test_momentum_op.py 36.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
sidgoyal78 已提交
15
import unittest
16 17

import numpy
S
sidgoyal78 已提交
18
import numpy as np
19
from op_test import OpTest
20

J
Jiawei Wang 已提交
21
import paddle
22 23
from paddle import fluid
from paddle.fluid import core
24
from paddle.fluid.op import Operator
S
sidgoyal78 已提交
25 26


27 28 29 30 31 32 33 34 35 36
def calculate_momentum_by_numpy(
    param,
    grad,
    mu,
    velocity,
    use_nesterov,
    learning_rate,
    regularization_method=None,
    regularization_coeff=1.0,
):
37 38 39 40 41 42 43 44 45 46 47
    if regularization_method == "l2_decay":
        grad = grad + regularization_coeff * param

        velocity_out = mu * velocity + grad
        if use_nesterov:
            param_out = param - (grad + velocity_out * mu) * learning_rate
        else:
            param_out = param - learning_rate * velocity_out
    else:
        velocity_out = mu * velocity + grad
        if use_nesterov:
48 49 50
            param_out = (
                param - grad * learning_rate - velocity_out * mu * learning_rate
            )
51 52 53 54 55 56
        else:
            param_out = param - learning_rate * velocity_out

    return param_out, velocity_out


K
kavyasrinet 已提交
57
class TestMomentumOp1(OpTest):
S
sidgoyal78 已提交
58 59
    def setUp(self):
        self.op_type = "momentum"
W
Wu Yi 已提交
60 61
        self.dtype = np.float32
        self.init_dtype()
S
sidgoyal78 已提交
62

W
Wu Yi 已提交
63 64 65
        param = np.random.random((123, 321)).astype(self.dtype)
        grad = np.random.random((123, 321)).astype(self.dtype)
        velocity = np.zeros((123, 321)).astype(self.dtype)
66
        learning_rate = np.array([0.001]).astype(np.float32)
S
sidgoyal78 已提交
67
        mu = 0.0001
K
kavyasrinet 已提交
68
        use_nesterov = False
S
sidgoyal78 已提交
69 70 71 72 73

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
74
            'LearningRate': learning_rate,
S
sidgoyal78 已提交
75 76 77 78
        }

        self.attrs = {'mu': mu}

79 80 81 82 83 84
        param_out, velocity_out = calculate_momentum_by_numpy(
            param=param,
            grad=grad,
            mu=mu,
            velocity=velocity,
            use_nesterov=use_nesterov,
85 86
            learning_rate=learning_rate,
        )
K
kavyasrinet 已提交
87 88 89

        self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

W
Wu Yi 已提交
90 91 92
    def init_dtype(self):
        pass

K
kavyasrinet 已提交
93 94 95 96
    def test_check_output(self):
        self.check_output()


W
Wu Yi 已提交
97 98 99 100 101 102 103 104
class TestMomentumOpFp16(TestMomentumOp1):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        self.check_output(atol=1e-3)


K
kavyasrinet 已提交
105
class TestMomentumOp2(OpTest):
106
    '''Test Momentum with default values for attributes'''
K
kavyasrinet 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

    def setUp(self):
        self.op_type = "momentum"

        param = np.random.random((123, 321)).astype("float32")
        grad = np.random.random((123, 321)).astype("float32")
        velocity = np.zeros((123, 321)).astype("float32")
        learning_rate = np.array([0.001]).astype("float32")
        mu = 0.0001
        use_nesterov = True

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
122
            'LearningRate': learning_rate,
K
kavyasrinet 已提交
123 124
        }

125
        self.attrs = {'mu': mu, 'use_nesterov': use_nesterov}
K
kavyasrinet 已提交
126

127 128 129 130 131 132
        param_out, velocity_out = calculate_momentum_by_numpy(
            param=param,
            grad=grad,
            mu=mu,
            velocity=velocity,
            use_nesterov=use_nesterov,
133 134
            learning_rate=learning_rate,
        )
S
sidgoyal78 已提交
135 136 137 138 139 140 141

        self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

    def test_check_output(self):
        self.check_output()


142 143 144
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
145 146
class TestLarsMomentumOpWithMP(OpTest):
    def setUp(self):
L
limingshu 已提交
147
        self.config()
148 149 150 151 152 153
        self.op_type = "lars_momentum"
        mu = 0.0001
        lars_coeff = 0.001
        lars_weight_decay = 0.0005
        rescale_grad = 1.0

