dropout_impl.cu.h 16.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>

#ifdef PADDLE_WITH_CUDA
#include <cuda.h>
#include <curand_kernel.h>
22

23 24 25 26 27
#include "paddle/fluid/platform/dynload/curand.h"
#endif
#ifdef PADDLE_WITH_HIP
#include <hip/hip_runtime.h>
#include <hiprand_kernel.h>
28

29 30 31 32 33 34
#include "paddle/fluid/platform/dynload/hiprand.h"
#endif

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/tensor_util.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
36
#include "paddle/fluid/operators/dropout_impl_util.h"
37
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
H
hong 已提交
38
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
39
#include "paddle/phi/kernels/funcs/broadcast_function.h"
40
#include "paddle/phi/kernels/funcs/distribution_helper.h"
41
#include "paddle/phi/kernels/funcs/functors.h"
42

43 44
namespace paddle {
namespace operators {
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

template <typename T1, typename T2 = T1, typename OutT = T1>
struct DstMaskFunctor {
  const float retain_prob_;
  const bool is_upscale_in_train_;
  using MT = typename details::MPTypeTrait<T1>::Type;
  MT factor;
  HOSTDEVICE inline DstMaskFunctor(const float retain_prob,
                                   const bool is_upscale_in_train)
      : retain_prob_(retain_prob), is_upscale_in_train_(is_upscale_in_train) {
    factor = static_cast<MT>(1.0f / retain_prob_);
  }

  HOSTDEVICE inline void operator()(OutT* dst, const T1* src_val,
                                    const T2* rand, int num) const {
    static constexpr int kCount =
        phi::funcs::uniform_distribution<T2>::kReturnsCount;
// 0 ~ kCount -1 is dist , kCount ~ 2 * kCount - 1 is mask
#pragma unroll
    for (int i = 0; i < kCount; i++) {
      if (rand[i] < retain_prob_) {
        dst[i] = is_upscale_in_train_
                     ? static_cast<T1>(static_cast<MT>(src_val[i]) * factor)
                     : static_cast<T1>(src_val[i]);
        dst[i + kCount] = static_cast<T1>(1);
      } else {
        dst[i] = static_cast<T1>(0);
        dst[i + kCount] = dst[i];
      }
    }
  }
};

78
template <typename T, typename MaskType>
79 80 81 82
__global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed,
                                          const float dropout_prob,
                                          const T* src, MaskType* mask, T* dst,
                                          bool is_upscale_in_train,
83
                                          uint64_t increment,
84
                                          size_t main_offset) {
85 86 87 88
  size_t idx = static_cast<size_t>(BLOCK_ID_X * BLOCK_NUM_X);
  static constexpr int kCount =
      phi::funcs::uniform_distribution<float>::kReturnsCount;
  size_t stride = BLOCK_NUM_X * GRID_NUM_X * kCount;
89 90
#ifdef PADDLE_WITH_HIP
  hiprandStatePhilox4_32_10_t state;
91 92
  hiprand_init(seed, idx + THREAD_ID_X, increment, &state);
  using SType = hiprandStatePhilox4_32_10_t;
93 94
#else
  curandStatePhilox4_32_10_t state;
95 96
  curand_init(seed, idx + THREAD_ID_X, increment, &state);
  using SType = curandStatePhilox4_32_10_t;
97
#endif
98 99 100 101 102 103
  T dst_mask[kCount * 2];  // 0 ~ kCount -1 : dst;kCount ~ 2 * kCount - 1: mask
  float rands[kCount];
  MaskType mask_result[kCount];
  using Rand = phi::funcs::uniform_distribution<float>;
  using Cast = kps::IdentityFunctor<T>;
  int deal_size = BLOCK_NUM_X * kCount;
104

