/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #ifdef PADDLE_WITH_CUDA #include #include #include "paddle/fluid/platform/dynload/curand.h" #endif #ifdef PADDLE_WITH_HIP #include #include #include "paddle/fluid/platform/dynload/hiprand.h" #endif #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/generator.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/operators/amp/fp16_type_traits.h" #include "paddle/fluid/operators/dropout_impl_util.h" #include "paddle/fluid/platform/cuda_graph_with_memory_pool.h" #include "paddle/phi/backends/gpu/gpu_launch_config.h" #include "paddle/phi/kernels/funcs/broadcast_function.h" #include "paddle/phi/kernels/funcs/distribution_helper.h" #include "paddle/phi/kernels/funcs/functors.h" namespace paddle { namespace operators { template struct DstMaskFunctor { const float retain_prob_; const bool is_upscale_in_train_; using MT = typename details::MPTypeTrait::Type; MT factor; HOSTDEVICE inline DstMaskFunctor(const float retain_prob, const bool is_upscale_in_train) : retain_prob_(retain_prob), is_upscale_in_train_(is_upscale_in_train) { factor = static_cast(1.0f / retain_prob_); } HOSTDEVICE inline void operator()(OutT* dst, const T1* src_val, const T2* rand, int num) const { static constexpr int kCount = phi::funcs::uniform_distribution::kReturnsCount; // 0 ~ kCount -1 is dist , kCount ~ 2 * kCount - 1 is mask #pragma unroll for (int i = 0; i < kCount; i++) { if (rand[i] < retain_prob_) { dst[i] = is_upscale_in_train_ ? static_cast(static_cast(src_val[i]) * factor) : static_cast(src_val[i]); dst[i + kCount] = static_cast(1); } else { dst[i] = static_cast(0); dst[i + kCount] = dst[i]; } } } }; template __global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed, const float dropout_prob, const T* src, MaskType* mask, T* dst, bool is_upscale_in_train, uint64_t increment, size_t main_offset) { size_t idx = static_cast(BLOCK_ID_X * BLOCK_NUM_X); static constexpr int kCount = phi::funcs::uniform_distribution::kReturnsCount; size_t stride = BLOCK_NUM_X * GRID_NUM_X * kCount; #ifdef PADDLE_WITH_HIP hiprandStatePhilox4_32_10_t state; hiprand_init(seed, idx + THREAD_ID_X, increment, &state); using SType = hiprandStatePhilox4_32_10_t; #else curandStatePhilox4_32_10_t state; curand_init(seed, idx + THREAD_ID_X, increment, &state); using SType = curandStatePhilox4_32_10_t; #endif T dst_mask[kCount * 2]; // 0 ~ kCount -1 : dst;kCount ~ 2 * kCount - 1: mask float rands[kCount]; MaskType mask_result[kCount]; using Rand = phi::funcs::uniform_distribution; using Cast = kps::IdentityFunctor; int deal_size = BLOCK_NUM_X * kCount; size_t fix = idx * kCount; auto dst_functor = DstMaskFunctor(1.0f - dropout_prob, is_upscale_in_train); for (; fix < main_offset; fix += stride) { kps::ReadData(&dst_mask[0], src + fix, deal_size); kps::ElementwiseRandom(&rands[0], Rand(), &state); // dst kps::OperatorTernary>( &dst_mask[0], &dst_mask[0], &rands[0], dst_functor, kCount); kps::WriteData(dst + fix, &dst_mask[0], deal_size); // mask kps::ElementwiseUnary( &mask_result[0], &dst_mask[kCount], Cast()); kps::WriteData(mask + fix, &mask_result[0], deal_size); if (fix > idx * kCount + 1) { __syncthreads(); } } int remainder = n - fix; if (remainder > 0) { kps::ReadData(&dst_mask[0], src + fix, remainder); kps::ElementwiseRandom(&rands[0], Rand(), &state); // dst kps::OperatorTernary>( &dst_mask[0], &dst_mask[0], &rands[0], dst_functor, kCount); kps::WriteData(dst + fix, &dst_mask[0], remainder); // mask kps::ElementwiseUnary( &mask_result[0], &dst_mask[kCount], Cast()); kps::WriteData(mask + fix, &mask_result[0], remainder); __syncthreads(); } } template struct MaskFunctor { const float retain_prob_; using MT = typename details::MPTypeTrait::Type; MT factor; HOSTDEVICE inline MaskFunctor(const float retain_prob) : retain_prob_(retain_prob) { factor = static_cast(1.0f / retain_prob_); } HOSTDEVICE inline void operator()(OutT* dst, const T2* rand, int num) const { static constexpr int kCount = phi::funcs::uniform_distribution::kReturnsCount; // 0 ~ kCount -1 is dist , kCount ~ 2 * kCount - 1 is mask #pragma unroll for (int i = 0; i < kCount; i++) { if (rand[i] < retain_prob_) { dst[i] = static_cast(1); } else { dst[i] = static_cast(0); } } } }; template struct DstFunctor { using MT = typename details::MPTypeTrait::Type; MT factor; HOSTDEVICE inline DstFunctor(const float retain_prob, const bool is_upscale_in_train, const int64_t num) : retain_prob_(retain_prob), is_upscale_in_train_(is_upscale_in_train), num_(num) { factor = static_cast(1.0f / retain_prob_); } HOSTDEVICE inline T operator()(const T src_val, const MaskType mask) const { for (int i = 0; i < num_; i++) { if (mask == static_cast(1)) { return is_upscale_in_train_ ? static_cast(static_cast(src_val) * factor) : static_cast(src_val); } else { return static_cast(0); } } } private: const float retain_prob_; const bool is_upscale_in_train_; const int64_t num_; }; template __global__ void VectorizedGeneratorMask(const size_t n, uint64_t seed, const float dropout_prob, const T* src, MaskType* mask, uint64_t increment, size_t main_offset) { constexpr int kCount = phi::funcs::uniform_distribution::kReturnsCount; size_t idx = static_cast(BLOCK_ID_X * BLOCK_NUM_X); size_t stride = BLOCK_NUM_X * GRID_NUM_X * kCount; #ifdef PADDLE_WITH_HIP hiprandStatePhilox4_32_10_t state; hiprand_init(seed, idx + THREAD_ID_X, increment, &state); using SType = hiprandStatePhilox4_32_10_t; #else curandStatePhilox4_32_10_t state; curand_init(seed, idx + THREAD_ID_X, increment, &state); using SType = curandStatePhilox4_32_10_t; #endif T dst_mask[kCount]; // 0 ~ kCount -1 : dst;kCount ~ 2 * kCount - 1: mask float rands[kCount]; MaskType mask_result[kCount]; using Rand = phi::funcs::uniform_distribution; using Cast = kps::IdentityFunctor; int deal_size = BLOCK_NUM_X * kCount; size_t fix = idx * kCount; auto mask_functor = MaskFunctor(1.0f - dropout_prob); for (; fix < main_offset; fix += stride) { kps::ReadData(&dst_mask[0], src + fix, deal_size); kps::ElementwiseRandom(&rands[0], Rand(), &state); // dst kps::OperatorBinary>( &dst_mask[0], &rands[0], mask_functor, kCount); // mask kps::ElementwiseUnary( &mask_result[0], &dst_mask[0], Cast()); kps::WriteData(mask + fix, &mask_result[0], deal_size); if (fix > idx * kCount + 1) { __syncthreads(); } } int remainder = n - fix; if (remainder > 0) { kps::ReadData(&dst_mask[0], src + fix, remainder); kps::ElementwiseRandom(&rands[0], Rand(), &state); // dst kps::OperatorBinary>( &dst_mask[0], &rands[0], mask_functor, kCount); // mask kps::ElementwiseUnary( &mask_result[0], &dst_mask[0], Cast()); kps::WriteData(mask + fix, &mask_result[0], remainder); __syncthreads(); } } inline void CalcBroadcastedMask(const phi::GPUContext& dev_ctx, const framework::Tensor& mask, framework::Tensor* broadcasted_mask) { // The broadcast of mask can be combined to the following ElementwiseKernel // when the BroadcastKernel supports different input types. broadcasted_mask->mutable_data(dev_ctx.GetPlace()); std::vector ins = {&mask}; std::vector outs = {broadcasted_mask}; phi::funcs::BroadcastKernel( dev_ctx, ins, &outs, -1, kps::IdentityFunctor()); } template void ScaleByDropoutFactor(const phi::GPUContext& dev_ctx, const framework::Tensor& x, framework::Tensor* y, MT factor) { std::vector ins = {&x}; std::vector outs = {y}; auto functor = phi::funcs::ScaleFunctor(factor); phi::funcs::ElementwiseKernel(dev_ctx, ins, &outs, functor); } template void DropoutFwGPUKernelDriver(const phi::GPUContext& dev_ctx, bool is_test, float dropout_prob, bool upscale_in_train, bool is_fix_seed, int seed_val, const framework::Tensor& x, const framework::Tensor* seed, framework::Tensor* mask, framework::Tensor* y, bool is_dropout_nd = false) { int64_t x_numel = x.numel(); auto stream = dev_ctx.stream(); auto* x_data = x.data(); auto* y_data = y->data(); if (!is_test) { auto* mask_data = mask->data(); size_t size = phi::product(mask->dims()); if (dropout_prob == 