L
limingshu 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        params = []
        grads = []
        velocitys = []
        learning_rates = []
        master_params = []
        param_outs = []
        velocity_outs = []
        master_param_outs = []
        for i in range(self.params_num):
            master_param = np.random.random((123, 321)).astype("float32")
            param = master_param.astype("float16")
            grad = np.random.random((123, 321)).astype("float16")
            velocity = np.zeros((123, 321)).astype("float32")
            learning_rate = np.array([0.001]).astype("float32")

            fp32_grad = grad.astype("float32")
            pnorm = np.sqrt(np.square(master_param).sum())
            gnorm = np.sqrt(np.square(fp32_grad).sum())
172 173 174 175 176 177
            local_lr = (
                learning_rate
                * lars_coeff
                * pnorm
                / (gnorm + lars_weight_decay * pnorm)
            )
L
limingshu 已提交
178 179
            fp32_grad = fp32_grad * rescale_grad
            velocity_out = mu * velocity + local_lr * (
180 181
                fp32_grad + lars_weight_decay * master_param
            )
L
limingshu 已提交
182 183 184 185 186 187 188 189 190 191 192 193
            p_new = master_param - velocity_out
            param_out = p_new.astype("float16")
            master_param_out = p_new

            params.append(("SubParam_" + str(i), param))
            grads.append(("SubGrad_" + str(i), grad))
            velocitys.append(("SubVelocity_" + str(i), velocity))
            learning_rates.append(("SubLearning_rate_" + str(i), learning_rate))
            velocity_outs.append(("SubVelocity_out_" + str(i), velocity_out))
            param_outs.append(("SubParam_out_" + str(i), param_out))
            master_params.append(("SubMasterParam_" + str(i), master_param))
            master_param_outs.append(
194 195
                ("SubMasterParamOut_" + str(i), master_param_out)
            )
L
limingshu 已提交
196

197
        self.inputs = {
L
limingshu 已提交
198 199 200 201 202
            'Param': params,
            'Grad': grads,
            'Velocity': velocitys,
            'LearningRate': learning_rates,
            'MasterParam': master_params,
203 204 205 206 207
        }

        self.attrs = {
            'mu': mu,
            'lars_coeff': lars_coeff,
L
limingshu 已提交
208
            'lars_weight_decay': [lars_weight_decay],
209
            'multi_precision': True,
210
            'rescale_grad': rescale_grad,
211 212 213
        }

        self.outputs = {
L
limingshu 已提交
214 215
            'ParamOut': param_outs,
            'VelocityOut': velocity_outs,
216
            'MasterParamOut': master_param_outs,
217 218 219 220 221 222 223 224 225
        }

    def test_check_output(self):
        paddle.enable_static()
        if core.is_compiled_with_cuda():
            place = fluid.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place)

L
limingshu 已提交
226 227 228
    def config(self):
        self.params_num = 1

229

230 231
class TestLarsMomentumOp(OpTest):
    def setUp(self):
L
limingshu 已提交
232
        self.config()
233 234 235 236 237
        self.op_type = "lars_momentum"
        mu = 0.0001
        lars_coeff = 0.001
        lars_weight_decay = 0.0005

L
limingshu 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250
        params = []
        grads = []
        velocitys = []
        param_outs = []
        velocity_outs = []
        learning_rates = []
        for i in range(self.params_num):
            param = np.random.random((123, 321)).astype("float32")
            grad = np.random.random((123, 321)).astype("float32")
            velocity = np.zeros((123, 321)).astype("float32")
            learning_rate = np.array([0.001]).astype("float32")
            pnorm = np.sqrt(np.square(param).sum())
            gnorm = np.sqrt(np.square(grad).sum())
251 252 253 254 255 256
            local_lr = (
                learning_rate
                * lars_coeff
                * pnorm
                / (gnorm + lars_weight_decay * param)
            )
257
            velocity_out = mu * velocity + local_lr * (
258 259
                grad + lars_weight_decay * param
            )
L
limingshu 已提交
260 261 262 263 264 265 266 267 268
            param_out = param - velocity_out

            params.append(("SubParam_" + str(i), param))
            grads.append(("SubGrad_" + str(i), grad))
            velocitys.append(("SubVelocity_" + str(i), velocity))
            learning_rates.append(("SubLearning_rate_" + str(i), learning_rate))
            velocity_outs.append(("SubVelocity_out_" + str(i), velocity_out))
            param_outs.append(("SubParam_out_" + str(i), param_out))

269
        self.inputs = {
L
limingshu 已提交
270 271 272
            'Param': params,
            'Grad': grads,
            'Velocity': velocitys,
273
            'LearningRate': learning_rates,
274 275 276 277 278
        }

        self.attrs = {
            'mu': mu,
            'lars_coeff': lars_coeff,
279
            'lars_weight_decay': [lars_weight_decay],
280
        }
L
limingshu 已提交
281
        self.outputs = {'ParamOut': param_outs, 'VelocityOut': velocity_outs}
282 283

    def test_check_output(self):
284
        paddle.enable_static()
285 286
        self.check_output()