105
  size_t fix = idx * kCount;
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

  auto dst_functor =
      DstMaskFunctor<T, float>(1.0f - dropout_prob, is_upscale_in_train);
  for (; fix < main_offset; fix += stride) {
    kps::ReadData<T, kCount, 1, 1, false>(&dst_mask[0], src + fix, deal_size);
    kps::ElementwiseRandom<SType, float, kCount, 1, Rand>(&rands[0], Rand(),
                                                          &state);
    // dst
    kps::OperatorTernary<T, float, T, DstMaskFunctor<T, float>>(
        &dst_mask[0], &dst_mask[0], &rands[0], dst_functor, kCount);
    kps::WriteData<T, kCount, 1, 1, false>(dst + fix, &dst_mask[0], deal_size);
    // mask
    kps::ElementwiseUnary<T, MaskType, kCount, 1, 1, Cast>(
        &mask_result[0], &dst_mask[kCount], Cast());
    kps::WriteData<MaskType, kCount, 1, 1, false>(mask + fix, &mask_result[0],
                                                  deal_size);
    if (fix > idx * kCount + 1) {
123 124
      __syncthreads();
    }
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
  }
  int remainder = n - fix;
  if (remainder > 0) {
    kps::ReadData<T, kCount, 1, 1, true>(&dst_mask[0], src + fix, remainder);
    kps::ElementwiseRandom<SType, float, kCount, 1, Rand>(&rands[0], Rand(),
                                                          &state);
    // dst
    kps::OperatorTernary<T, float, T, DstMaskFunctor<T, float>>(
        &dst_mask[0], &dst_mask[0], &rands[0], dst_functor, kCount);
    kps::WriteData<T, kCount, 1, 1, true>(dst + fix, &dst_mask[0], remainder);
    // mask
    kps::ElementwiseUnary<T, MaskType, kCount, 1, 1, Cast>(
        &mask_result[0], &dst_mask[kCount], Cast());
    kps::WriteData<MaskType, kCount, 1, 1, true>(mask + fix, &mask_result[0],
                                                 remainder);
    __syncthreads();
141 142 143
  }
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
template <typename T1, typename T2 = T1, typename OutT = T1>
struct MaskFunctor {
  const float retain_prob_;
  using MT = typename details::MPTypeTrait<T1>::Type;
  MT factor;
  HOSTDEVICE inline MaskFunctor(const float retain_prob)
      : retain_prob_(retain_prob) {
    factor = static_cast<MT>(1.0f / retain_prob_);
  }

  HOSTDEVICE inline void operator()(OutT* dst, const T2* rand, int num) const {
    static constexpr int kCount =
        phi::funcs::uniform_distribution<T2>::kReturnsCount;
// 0 ~ kCount -1 is dist , kCount ~ 2 * kCount - 1 is mask
#pragma unroll
    for (int i = 0; i < kCount; i++) {
      if (rand[i] < retain_prob_) {
        dst[i] = static_cast<T1>(1);
      } else {
        dst[i] = static_cast<T1>(0);
      }
    }
  }
};

template <typename T, typename MaskType>
struct DstFunctor {
  using MT = typename details::MPTypeTrait<T>::Type;
  MT factor;
  HOSTDEVICE inline DstFunctor(const float retain_prob,
                               const bool is_upscale_in_train,
                               const int64_t num)
      : retain_prob_(retain_prob),
        is_upscale_in_train_(is_upscale_in_train),
        num_(num) {
    factor = static_cast<MT>(1.0f / retain_prob_);
  }

  HOSTDEVICE inline T operator()(const T src_val, const MaskType mask) const {
    for (int i = 0; i < num_; i++) {
      if (mask == static_cast<MaskType>(1)) {
        return is_upscale_in_train_
                   ? static_cast<T>(static_cast<MT>(src_val) * factor)
                   : static_cast<T>(src_val);
      } else {
        return static_cast<T>(0);
      }
    }
  }

 private:
  const float retain_prob_;
  const bool is_upscale_in_train_;
  const int64_t num_;
};

