].type, 'matmul_v2_grad')
782 783 784 785 786
        if 'weight' in ops[-1].input('Param'):
            self.assertEqual(ops[-1].attr('regularization_method'), '')
            self.assertEqual(ops[-1].attr('regularization_coeff'), 0)
        if 'bias' in ops[-2].input('Param'):
            self.assertEqual(ops[-2].attr('regularization_method'), 'l2_decay')
787 788 789
            self.assertEqual(
                ops[-2].attr('regularization_coeff'), np.float32(0.5)
            )
790 791 792 793 794 795 796 797 798 799 800 801

    def test_param_has_no_regularizer(self):
        paddle.enable_static()
        program = self.get_program(weight_attr=None)
        ops = program.global_block().ops
        self.assertEqual(ops[-1].attr('regularization_method'), 'l2_decay')
        self.assertEqual(ops[-1].attr('regularization_coeff'), np.float32(0.5))
        for i in range(len(ops)):
            self.assertTrue('sum' not in ops[i].type)
            self.assertTrue('scale' not in ops[i].type)


802 803 804
class TestMomentumOpVsMomentumOpWithDecayAPI(unittest.TestCase):
    def __update_params(self, momentum, linear):
        for i in range(10):
805 806 807
            inp = paddle.full(
                shape=[2, 2], fill_value=i, dtype='float32'
            ).astype("float32")
808 809 810 811 812
            inp = paddle.to_tensor(inp)
            out = linear(inp)
            loss = paddle.mean(out)
            loss.backward()
            momentum.minimize(loss)
813
            linear.clear_gradients()
814 815 816 817 818 819 820 821

    def __test_vs(self, place=fluid.CPUPlace()):
        paddle.disable_static(place=place)

        linear_old = paddle.nn.Linear(
            2,
            2,
            weight_attr=paddle.nn.initializer.Constant(value=2.0),
822 823
            bias_attr=paddle.nn.initializer.Constant(value=2.0),
        )
824 825 826 827 828
        momentum_old = paddle.fluid.optimizer.Momentum(
            learning_rate=0.01,
            momentum=0.9,
            parameter_list=linear_old.parameters(),
            regularization=paddle.fluid.regularizer.L2Decay(
829 830 831
                regularization_coeff=0.1
            ),
        )
832 833 834 835 836 837
        self.__update_params(momentum=momentum_old, linear=linear_old)

        linear_new = paddle.nn.Linear(
            2,
            2,
            weight_attr=paddle.nn.initializer.Constant(value=2.0),
838 839
            bias_attr=paddle.nn.initializer.Constant(value=2.0),
        )
840 841 842 843 844
        momentum_new = paddle.fluid.contrib.optimizer.Momentum(
            learning_rate=0.01,
            momentum=0.9,
            parameter_list=linear_new.parameters(),
            regularization=paddle.fluid.regularizer.L2Decay(
845 846 847
                regularization_coeff=0.1
            ),
        )
848 849 850 851 852
        self.__update_params(momentum=momentum_new, linear=linear_new)

        self.assertEqual(
            (linear_old.weight.numpy() == linear_new.weight.numpy()).all(),
            True,
853 854
            'the param weight updated by two Momentum optimizers should equal',
        )
855 856 857 858 859 860 861 862 863 864

    def test_vs(self, place=fluid.CPUPlace()):
        places = [fluid.CPUPlace()]
        if paddle.fluid.core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))

        for place in places:
            self.__test_vs(place=place)


865 866 867 868 869 870 871 872
class TestMomentumV2Group(TestMomentumV2):
    def test_momentum_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear_1 = paddle.nn.Linear(13, 5)
        linear_2 = paddle.nn.Linear(5, 3)
        # This can be any optimizer supported by dygraph.
873 874 875 876 877 878 879 880 881 882 883 884 885 886
        adam = paddle.optimizer.Momentum(
            learning_rate=0.01,
            parameters=[
                {'params': linear_1.parameters()},
                {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1,
                    'momentum': 0.99,
                },
            ],
            weight_decay=0.1,
            momentum=0.9,
        )
887 888 889 890 891 892 893
        out = linear_1(a)
        out = linear_2(out)
        out.backward()
        adam.step()
        adam.clear_gradients()


894
class TestMultiTensorMomentumDygraph(unittest.TestCase):
895 896 897 898 899 900 901 902
    def _momentum_optimize_dygraph(
        self,
        place,
        use_param_attr=False,
        use_param_group=False,
        use_amp=False,
        use_multi_tensor=False,
    ):
903 904 905 906 907 908 909
        paddle.disable_static()
        paddle.seed(10)
        paddle.set_device(place)
        input = paddle.randn((5, 5))
        weight_attr = paddle.ParamAttr(
            learning_rate=0.5,
            regularizer=paddle.regularizer.L2Decay(1.0),
910 911
            trainable=True,
        )
912 913 914 915 916 917 918 919
        if use_param_attr:
            model = paddle.nn.Linear(5, 5, weight_attr)
        else:
            model = paddle.nn.Linear(5, 5)
        if not use_param_group:
            optimizer = paddle.optimizer.Momentum(
                parameters=model.parameters(),
                use_multi_tensor=use_multi_tensor,
920 921
                multi_precision=use_amp,
            )
922
        else:
923 924
            parameters = list(model.parameters())
            n = len(parameters)
925
            optimizer = paddle.optimizer.Momentum(
926 927
                parameters=[
                    {
928
                        'params': parameters[: int(n / 2)],
929 930 931
                        'weight_decay': 0.001,
                        'learning_rate': 0.1,
                        'momentum': 0.99,
932 933 934 935 936 937 938
                    },
                    {
                        'params': parameters[int(n / 2) :],
                        'weight_decay': 0.001,
                        'learning_rate': 0.1,
                        'momentum': 0.99,
                    },
939
                ],
940
                use_multi_tensor=use_multi_tensor,
941 942
                multi_precision=use_amp,
            )
943
        for idx in range(5):
944
            if place == 'gpu' and use_amp:
945 946
                model = paddle.amp.decorate(models=model, level='O2')
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
947
            if place == 'gpu' and use_amp:
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
                with paddle.amp.auto_cast(level='O2'):
                    output = model(input)
                    loss = paddle.mean(output)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.step(optimizer)
                optimizer.clear_grad(set_to_zero=False)
            else:
                output = model(input)
                loss = paddle.mean(output)
                # This can be any optimizer supported by dygraph.
                loss.backward()
                optimizer.step()
                optimizer.clear_grad(set_to_zero=False)
        return output, model.parameters()