L
limingshu 已提交
287 288 289
    def config(self):
        self.params_num = 1

290

291 292 293
class TestSparseMomentumOp(unittest.TestCase):
    def setUp(self):
        self.use_nesterov = False
294 295
        self.regularization_method = ""
        self.regularization_coeff = 1.0
296 297 298 299 300 301 302 303 304 305

    def check_with_place(self, place):
        self.init_kernel()
        scope = core.Scope()
        # create and initialize Grad Variable
        height = 10
        rows = [0, 4, 7]
        row_numel = 12
        mu = 1.0
        use_nesterov = self.use_nesterov
306 307
        regularization_method = self.regularization_method
        regularization_coeff = self.regularization_coeff
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

        # create and initialize Param Variable
        param = scope.var('Param').get_tensor()
        param_array = np.full((height, row_numel), 5.0).astype("float32")
        param.set(param_array, place)
        param_out = scope.var("ParamOut").get_tensor()
        param_out_array = np.full((height, row_numel), 0.0).astype("float32")
        param_out.set(param_out_array, place)

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        grad_np_array = np.ones((len(rows), row_numel)).astype("float32")
        grad_np_array[0, 0] = 2.0
        grad_np_array[2, 8] = 4.0
        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(grad_np_array, place)

D
dzhwinter 已提交
326 327 328 329
        velocity = scope.var('Velocity').get_tensor()
        velocity_np_array = np.ones((height, row_numel)).astype("float32")
        velocity.set(velocity_np_array, place)
        velocity_out = scope.var('VelocityOut').get_tensor()
330 331 332
        velocity_out_np_array = np.full((height, row_numel), 0.0).astype(
            "float32"
        )
D
dzhwinter 已提交
333
        velocity_out.set(velocity_out_np_array, place)
334

335
        # create and initialize LearningRate Variable
336 337 338 339 340
        lr = scope.var('LearningRate').get_tensor()
        lr_array = np.full((1), 2.0).astype("float32")
        lr.set(lr_array, place)

        # create and run operator
341 342 343 344 345 346 347 348 349 350 351 352 353
        op = Operator(
            "momentum",
            Param='Param',
            Grad='Grad',
            Velocity='Velocity',
            ParamOut='ParamOut',
            VelocityOut='VelocityOut',
            LearningRate='LearningRate',
            mu=mu,
            use_nesterov=use_nesterov,
            regularization_method=regularization_method,
            regularization_coeff=regularization_coeff,
        )
354 355 356 357
        op.run(scope, place)

        # get and compare result
        param_out_np_array = np.array(param_out)
D
dzhwinter 已提交
358
        velocity_out_np_array = np.array(velocity_out)
359 360 361

        # TODO(dzh): add a more suitable general numpy interface
        # for sparse update.
D
dzhwinter 已提交
362 363 364
        _grad_np_array = np.full((height, row_numel), 0.0).astype("float32")
        for i in range(len(rows)):
            _grad_np_array[rows[i]] = grad_np_array[i]
365

D
dzhwinter 已提交
366
        _param = param_array
367 368 369 370 371 372 373 374 375

        _param_out, _velocity_out = calculate_momentum_by_numpy(
            param=_param,
            grad=_grad_np_array,
            mu=mu,
            velocity=velocity_np_array,
            use_nesterov=use_nesterov,
            learning_rate=lr_array,
            regularization_method=regularization_method,
376 377
            regularization_coeff=regularization_coeff,
        )
378

379
        self.assertTrue((_velocity_out == velocity_out_np_array).all())
D
dzhwinter 已提交
380
        self.assertTrue((_param_out == param_out_np_array).all())
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397

    def init_kernel(self):
        pass

    def test_sparse_momentum(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place)


class TestSparseMomentumOp2(TestSparseMomentumOp):
    def init_kernel(self):
        self.use_nesterov = True


398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
class TestSparseMomentumOpWithMultiPrecision(unittest.TestCase):
    def setUp(self):
        self.init_args()
        self.regularization_method = ""
        self.regularization_coeff = 1.0

    def check_with_place(self, place):
        scope = core.Scope()
        # create and initialize Grad Variable
        height = 10
        rows = [0, 4, 7]
        row_numel = 12
        mu = 1.0
        use_nesterov = self.use_nesterov
        regularization_method = self.regularization_method
        regularization_coeff = self.regularization_coeff