template <typename T, typename MaskType>
__global__ void VectorizedGeneratorMask(const size_t n, uint64_t seed,
                                        const float dropout_prob, const T* src,
                                        MaskType* mask, uint64_t increment,
                                        size_t main_offset) {
  constexpr int kCount = phi::funcs::uniform_distribution<float>::kReturnsCount;
  size_t idx = static_cast<size_t>(BLOCK_ID_X * BLOCK_NUM_X);
  size_t stride = BLOCK_NUM_X * GRID_NUM_X * kCount;
#ifdef PADDLE_WITH_HIP
  hiprandStatePhilox4_32_10_t state;
  hiprand_init(seed, idx + THREAD_ID_X, increment, &state);
  using SType = hiprandStatePhilox4_32_10_t;
#else
  curandStatePhilox4_32_10_t state;
  curand_init(seed, idx + THREAD_ID_X, increment, &state);
  using SType = curandStatePhilox4_32_10_t;
#endif
  T dst_mask[kCount];  // 0 ~ kCount -1 : dst;kCount ~ 2 * kCount - 1: mask
  float rands[kCount];
  MaskType mask_result[kCount];
  using Rand = phi::funcs::uniform_distribution<float>;
  using Cast = kps::IdentityFunctor<T>;
  int deal_size = BLOCK_NUM_X * kCount;

  size_t fix = idx * kCount;

  auto mask_functor = MaskFunctor<T, float>(1.0f - dropout_prob);
  for (; fix < main_offset; fix += stride) {
    kps::ReadData<T, kCount, 1, 1, false>(&dst_mask[0], src + fix, deal_size);
    kps::ElementwiseRandom<SType, float, kCount, 1, Rand>(&rands[0], Rand(),
                                                          &state);
    // dst
    kps::OperatorBinary<float, T, MaskFunctor<T, float>>(
        &dst_mask[0], &rands[0], mask_functor, kCount);

    // mask
    kps::ElementwiseUnary<T, MaskType, kCount, 1, 1, Cast>(
        &mask_result[0], &dst_mask[0], Cast());
    kps::WriteData<MaskType, kCount, 1, 1, false>(mask + fix, &mask_result[0],
                                                  deal_size);
    if (fix > idx * kCount + 1) {
      __syncthreads();
    }
  }
  int remainder = n - fix;
  if (remainder > 0) {
    kps::ReadData<T, kCount, 1, 1, true>(&dst_mask[0], src + fix, remainder);
    kps::ElementwiseRandom<SType, float, kCount, 1, Rand>(&rands[0], Rand(),
                                                          &state);
    // dst
    kps::OperatorBinary<float, T, MaskFunctor<T, float>>(
        &dst_mask[0], &rands[0], mask_functor, kCount);
    // mask
    kps::ElementwiseUnary<T, MaskType, kCount, 1, 1, Cast>(
        &mask_result[0], &dst_mask[0], Cast());
    kps::WriteData<MaskType, kCount, 1, 1, true>(mask + fix, &mask_result[0],
                                                 remainder);
    __syncthreads();
  }
}

inline void CalcBroadcastedMask(const phi::GPUContext& dev_ctx,
                                const framework::Tensor& mask,
                                framework::Tensor* broadcasted_mask) {
  // The broadcast of mask can be combined to the following ElementwiseKernel
  // when the BroadcastKernel supports different input types.
  broadcasted_mask->mutable_data<uint8_t>(dev_ctx.GetPlace());

  std::vector<const framework::Tensor*> ins = {&mask};
  std::vector<framework::Tensor*> outs = {broadcasted_mask};
  phi::funcs::BroadcastKernel<phi::ElementwiseType::kUnary, uint8_t, uint8_t>(
      dev_ctx, ins, &outs, -1, kps::IdentityFunctor<uint8_t>());
}

template <typename T, typename MT>
void ScaleByDropoutFactor(const phi::GPUContext& dev_ctx,
                          const framework::Tensor& x, framework::Tensor* y,
                          MT factor) {
  std::vector<const framework::Tensor*> ins = {&x};
  std::vector<framework::Tensor*> outs = {y};
  auto functor = phi::funcs::ScaleFunctor<T>(factor);
  phi::funcs::ElementwiseKernel<T>(dev_ctx, ins, &outs, functor);
}