1.0f) { #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_GPU_SUCCESS( hipMemsetAsync(y_data, 0, x_numel * sizeof(T), stream)); PADDLE_ENFORCE_GPU_SUCCESS( hipMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream)); #else PADDLE_ENFORCE_GPU_SUCCESS( cudaMemsetAsync(y_data, 0, x_numel * sizeof(T), stream)); PADDLE_ENFORCE_GPU_SUCCESS( cudaMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream)); #endif return; } uint64_t seed_data; uint64_t increment; // VectorizedRandomGenerator use curand_uniform4, so kVecSize is 4; constexpr int kVecSize = phi::funcs::uniform_distribution::kReturnsCount; auto gpu_config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, x_numel, kVecSize); size_t grid_size = gpu_config.GetGridSize(); size_t block_size = gpu_config.GetBlockSize(); int64_t device_id = dev_ctx.GetPlace().GetDeviceId(); const auto& prop = platform::GetDeviceProperties(device_id); size_t max_grid_size = prop.maxThreadsPerMultiProcessor * prop.multiProcessorCount / block_size; grid_size = std::min(grid_size, max_grid_size); auto offset = ((x_numel - 1) / (grid_size * block_size * kVecSize) + 1) * kVecSize; GetSeedDataAndIncrement(dev_ctx, seed, is_fix_seed, seed_val, offset, &seed_data, &increment); size_t main_offset = size / (block_size * kVecSize) * (block_size * kVecSize); if (is_dropout_nd) { VectorizedGeneratorMask<<>>( size, seed_data, dropout_prob, x_data, mask_data, increment, main_offset); framework::Tensor broadcasted_mask; broadcasted_mask.Resize(x.dims()); CalcBroadcastedMask(dev_ctx, *mask, &broadcasted_mask); auto dst_functor = DstFunctor(1.0f - dropout_prob, upscale_in_train, x_numel); std::vector ins = {&x, &broadcasted_mask}; std::vector outs = {y}; phi::funcs::ElementwiseKernel(dev_ctx, ins, &outs, dst_functor); } else { #define PD_DROPOUT_KERNEL_NAME VectorizedRandomGenerator PD_RECORD_CUDA_GRAPH_RANDOM_KERNEL( !is_fix_seed, PD_DROPOUT_KERNEL_NAME, grid_size, block_size, 0, stream, offset, KERNEL_PARAMS.As(1), KERNEL_PARAMS.As(7), size, seed_data, dropout_prob, x_data, mask_data, y_data, upscale_in_train, increment, main_offset); #undef PD_DROPOUT_KERNEL_NAME } } else { if (upscale_in_train) { // y = x framework::TensorCopy(x, dev_ctx.GetPlace(), dev_ctx, y); } else { using MT = typename details::MPTypeTrait::Type; MT factor = static_cast(1.0f - dropout_prob); // y = factor * x ScaleByDropoutFactor(dev_ctx, x, y, factor); } } } template struct CudaDropoutGradFunctor { using MT = typename details::MPTypeTrait::Type; explicit CudaDropoutGradFunctor(const MT factor) : factor_(factor) {} __device__ __forceinline__ T operator()(const T dout, const MaskType mask) const { return static_cast(static_cast(dout) * static_cast(mask) * factor_); } private: MT factor_; }; template void DropoutGradGPUKernelDriver(const phi::GPUContext& dev_ctx, bool is_test, float dropout_prob, bool upscale_in_train, const framework::Tensor& grad_y, const framework::Tensor& mask, framework::Tensor* grad_x, bool is_dropout_nd = false) { using MT = typename details::MPTypeTrait::Type; auto stream = dev_ctx.stream(); if (is_test) { MT factor = static_cast(upscale_in_train ? 1.0f : 1.0f - dropout_prob); // y = factor * x ScaleByDropoutFactor(dev_ctx, grad_y, grad_x, factor); } else { framework::Tensor broadcasted_mask; if (is_dropout_nd) { broadcasted_mask.Resize(grad_y.dims()); CalcBroadcastedMask(dev_ctx, mask, &broadcasted_mask); } std::vector ins = { &grad_y, is_dropout_nd ? &broadcasted_mask : &mask}; std::vector outs = {grad_x}; if (upscale_in_train) { if (dropout_prob == 1.0f) { #ifdef PADDLE_WITH_HIP hipMemset(grad_x->data(), 0, grad_x->numel() * sizeof(T)); #else cudaMemset(grad_x->data(), 0, grad_x->numel() * sizeof(T)); #endif } else { MT factor = static_cast(1.0f / (1.0f - dropout_prob)); phi::funcs::ElementwiseKernel( dev_ctx, ins, &outs, CudaDropoutGradFunctor(factor)); } } else { MT factor = static_cast(1.0f); phi::funcs::ElementwiseKernel( dev_ctx, ins, &outs, CudaDropoutGradFunctor(factor)); } } } } // namespace operators } // namespace paddle