        # create and initialize Param Variable
        param_array = np.full((height, row_numel), 5.0).astype("float32")
        param_out_array = np.full((height, row_numel), 0.0).astype("float32")

        param = scope.var('Param').get_tensor()
        param.set(param_array.astype("float16"), place)
        param_out = scope.var("ParamOut").get_tensor()
        param_out.set(param_out_array.astype("float16"), place)

        master_param = scope.var('MasterParam').get_tensor()
        master_param.set(param_array, place)
        master_param_out = scope.var("MasterParamOut").get_tensor()
        master_param_out.set(param_out_array, place)

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        grad_np_array = np.ones((len(rows), row_numel)).astype("float32")
        grad_np_array[0, 0] = 2.0
        grad_np_array[2, 8] = 4.0
        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(grad_np_array.astype("float16"), place)

        velocity = scope.var('Velocity').get_tensor()
        velocity_np_array = np.ones((height, row_numel)).astype("float32")
        velocity.set(velocity_np_array, place)
        velocity_out = scope.var('VelocityOut').get_tensor()
442 443 444
        velocity_out_np_array = np.full((height, row_numel), 0.0).astype(
            "float32"
        )
445 446 447 448 449 450 451 452
        velocity_out.set(velocity_out_np_array, place)

        # create and initialize LearningRate Variable
        lr = scope.var('LearningRate').get_tensor()
        lr_array = np.full((1), 2.0).astype("float32")
        lr.set(lr_array, place)

        # create and run operator
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
        op = Operator(
            "momentum",
            Param='Param',
            Grad='Grad',
            Velocity='Velocity',
            MasterParam='MasterParam',
            ParamOut='ParamOut',
            VelocityOut='VelocityOut',
            MasterParamOut='MasterParamOut',
            LearningRate='LearningRate',
            mu=mu,
            use_nesterov=use_nesterov,
            regularization_method=regularization_method,
            regularization_coeff=regularization_coeff,
            multi_precision=True,
            rescale_grad=1.0,
        )
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
        op.run(scope, place)

        # get and compare result
        param_out_np_array = np.array(param_out)
        velocity_out_np_array = np.array(velocity_out)

        _grad_np_array = np.full((height, row_numel), 0.0).astype("float32")
        for i in range(len(rows)):
            _grad_np_array[rows[i]] = grad_np_array[i]

        _param = param_array

        _param_out, _velocity_out = calculate_momentum_by_numpy(
            param=_param,
            grad=_grad_np_array,
            mu=mu,
            velocity=velocity_np_array,
            use_nesterov=use_nesterov,
            learning_rate=lr_array,
            regularization_method=regularization_method,
490 491
            regularization_coeff=regularization_coeff,
        )
492 493 494 495 496 497 498 499 500 501 502 503 504

        self.assertTrue((_velocity_out == velocity_out_np_array).all())
        self.assertTrue((_param_out == param_out_np_array).all())

    def init_args(self):
        self.use_nesterov = False

    def test_sparse_momentum(self):
        if core.is_compiled_with_cuda():
            self.check_with_place(fluid.CUDAPlace(0))


class TestSparseMomentumOpWithMultiPrecision2(
505 506
    TestSparseMomentumOpWithMultiPrecision
):
507 508 509 510
    def init_args(self):
        self.use_nesterov = True


J
Jiawei Wang 已提交
511 512 513 514 515 516 517
class TestMomentumV2(unittest.TestCase):
    def test_momentum_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear = paddle.nn.Linear(13, 5)
        # This can be any optimizer supported by dygraph.
518 519 520
        adam = paddle.optimizer.Momentum(
            learning_rate=0.01, momentum=0.9, parameters=linear.parameters()
        )
J
Jiawei Wang 已提交
521 522 523 524 525 526
        out = linear(a)
        out.backward()
        adam.step()
        adam.clear_gradients()

    def test_momentum(self):
527
        paddle.enable_static()
J
Jiawei Wang 已提交
528 529 530
        place = fluid.CPUPlace()
        main = fluid.Program()
        with fluid.program_guard(main):
G
GGBond8488 已提交
531 532
            x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
            y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
C
Charles-hit 已提交
533
            y_predict = paddle.static.nn.fc(x, size=1, activation=None)
534 535 536
            cost = paddle.nn.functional.square_error_cost(
                input=y_predict, label=y
            )
537
            avg_cost = paddle.mean(cost)
J
Jiawei Wang 已提交
538