    def _get_places(self):
        places = ['cpu']
        if paddle.is_compiled_with_cuda():
            places.append('gpu')
        return places

    def _check_with_place_amp(self, place, use_amp):
        output1, params1 = self._momentum_optimize_dygraph(
972 973
            place=place, use_amp=use_amp, use_multi_tensor=True
        )
974
        output2, params2 = self._momentum_optimize_dygraph(
975 976
            place=place, use_amp=use_amp, use_multi_tensor=False
        )
H
hong 已提交
977

978
        np.testing.assert_allclose(output1, output2, rtol=1e-05)
979
        for idx in range(len(params1)):
980
            np.testing.assert_allclose(params1[idx], params2[idx], rtol=1e-05)
981 982 983 984 985 986

    def _check_with_param_arrt(self, place, use_amp):
        output1, params1 = self._momentum_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_attr=True,
987 988
            use_multi_tensor=True,
        )
989 990 991 992
        output2, params2 = self._momentum_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_attr=True,
993 994
            use_multi_tensor=False,
        )
995
        np.testing.assert_allclose(output1, output2, rtol=1e-05)
996
        for idx in range(len(params1)):
997
            np.testing.assert_allclose(params1[idx], params2[idx], rtol=1e-05)
998 999 1000 1001 1002 1003

    def _check_with_param_group(self, place, use_amp):
        output1, params1 = self._momentum_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_group=True,
1004 1005
            use_multi_tensor=True,
        )
1006 1007 1008 1009
        output2, params2 = self._momentum_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_group=True,
1010 1011
            use_multi_tensor=False,
        )
1012
        np.testing.assert_allclose(output1, output2, rtol=1e-05)
1013
        for idx in range(len(params1)):
1014
            np.testing.assert_allclose(params1[idx], params2[idx], rtol=1e-05)
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

    def test_main(self):
        for place in self._get_places():
            use_amp_list = [True, False]
            for use_amp in use_amp_list:
                self._check_with_place_amp(place, use_amp)
                self._check_with_param_arrt(place, use_amp)
                self._check_with_param_group(place, use_amp)


class TestMultiTensorMomentumStatic(unittest.TestCase):
1026 1027 1028
    def _momentum_optimize_static(
        self, place, use_amp=False, use_multi_tensor=False
    ):
1029 1030 1031 1032 1033 1034 1035 1036
        paddle.enable_static()
        paddle.seed(10)
        np.random.seed(10)
        if place == 'cpu':
            use_amp = False
        exe = paddle.static.Executor(place=place)
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
1037 1038 1039
        optimizer = paddle.optimizer.Momentum(
            multi_precision=use_amp, use_multi_tensor=use_multi_tensor
        )
1040 1041 1042 1043 1044 1045
        if use_amp:
            optimizer = paddle.static.amp.decorate(
                optimizer,
                init_loss_scaling=128.0,
                use_dynamic_loss_scaling=True,
                use_pure_fp16=True,
1046 1047
                use_fp16_guard=False,
            )
1048 1049
        with paddle.static.program_guard(train_program, startup_program):
            if use_amp:
1050 1051 1052
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float16'
                )
1053
            else:
1054 1055 1056
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float32'
                )
1057
            hidden = paddle.static.nn.fc(x=data, size=10)
1058
            loss = paddle.mean(hidden)
1059 1060 1061 1062 1063 1064 1065 1066 1067
            optimizer.minimize(loss)
        exe.run(startup_program)
        if use_amp:
            optimizer.amp_init(place=place, scope=paddle.static.global_scope())
            x = numpy.random.random(size=(2, 2)).astype('float16')
        else:
            x = numpy.random.random(size=(2, 2)).astype('float32')
        out = []
        for idx in range(5):
1068 1069 1070
            (loss_data,) = exe.run(
                train_program, feed={"X": x}, fetch_list=[loss.name]
            )
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
            out.append(loss_data)
        return out

    def _get_places(self):
        places = ['cpu']
        if paddle.is_compiled_with_cuda():
            places.append('gpu')
        return places

    def _check_with_place_amp(self, place, use_amp):
1081 1082 1083 1084 1085 1086
        output1 = self._momentum_optimize_static(
            place=place, use_amp=use_amp, use_multi_tensor=True
        )
        output2 = self._momentum_optimize_static(
            place=place, use_amp=use_amp, use_multi_tensor=False
        )
1087
        for idx in range(len(output1)):
1088
            np.testing.assert_allclose(output1[idx], output2[idx], rtol=1e-05)
1089 1090 1091 1092 1093 1094 1095 1096

    def test_main(self):
        for place in self._get_places():
            use_amp_list = [True, False]
            for use_amp in use_amp_list:
                self._check_with_place_amp(place, use_amp)


S
sidgoyal78 已提交
1097
if __name__ == "__main__":
H
hong 已提交
1098
    paddle.enable_static()
S
sidgoyal78 已提交
1099
    unittest.main()