dropout_impl.cu.h 11.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>

#ifdef PADDLE_WITH_CUDA
#include <cuda.h>
#include <curand_kernel.h>
#include "paddle/fluid/platform/dynload/curand.h"
#endif
#ifdef PADDLE_WITH_HIP
#include <hip/hip_runtime.h>
#include <hiprand_kernel.h>
#include "paddle/fluid/platform/dynload/hiprand.h"
#endif

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/tensor_util.h"
S
sneaxiy 已提交
33
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
34
#include "paddle/fluid/operators/dropout_impl_util.h"
35
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
H
hong 已提交
36 37
#include "paddle/fluid/platform/aligned_vector.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
38
#include "paddle/phi/kernels/funcs/distribution_helper.h"
39
#include "paddle/phi/kernels/funcs/functors.h"
40

41 42
namespace paddle {
namespace operators {
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

template <typename T1, typename T2 = T1, typename OutT = T1>
struct DstMaskFunctor {
  const float retain_prob_;
  const bool is_upscale_in_train_;
  using MT = typename details::MPTypeTrait<T1>::Type;
  MT factor;
  HOSTDEVICE inline DstMaskFunctor(const float retain_prob,
                                   const bool is_upscale_in_train)
      : retain_prob_(retain_prob), is_upscale_in_train_(is_upscale_in_train) {
    factor = static_cast<MT>(1.0f / retain_prob_);
  }

  HOSTDEVICE inline void operator()(OutT* dst, const T1* src_val,
                                    const T2* rand, int num) const {
    static constexpr int kCount =
        phi::funcs::uniform_distribution<T2>::kReturnsCount;
// 0 ~ kCount -1 is dist , kCount ~ 2 * kCount - 1 is mask
#pragma unroll
    for (int i = 0; i < kCount; i++) {
      if (rand[i] < retain_prob_) {
        dst[i] = is_upscale_in_train_
                     ? static_cast<T1>(static_cast<MT>(src_val[i]) * factor)
                     : static_cast<T1>(src_val[i]);
        dst[i + kCount] = static_cast<T1>(1);
      } else {
        dst[i] = static_cast<T1>(0);
        dst[i + kCount] = dst[i];
      }
    }
  }
};

76
template <typename T, typename MaskType>
77 78 79 80
__global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed,
                                          const float dropout_prob,
                                          const T* src, MaskType* mask, T* dst,
                                          bool is_upscale_in_train,
81
                                          uint64_t increment,
82
                                          size_t main_offset) {
83 84 85 86
  size_t idx = static_cast<size_t>(BLOCK_ID_X * BLOCK_NUM_X);
  static constexpr int kCount =
      phi::funcs::uniform_distribution<float>::kReturnsCount;
  size_t stride = BLOCK_NUM_X * GRID_NUM_X * kCount;
87 88
#ifdef PADDLE_WITH_HIP
  hiprandStatePhilox4_32_10_t state;
89 90
  hiprand_init(seed, idx + THREAD_ID_X, increment, &state);
  using SType = hiprandStatePhilox4_32_10_t;
91 92
#else
  curandStatePhilox4_32_10_t state;
93 94
  curand_init(seed, idx + THREAD_ID_X, increment, &state);
  using SType = curandStatePhilox4_32_10_t;
95
#endif
96 97 98 99 100 101
  T dst_mask[kCount * 2];  // 0 ~ kCount -1 : dst;kCount ~ 2 * kCount - 1: mask
  float rands[kCount];
  MaskType mask_result[kCount];
  using Rand = phi::funcs::uniform_distribution<float>;
  using Cast = kps::IdentityFunctor<T>;
  int deal_size = BLOCK_NUM_X * kCount;
102