539 540 541
            rms_optimizer = paddle.optimizer.Momentum(
                learning_rate=0.1, momentum=0.9
            )
J
Jiawei Wang 已提交
542 543 544
            rms_optimizer.minimize(avg_cost)

            fetch_list = [avg_cost]
545 546 547
            train_reader = paddle.batch(
                paddle.dataset.uci_housing.train(), batch_size=1
            )
J
Jiawei Wang 已提交
548 549 550 551 552 553 554
            feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            for data in train_reader():
                exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

    def test_raise_error(self):
555 556 557
        self.assertRaises(
            ValueError, paddle.optimizer.Momentum, learning_rate=None
        )
J
Jiawei Wang 已提交
558 559 560
        self.assertRaises(ValueError, paddle.optimizer.Momentum, momentum=None)


561 562 563 564 565 566 567 568 569 570 571 572
class TestMomentumOpWithDecay(OpTest):
    def setUp(self):
        self.op_type = "momentum"
        self.dtype = np.float32
        self.use_nesterov = True
        self.regularization_method = 'l2_decay'
        self.regularization_coeff = 0.9
        self.init_config()

        param = np.random.random((123, 321)).astype(self.dtype)
        grad = np.random.random((123, 321)).astype(self.dtype)
        velocity = np.zeros((123, 321)).astype(self.dtype)
573
        learning_rate = np.array([0.001]).astype(np.float32)
574 575 576 577 578 579 580 581 582
        mu = 0.0001
        use_nesterov = self.use_nesterov
        regularization_method = self.regularization_method
        regularization_coeff = self.regularization_coeff

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
583
            'LearningRate': learning_rate,
584 585 586 587 588 589
        }

        self.attrs = {
            'mu': mu,
            'use_nesterov': use_nesterov,
            'regularization_method': regularization_method,
590
            'regularization_coeff': regularization_coeff,
591 592 593 594 595 596 597 598 599 600
        }

        grad = grad + regularization_coeff * param

        param_out, velocity_out = calculate_momentum_by_numpy(
            param=param,
            grad=grad,
            mu=mu,
            velocity=velocity,
            use_nesterov=use_nesterov,
601 602
            learning_rate=learning_rate,
        )
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

        self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

    def init_config(self):
        pass

    def test_check_output(self):
        paddle.enable_static()
        self.check_output()


class TestMomentumOpWithDecayFP16(TestMomentumOpWithDecay):
    def init_config(self):
        self.dtype = np.float16

    def test_check_output(self):
        paddle.enable_static()
        self.check_output(atol=1e-3)


class TestMomentumOpWithDecay2(TestMomentumOpWithDecay):
    def init_config(self):
        self.use_nesterov = False


class TestSparseMomentumOpWithDecay(TestSparseMomentumOp):
    def setUp(self):
        self.use_nesterov = False
        self.regularization_method = 'l2_decay'
        self.regularization_coeff = 0.9


class TestSparseMomentumOpWithDecay2(TestSparseMomentumOpWithDecay):
    def init_kernel(self):
        self.use_nesterov = True


class TestMomentumOpWithDecayAPI(unittest.TestCase):
    def _test_momentum_dygraph_common(self, regularization):
        paddle.disable_static()
        inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
        linear = paddle.nn.Linear(10, 10)
        inp = paddle.to_tensor(inp)
        out = linear(inp)
        loss = paddle.mean(out)
        # This can be any optimizer supported by dygraph.
        momentum = paddle.fluid.contrib.optimizer.Momentum(
            learning_rate=0.01,
            momentum=0.9,
            parameter_list=linear.parameters(),
653 654
            regularization=regularization,
        )
655 656 657 658 659
        momentum.minimize(loss)

    def test_momentum_dygraph_1(self):
        self._test_momentum_dygraph_common(
            regularization=paddle.fluid.regularizer.L2Decay(
660 661 662
                regularization_coeff=0.1
            )
        )
663 664 665 666 667 668

    def test_momentum_static(self):
        paddle.enable_static()
        place = fluid.CPUPlace()
        main = fluid.Program()
        with fluid.program_guard(main):
G
GGBond8488 已提交
669 670
            x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
            y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
C
Charles-hit 已提交
671
            y_predict = paddle.static.nn.fc(x, size=1, activation=None)
672 673 674
            cost = paddle.nn.functional.square_error_cost(
                input=y_predict, label=y
            )
675
            avg_cost = paddle.mean(cost)
676 677

            momentum_optimizer = paddle.fluid.contrib.optimizer.Momentum(
678 679
                learning_rate=0.1, momentum=0.9
            )
680 681 682
            momentum_optimizer.minimize(avg_cost)

            fetch_list = [avg_cost]
683 684 685
            train_reader = paddle.batch(
                paddle.dataset.uci_housing.train(), batch_size=1
            )
686 687 688 689 690 691 692
            feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            for data in train_reader():
                exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)