284
template <typename T>
H
hong 已提交
285
void DropoutFwGPUKernelDriver(const phi::GPUContext& dev_ctx, bool is_test,
286
                              float dropout_prob, bool upscale_in_train,
H
hong 已提交
287 288 289
                              bool is_fix_seed, int seed_val,
                              const framework::Tensor& x,
                              const framework::Tensor* seed,
290 291
                              framework::Tensor* mask, framework::Tensor* y,
                              bool is_dropout_nd = false) {
292 293 294 295
  int64_t x_numel = x.numel();
  auto stream = dev_ctx.stream();
  auto* x_data = x.data<T>();
  auto* y_data = y->data<T>();
296 297 298

  if (!is_test) {
    auto* mask_data = mask->data<uint8_t>();
299
    size_t size = phi::product(mask->dims());
300 301 302

    if (dropout_prob == 1.0f) {
#ifdef PADDLE_WITH_HIP
303
      PADDLE_ENFORCE_GPU_SUCCESS(
304
          hipMemsetAsync(y_data, 0, x_numel * sizeof(T), stream));
305
      PADDLE_ENFORCE_GPU_SUCCESS(
306 307
          hipMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream));
#else
308
      PADDLE_ENFORCE_GPU_SUCCESS(
309
          cudaMemsetAsync(y_data, 0, x_numel * sizeof(T), stream));
310
      PADDLE_ENFORCE_GPU_SUCCESS(
311 312 313 314 315 316 317
          cudaMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream));
#endif
      return;
    }

    uint64_t seed_data;
    uint64_t increment;
318
    // VectorizedRandomGenerator use curand_uniform4, so kVecSize is 4;
319 320
    constexpr int kVecSize =
        phi::funcs::uniform_distribution<float>::kReturnsCount;
H
hong 已提交
321
    auto gpu_config =
322
        phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, x_numel, kVecSize);
323 324 325
    size_t grid_size = gpu_config.GetGridSize();
    size_t block_size = gpu_config.GetBlockSize();

326 327 328 329 330
    int64_t device_id = dev_ctx.GetPlace().GetDeviceId();
    const auto& prop = platform::GetDeviceProperties(device_id);
    size_t max_grid_size = prop.maxThreadsPerMultiProcessor *
                           prop.multiProcessorCount / block_size;
    grid_size = std::min(grid_size, max_grid_size);
331

Z
Zhang Ting 已提交
332
    auto offset =
333
        ((x_numel - 1) / (grid_size * block_size * kVecSize) + 1) * kVecSize;
334 335
    GetSeedDataAndIncrement(dev_ctx, seed, is_fix_seed, seed_val, offset,
                            &seed_data, &increment);
336 337 338
    size_t main_offset =
        size / (block_size * kVecSize) * (block_size * kVecSize);

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
    if (is_dropout_nd) {
      VectorizedGeneratorMask<T, uint8_t><<<grid_size, block_size, 0, stream>>>(
          size, seed_data, dropout_prob, x_data, mask_data, increment,
          main_offset);

      framework::Tensor broadcasted_mask;
      broadcasted_mask.Resize(x.dims());
      CalcBroadcastedMask(dev_ctx, *mask, &broadcasted_mask);