103
  size_t fix = idx * kCount;
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

  auto dst_functor =
      DstMaskFunctor<T, float>(1.0f - dropout_prob, is_upscale_in_train);
  for (; fix < main_offset; fix += stride) {
    kps::ReadData<T, kCount, 1, 1, false>(&dst_mask[0], src + fix, deal_size);
    kps::ElementwiseRandom<SType, float, kCount, 1, Rand>(&rands[0], Rand(),
                                                          &state);
    // dst
    kps::OperatorTernary<T, float, T, DstMaskFunctor<T, float>>(
        &dst_mask[0], &dst_mask[0], &rands[0], dst_functor, kCount);
    kps::WriteData<T, kCount, 1, 1, false>(dst + fix, &dst_mask[0], deal_size);
    // mask
    kps::ElementwiseUnary<T, MaskType, kCount, 1, 1, Cast>(
        &mask_result[0], &dst_mask[kCount], Cast());
    kps::WriteData<MaskType, kCount, 1, 1, false>(mask + fix, &mask_result[0],
                                                  deal_size);
    if (fix > idx * kCount + 1) {
121 122
      __syncthreads();
    }
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
  }
  int remainder = n - fix;
  if (remainder > 0) {
    kps::ReadData<T, kCount, 1, 1, true>(&dst_mask[0], src + fix, remainder);
    kps::ElementwiseRandom<SType, float, kCount, 1, Rand>(&rands[0], Rand(),
                                                          &state);
    // dst
    kps::OperatorTernary<T, float, T, DstMaskFunctor<T, float>>(
        &dst_mask[0], &dst_mask[0], &rands[0], dst_functor, kCount);
    kps::WriteData<T, kCount, 1, 1, true>(dst + fix, &dst_mask[0], remainder);
    // mask
    kps::ElementwiseUnary<T, MaskType, kCount, 1, 1, Cast>(
        &mask_result[0], &dst_mask[kCount], Cast());
    kps::WriteData<MaskType, kCount, 1, 1, true>(mask + fix, &mask_result[0],
                                                 remainder);
    __syncthreads();
139 140 141 142
  }
}

template <typename T>
H
hong 已提交
143
void DropoutFwGPUKernelDriver(const phi::GPUContext& dev_ctx, bool is_test,
144 145
                              const std::string dropout_implementation,
                              float dropout_prob, bool upscale_in_train,
H
hong 已提交
146 147 148 149
                              bool is_fix_seed, int seed_val,
                              const framework::Tensor& x,
                              const framework::Tensor* seed,
                              framework::Tensor* mask, framework::Tensor* y) {
150
  auto& place = *dev_ctx.eigen_device();
151 152 153 154
  int64_t x_numel = x.numel();
  auto stream = dev_ctx.stream();
  auto* x_data = x.data<T>();
  auto* y_data = y->data<T>();
155 156 157

  if (!is_test) {
    auto* mask_data = mask->data<uint8_t>();
158
    size_t size = phi::product(mask->dims());
159 160 161

    if (dropout_prob == 1.0f) {
#ifdef PADDLE_WITH_HIP
162
      PADDLE_ENFORCE_GPU_SUCCESS(
163
          hipMemsetAsync(y_data, 0, x_numel * sizeof(T), stream));
164
      PADDLE_ENFORCE_GPU_SUCCESS(
165 166
          hipMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream));
#else
167
      PADDLE_ENFORCE_GPU_SUCCESS(
168
          cudaMemsetAsync(y_data, 0, x_numel * sizeof(T), stream));
169
      PADDLE_ENFORCE_GPU_SUCCESS(
170 171 172 173 174 175 176
          cudaMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream));
#endif
      return;
    }

    uint64_t seed_data;
    uint64_t increment;
177
    // VectorizedRandomGenerator use curand_uniform4, so kVecSize is 4;
178 179
    constexpr int kVecSize =
        phi::funcs::uniform_distribution<float>::kReturnsCount;
H
hong 已提交
180
    auto gpu_config =
181
        phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, x_numel, kVecSize);
182 183 184
    size_t grid_size = gpu_config.GetGridSize();
    size_t block_size = gpu_config.GetBlockSize();

185 186 187 188 189
    int64_t device_id = dev_ctx.GetPlace().GetDeviceId();
    const auto& prop = platform::GetDeviceProperties(device_id);
    size_t max_grid_size = prop.maxThreadsPerMultiProcessor *
                           prop.multiProcessorCount / block_size;
    grid_size = std::min(grid_size, max_grid_size);
190