693 694 695 696
class TestFusedMomentumWithDecayAPI(unittest.TestCase):
    def get_program(self, weight_attr, bias_attr=False):
        main_program = paddle.static.Program()
        startup_program = paddle.static.Program()
697 698 699
        with paddle.static.program_guard(
            main_program=main_program, startup_program=startup_program
        ):
700
            x = paddle.static.data(name='x', shape=[10, 10])
701 702 703
            linear = paddle.nn.Linear(
                10, 10, weight_attr=weight_attr, bias_attr=bias_attr
            )
704 705 706 707 708
            out = linear(x)
            loss = paddle.mean(out)
            optimizer = paddle.optimizer.Momentum(
                learning_rate=0.01,
                momentum=0.9,
709 710
                weight_decay=paddle.regularizer.L2Decay(0.5),
            )
711 712 713 714 715 716 717 718
            optimizer.minimize(loss)
        return main_program

    def test_param_has_l2decay(self):
        paddle.enable_static()
        weight_attr = paddle.ParamAttr(
            name="weight",
            initializer=paddle.nn.initializer.Constant(value=0.5),
719 720
            regularizer=paddle.regularizer.L2Decay(0.1),
        )
721 722 723 724 725 726 727 728 729 730 731 732 733 734
        program = self.get_program(weight_attr, bias_attr=False)
        ops = program.global_block().ops

        self.assertEqual(ops[-1].attr('regularization_method'), 'l2_decay')
        self.assertEqual(ops[-1].attr('regularization_coeff'), np.float32(0.1))
        for i in range(len(ops)):
            self.assertTrue('sum' not in ops[i].type)
            self.assertTrue('scale' not in ops[i].type)

    def test_param_has_l1decay(self):
        paddle.enable_static()
        weight_attr = paddle.ParamAttr(
            name="weight",
            initializer=paddle.nn.initializer.Constant(value=0.5),
735 736
            regularizer=paddle.regularizer.L1Decay(0.1),
        )
737 738
        bias_attr = paddle.ParamAttr(
            name="bias",
739 740 741
            initializer=paddle.nn.initializer.Constant(value=0.0),
            regularizer=None,
        )
742 743 744 745 746 747 748 749
        program = self.get_program(weight_attr, bias_attr)
        ops = program.global_block().ops

        self.assertEqual(ops[-1].type, 'momentum')
        self.assertEqual(ops[-2].type, 'momentum')
        self.assertEqual(ops[-3].type, 'sum')
        self.assertEqual(ops[-4].type, 'scale')
        self.assertEqual(ops[-5].type, 'sign')
750
        self.assertEqual(ops[-6].type, 'matmul_v2_grad')
751 752 753 754 755
        if 'weight' in ops[-1].input('Param'):
            self.assertEqual(ops[-1].attr('regularization_method'), '')
            self.assertEqual(ops[-1].attr('regularization_coeff'), 0)
        if 'bias' in ops[-2].input('Param'):
            self.assertEqual(ops[-2].attr('regularization_method'), 'l2_decay')
756 757 758
            self.assertEqual(
                ops[-2].attr('regularization_coeff'), np.float32(0.5)
            )
759 760 761 762 763 764 765 766 767 768 769 770

    def test_param_has_no_regularizer(self):
        paddle.enable_static()
        program = self.get_program(weight_attr=None)
        ops = program.global_block().ops
        self.assertEqual(ops[-1].attr('regularization_method'), 'l2_decay')
        self.assertEqual(ops[-1].attr('regularization_coeff'), np.float32(0.5))
        for i in range(len(ops)):
            self.assertTrue('sum' not in ops[i].type)
            self.assertTrue('scale' not in ops[i].type)


771 772 773
class TestMomentumOpVsMomentumOpWithDecayAPI(unittest.TestCase):
    def __update_params(self, momentum, linear):
        for i in range(10):
774 775 776
            inp = paddle.full(
                shape=[2, 2], fill_value=i, dtype='float32'
            ).astype("float32")
777 778 779 780 781
            inp = paddle.to_tensor(inp)
            out = linear(inp)
            loss = paddle.mean(out)
            loss.backward()
            momentum.minimize(loss)
782
            linear.clear_gradients()
783 784 785 786 787 788 789 790

    def __test_vs(self, place=fluid.CPUPlace()):
        paddle.disable_static(place=place)

        linear_old = paddle.nn.Linear(
            2,
            2,
            weight_attr=paddle.nn.initializer.Constant(value=2.0),
791 792
            bias_attr=paddle.nn.initializer.Constant(value=2.0),
        )
793 794 795 796 797
        momentum_old = paddle.fluid.optimizer.Momentum(
            learning_rate=0.01,
            momentum=0.9,
            parameter_list=linear_old.parameters(),
            regularization=paddle.fluid.regularizer.L2Decay(
798 799 800
                regularization_coeff=0.1
            ),
        )
801 802 803 804 805 806
        self.__update_params(momentum=momentum_old, linear=linear_old)