      auto dst_functor = DstFunctor<T, uint8_t>(1.0f - dropout_prob,
                                                upscale_in_train, x_numel);
      std::vector<const framework::Tensor*> ins = {&x, &broadcasted_mask};
      std::vector<framework::Tensor*> outs = {y};
      phi::funcs::ElementwiseKernel<T>(dev_ctx, ins, &outs, dst_functor);
    } else {
S
sneaxiy 已提交
354
#define PD_DROPOUT_KERNEL_NAME VectorizedRandomGenerator<T, uint8_t>
355 356 357 358 359
      PD_RECORD_CUDA_GRAPH_RANDOM_KERNEL(
          !is_fix_seed, PD_DROPOUT_KERNEL_NAME, grid_size, block_size, 0,
          stream, offset, KERNEL_PARAMS.As<uint64_t>(1),
          KERNEL_PARAMS.As<uint64_t>(7), size, seed_data, dropout_prob, x_data,
          mask_data, y_data, upscale_in_train, increment, main_offset);
S
sneaxiy 已提交
360
#undef PD_DROPOUT_KERNEL_NAME
361
    }
362 363
  } else {
    if (upscale_in_train) {
364 365
      // y = x
      framework::TensorCopy(x, dev_ctx.GetPlace(), dev_ctx, y);
366
    } else {
367 368
      using MT = typename details::MPTypeTrait<T>::Type;
      MT factor = static_cast<MT>(1.0f - dropout_prob);
369 370
      // y = factor * x
      ScaleByDropoutFactor<T, MT>(dev_ctx, x, y, factor);
371 372 373 374
    }
  }
}

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
template <typename T, typename MaskType>
struct CudaDropoutGradFunctor {
  using MT = typename details::MPTypeTrait<T>::Type;

  explicit CudaDropoutGradFunctor(const MT factor) : factor_(factor) {}

  __device__ __forceinline__ T operator()(const T dout,
                                          const MaskType mask) const {
    return static_cast<T>(static_cast<MT>(dout) * static_cast<MT>(mask) *
                          factor_);
  }

 private:
  MT factor_;
};

391
template <typename T>
392 393
void DropoutGradGPUKernelDriver(const phi::GPUContext& dev_ctx, bool is_test,
                                float dropout_prob, bool upscale_in_train,
H
hong 已提交
394
                                const framework::Tensor& grad_y,
395
                                const framework::Tensor& mask,
H
hong 已提交
396
                                framework::Tensor* grad_x,
397
                                bool is_dropout_nd = false) {
S
sneaxiy 已提交
398
  using MT = typename details::MPTypeTrait<T>::Type;
399

400
  auto stream = dev_ctx.stream();
401
  if (is_test) {
402 403 404
    MT factor = static_cast<MT>(upscale_in_train ? 1.0f : 1.0f - dropout_prob);
    // y = factor * x
    ScaleByDropoutFactor<T, MT>(dev_ctx, grad_y, grad_x, factor);
405
  } else {
406 407 408 409 410 411 412 413
    framework::Tensor broadcasted_mask;
    if (is_dropout_nd) {
      broadcasted_mask.Resize(grad_y.dims());
      CalcBroadcastedMask(dev_ctx, mask, &broadcasted_mask);
    }

    std::vector<const framework::Tensor*> ins = {
        &grad_y, is_dropout_nd ? &broadcasted_mask : &mask};
414
    std::vector<framework::Tensor*> outs = {grad_x};
415
    if (upscale_in_train) {
416
      if (dropout_prob == 1.0f) {
417
#ifdef PADDLE_WITH_HIP
418
        hipMemset(grad_x->data<T>(), 0, grad_x->numel() * sizeof(T));
419
#else
420
        cudaMemset(grad_x->data<T>(), 0, grad_x->numel() * sizeof(T));
421
#endif
422
      } else {
423 424
        MT factor = static_cast<MT>(1.0f / (1.0f - dropout_prob));
        phi::funcs::ElementwiseKernel<T>(
425
            dev_ctx, ins, &outs, CudaDropoutGradFunctor<T, uint8_t>(factor));
426
      }
427
    } else {
428 429
      MT factor = static_cast<MT>(1.0f);
      phi::funcs::ElementwiseKernel<T>(
430
          dev_ctx, ins, &outs, CudaDropoutGradFunctor<T, uint8_t>(factor));
431 432 433 434 435 436
    }
  }
}

}  // namespace operators
}  // namespace paddle