Z
Zhang Ting 已提交
191
    auto offset =
192
        ((x_numel - 1) / (grid_size * block_size * kVecSize) + 1) * kVecSize;
193 194
    GetSeedDataAndIncrement(dev_ctx, seed, is_fix_seed, seed_val, offset,
                            &seed_data, &increment);
195 196 197 198
    size_t main_offset =
        size / (block_size * kVecSize) * (block_size * kVecSize);

    VectorizedRandomGenerator<T, uint8_t><<<grid_size, block_size, 0, stream>>>(
199
        size, seed_data, dropout_prob, x_data, mask_data, y_data,
200
        upscale_in_train, increment, main_offset);
201 202
  } else {
    if (upscale_in_train) {
203 204 205 206 207 208 209 210 211 212
// todo: can y share with data with x directly?
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_GPU_SUCCESS(
          hipMemcpyAsync(y_data, x_data, sizeof(T) * x_numel,
                         hipMemcpyDeviceToDevice, stream));
#else
      PADDLE_ENFORCE_GPU_SUCCESS(
          cudaMemcpyAsync(y_data, x_data, sizeof(T) * x_numel,
                          cudaMemcpyDeviceToDevice, stream));
#endif
213
    } else {
214 215
      using MT = typename details::MPTypeTrait<T>::Type;
      MT factor = static_cast<MT>(1.0f - dropout_prob);
216 217 218 219 220
      std::vector<const framework::Tensor*> ins = {&x};
      std::vector<framework::Tensor*> outs = {y};
      auto functor = phi::funcs::ScaleFunctor<T>(factor);
      paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                                &outs, functor);
221 222 223 224
    }
  }
}

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
template <typename T, typename MaskType>
struct CudaDropoutGradFunctor {
  using MT = typename details::MPTypeTrait<T>::Type;

  explicit CudaDropoutGradFunctor(const MT factor) : factor_(factor) {}

  __device__ __forceinline__ T operator()(const T dout,
                                          const MaskType mask) const {
    return static_cast<T>(static_cast<MT>(dout) * static_cast<MT>(mask) *
                          factor_);
  }

 private:
  MT factor_;
};

241
template <typename T>
H
hong 已提交
242
void DropoutGradGPUKernelDriver(const phi::GPUContext& dev_ctx,
243
                                const std::string dropout_implementation,
H
hong 已提交
244 245 246 247 248
                                float dropout_prob,
                                const framework::Tensor& grad_y,
                                const framework::Tensor& mask, int64_t size,
                                framework::Tensor* grad_x,
                                bool is_test = false) {
S
sneaxiy 已提交
249
  using MT = typename details::MPTypeTrait<T>::Type;
250 251
  auto stream = dev_ctx.stream();
  MT factor;
252 253
  if (is_test) {
    if (dropout_implementation == "upscale_in_train") {
254
      factor = static_cast<MT>(1.0f);
255
    } else {
256
      factor = static_cast<MT>(1.0f - dropout_prob);
257
    }
258 259 260 261 262
    std::vector<const framework::Tensor*> ins = {&grad_y};
    std::vector<framework::Tensor*> outs = {grad_x};
    auto functor = phi::funcs::ScaleFunctor<T>(factor);
    paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                              &outs, functor);
263
  } else {
264 265
    std::vector<const framework::Tensor*> ins = {&grad_y, &mask};
    std::vector<framework::Tensor*> outs = {grad_x};
266 267
    if (dropout_implementation == "upscale_in_train") {
      if (dropout_prob == 1.0f) {
268 269 270 271 272
#ifdef PADDLE_WITH_HIP
        hipMemset(grad_x->data<T>(), 0, size * sizeof(T));
#else
        cudaMemset(grad_x->data<T>(), 0, size * sizeof(T));
#endif
273
      } else {
274
        factor = static_cast<MT>(1.0f / (1.0f - dropout_prob));
275
        paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(
276
            dev_ctx, ins, &outs, CudaDropoutGradFunctor<T, uint8_t>(factor));
277
      }
278
    } else {
279 280 281
      factor = static_cast<MT>(1.0f);
      paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(
          dev_ctx, ins, &outs, CudaDropoutGradFunctor<T, uint8_t>(factor));
282 283 284 285 286 287
    }
  }
}

}  // namespace operators
}  // namespace paddle