        linear_new = paddle.nn.Linear(
            2,
            2,
            weight_attr=paddle.nn.initializer.Constant(value=2.0),
807 808
            bias_attr=paddle.nn.initializer.Constant(value=2.0),
        )
809 810 811 812 813
        momentum_new = paddle.fluid.contrib.optimizer.Momentum(
            learning_rate=0.01,
            momentum=0.9,
            parameter_list=linear_new.parameters(),
            regularization=paddle.fluid.regularizer.L2Decay(
814 815 816
                regularization_coeff=0.1
            ),
        )
817 818 819 820 821
        self.__update_params(momentum=momentum_new, linear=linear_new)

        self.assertEqual(
            (linear_old.weight.numpy() == linear_new.weight.numpy()).all(),
            True,
822 823
            'the param weight updated by two Momentum optimizers should equal',
        )
824 825 826 827 828 829 830 831 832 833

    def test_vs(self, place=fluid.CPUPlace()):
        places = [fluid.CPUPlace()]
        if paddle.fluid.core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))

        for place in places:
            self.__test_vs(place=place)


834 835 836 837 838 839 840 841
class TestMomentumV2Group(TestMomentumV2):
    def test_momentum_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear_1 = paddle.nn.Linear(13, 5)
        linear_2 = paddle.nn.Linear(5, 3)
        # This can be any optimizer supported by dygraph.
842 843 844 845 846 847 848 849 850 851 852 853 854 855
        adam = paddle.optimizer.Momentum(
            learning_rate=0.01,
            parameters=[
                {'params': linear_1.parameters()},
                {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1,
                    'momentum': 0.99,
                },
            ],
            weight_decay=0.1,
            momentum=0.9,
        )
856 857 858 859 860 861 862
        out = linear_1(a)
        out = linear_2(out)
        out.backward()
        adam.step()
        adam.clear_gradients()


863
class TestMultiTensorMomentumDygraph(unittest.TestCase):
864 865 866 867 868 869 870 871
    def _momentum_optimize_dygraph(
        self,
        place,
        use_param_attr=False,
        use_param_group=False,
        use_amp=False,
        use_multi_tensor=False,
    ):
872 873 874 875 876 877 878
        paddle.disable_static()
        paddle.seed(10)
        paddle.set_device(place)
        input = paddle.randn((5, 5))
        weight_attr = paddle.ParamAttr(
            learning_rate=0.5,
            regularizer=paddle.regularizer.L2Decay(1.0),
879 880
            trainable=True,
        )
881 882 883 884 885 886 887 888
        if use_param_attr:
            model = paddle.nn.Linear(5, 5, weight_attr)
        else:
            model = paddle.nn.Linear(5, 5)
        if not use_param_group:
            optimizer = paddle.optimizer.Momentum(
                parameters=model.parameters(),
                use_multi_tensor=use_multi_tensor,
889 890
                multi_precision=use_amp,
            )
891
        else:
892 893
            parameters = list(model.parameters())
            n = len(parameters)
894
            optimizer = paddle.optimizer.Momentum(
895 896
                parameters=[
                    {
897
                        'params': parameters[: int(n / 2)],
898 899 900
                        'weight_decay': 0.001,
                        'learning_rate': 0.1,
                        'momentum': 0.99,
901 902 903 904 905 906 907
                    },
                    {
                        'params': parameters[int(n / 2) :],
                        'weight_decay': 0.001,
                        'learning_rate': 0.1,
                        'momentum': 0.99,
                    },
908
                ],
909
                use_multi_tensor=use_multi_tensor,
910 911
                multi_precision=use_amp,
            )
912
        for idx in range(5):
913
            if place == 'gpu' and use_amp:
914 915
                model = paddle.amp.decorate(models=model, level='O2')
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
916
            if place == 'gpu' and use_amp:
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
                with paddle.amp.auto_cast(level='O2'):
                    output = model(input)
                    loss = paddle.mean(output)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.step(optimizer)
                optimizer.clear_grad(set_to_zero=False)
            else:
                output = model(input)
                loss = paddle.mean(output)
                # This can be any optimizer supported by dygraph.
                loss.backward()
                optimizer.step()
                optimizer.clear_grad(set_to_zero=False)
        return output, model.parameters()

    def _get_places(self):
        places = ['cpu']
        if paddle.is_compiled_with_cuda():
            places.append('gpu')
        return places

    def _check_with_place_amp(self, place, use_amp):
        output1, params1 = self._momentum_optimize_dygraph(
941 942
            place=place, use_amp=use_amp, use_multi_tensor=True
        )
943
        output2, params2 = self._momentum_optimize_dygraph(
944 945
            place=place, use_amp=use_amp, use_multi_tensor=False
        )
H
hong 已提交
946

947
        np.testing.assert_allclose(output1, output2, rtol=1e-05)
948
        for idx in range(len(params1)):
949
            np.testing.assert_allclose(params1[idx], params2[idx], rtol=1e-05)
950 951 952 953 954 955

    def _check_with_param_arrt(self, place, use_amp):
        output1, params1 = self._momentum_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_attr=True,
956 957
            use_multi_tensor=True,
        )
958 959 960 961
        output2, params2 = self._momentum_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_attr=True,
962 963
            use_multi_tensor=False,
        )
964
        np.testing.assert_allclose(output1, output2, rtol=1e-05)
965
        for idx in range(len(params1)):
966
            np.testing.assert_allclose(params1[idx], params2[idx], rtol=1e-05)
967 968 969 970 971 972

    def _check_with_param_group(self, place, use_amp):
        output1, params1 = self._momentum_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_group=True,
973 974
            use_multi_tensor=True,
        )
975 976 977 978
        output2, params2 = self._momentum_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_group=True,
979 980
            use_multi_tensor=False,
        )
981
        np.testing.assert_allclose(output1, output2, rtol=1e-05)
982
        for idx in range(len(params1)):
983
            np.testing.assert_allclose(params1[idx], params2[idx], rtol=1e-05)
984 985 986 987 988 989 990 991 992 993 994

    def test_main(self):
        for place in self._get_places():
            use_amp_list = [True, False]
            for use_amp in use_amp_list:
                self._check_with_place_amp(place, use_amp)
                self._check_with_param_arrt(place, use_amp)
                self._check_with_param_group(place, use_amp)


class TestMultiTensorMomentumStatic(unittest.TestCase):
995 996 997
    def _momentum_optimize_static(
        self, place, use_amp=False, use_multi_tensor=False
    ):
998 999 1000 1001 1002 1003 1004 1005
        paddle.enable_static()
        paddle.seed(10)
        np.random.seed(10)
        if place == 'cpu':
            use_amp = False
        exe = paddle.static.Executor(place=place)
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
1006 1007 1008
        optimizer = paddle.optimizer.Momentum(
            multi_precision=use_amp, use_multi_tensor=use_multi_tensor
        )
1009 1010 1011 1012 1013 1014
        if use_amp:
            optimizer = paddle.static.amp.decorate(
                optimizer,
                init_loss_scaling=128.0,
                use_dynamic_loss_scaling=True,
                use_pure_fp16=True,
1015 1016
                use_fp16_guard=False,
            )
1017 1018
        with paddle.static.program_guard(train_program, startup_program):
            if use_amp:
1019 1020 1021
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float16'
                )
1022
            else:
1023 1024 1025
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float32'
                )
1026
            hidden = paddle.static.nn.fc(x=data, size=10)
1027
            loss = paddle.mean(hidden)
1028 1029 1030 1031 1032 1033 1034 1035 1036
            optimizer.minimize(loss)
        exe.run(startup_program)
        if use_amp:
            optimizer.amp_init(place=place, scope=paddle.static.global_scope())
            x = numpy.random.random(size=(2, 2)).astype('float16')
        else:
            x = numpy.random.random(size=(2, 2)).astype('float32')
        out = []
        for idx in range(5):
1037 1038 1039
            (loss_data,) = exe.run(
                train_program, feed={"X": x}, fetch_list=[loss.name]
            )
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
            out.append(loss_data)
        return out

    def _get_places(self):
        places = ['cpu']
        if paddle.is_compiled_with_cuda():
            places.append('gpu')
        return places

    def _check_with_place_amp(self, place, use_amp):
1050 1051 1052 1053 1054 1055
        output1 = self._momentum_optimize_static(
            place=place, use_amp=use_amp, use_multi_tensor=True
        )
        output2 = self._momentum_optimize_static(
            place=place, use_amp=use_amp, use_multi_tensor=False
        )
1056
        for idx in range(len(output1)):
1057
            np.testing.assert_allclose(output1[idx], output2[idx], rtol=1e-05)
1058 1059 1060 1061 1062 1063 1064 1065

    def test_main(self):
        for place in self._get_places():
            use_amp_list = [True, False]
            for use_amp in use_amp_list:
                self._check_with_place_amp(place, use_amp)


S
sidgoyal78 已提交
1066
if __name__ == "__main__":
H
hong 已提交
1067
    paddle.enable_static()
S
sidgoyal78 已提交
1068
    unittest.main()