Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b81358d1
P
Paddle
项目概览
PaddlePaddle
/
Paddle
接近 2 年 前同步成功
通知
2323
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b81358d1
编写于
2月 15, 2022
作者:
S
sneaxiy
提交者:
GitHub
2月 15, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add dropout fp32 (#39501)
上级
8cedcd3e
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
26 addition
and
12 deletion
+26
-12
paddle/fluid/operators/dropout_impl.cu.h
paddle/fluid/operators/dropout_impl.cu.h
+26
-12
未找到文件。
paddle/fluid/operators/dropout_impl.cu.h
浏览文件 @
b81358d1
...
...
@@ -30,6 +30,7 @@ limitations under the License. */
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/operators/dropout_impl_util.h"
#include "paddle/fluid/operators/dropout_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
...
...
@@ -45,6 +46,7 @@ __global__ void RandomGenerator(const size_t n, uint64_t seed,
const
float
dropout_prob
,
const
T
*
src
,
MaskType
*
mask
,
T
*
dst
,
bool
is_upscale_in_train
,
uint64_t
increment
)
{
using
MT
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
int
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
#ifdef PADDLE_WITH_HIP
hiprandStatePhilox4_32_10_t
state
;
...
...
@@ -56,7 +58,7 @@ __global__ void RandomGenerator(const size_t n, uint64_t seed,
MaskType
mask_val
;
T
dst_val
;
T
factor
=
static_cast
<
T
>
(
1.0
f
/
(
1.0
f
-
dropout_prob
));
MT
factor
=
static_cast
<
M
T
>
(
1.0
f
/
(
1.0
f
-
dropout_prob
));
for
(;
idx
<
n
;
idx
+=
blockDim
.
x
*
gridDim
.
x
)
{
T
src_val
=
src
[
idx
];
#ifdef PADDLE_WITH_HIP
...
...
@@ -68,7 +70,9 @@ __global__ void RandomGenerator(const size_t n, uint64_t seed,
dst_val
=
0
;
}
else
{
mask_val
=
1
;
dst_val
=
is_upscale_in_train
?
src_val
*
factor
:
src_val
;
dst_val
=
is_upscale_in_train
?
static_cast
<
T
>
(
static_cast
<
MT
>
(
src_val
)
*
factor
)
:
src_val
;
}
mask
[
idx
]
=
mask_val
;
dst
[
idx
]
=
dst_val
;
...
...
@@ -81,6 +85,7 @@ __global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed,
const
T
*
src
,
MaskType
*
mask
,
T
*
dst
,
bool
is_upscale_in_train
,
uint64_t
increment
)
{
using
MT
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
using
LoadT
=
platform
::
AlignedVector
<
T
,
VecSize
>
;
using
MaskLoadT
=
platform
::
AlignedVector
<
MaskType
,
VecSize
>
;
...
...
@@ -94,7 +99,7 @@ __global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed,
curand_init
(
seed
,
idx
,
increment
,
&
state
);
#endif
T
factor
=
static_cast
<
T
>
(
1.0
f
/
(
1.0
f
-
dropout_prob
));
MT
factor
=
static_cast
<
M
T
>
(
1.0
f
/
(
1.0
f
-
dropout_prob
));
for
(
int
i
=
idx
*
VecSize
;
i
<
n
;
i
+=
blockDim
.
x
*
gridDim
.
x
*
VecSize
)
{
LoadT
src_val
;
platform
::
Load
<
T
,
VecSize
>
(
&
src
[
i
],
&
src_val
);
...
...
@@ -114,7 +119,9 @@ __global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed,
dst_val
[
j
]
=
0
;
mask_val
[
j
]
=
0
;
}
else
{
dst_val
[
j
]
=
is_upscale_in_train
?
src_val
[
j
]
*
factor
:
src_val
[
j
];
dst_val
[
j
]
=
is_upscale_in_train
?
static_cast
<
T
>
(
static_cast
<
MT
>
(
src_val
[
j
])
*
factor
)
:
src_val
[
j
];
mask_val
[
j
]
=
1
;
}
}
...
...
@@ -126,21 +133,26 @@ __global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed,
template
<
typename
T
,
typename
MaskType
>
struct
CudaDropoutGradFunctor
{
explicit
CudaDropoutGradFunctor
(
const
T
factor
)
:
factor_
(
factor
)
{}
using
MT
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
explicit
CudaDropoutGradFunctor
(
const
MT
factor
)
:
factor_
(
factor
)
{}
__device__
__forceinline__
T
operator
()(
const
T
dout
,
const
MaskType
mask
)
const
{
return
dout
*
static_cast
<
T
>
(
mask
)
*
factor_
;
return
static_cast
<
T
>
(
static_cast
<
MT
>
(
dout
)
*
static_cast
<
MT
>
(
mask
)
*
factor_
);
}
private:
T
factor_
;
M
T
factor_
;
};
template
<
typename
T
,
typename
MaskType
,
int
VecSize
>
__global__
void
DropoutGradCUDAKernel
(
const
T
*
dout
,
const
MaskType
*
mask
,
const
T
factor
,
const
int64_t
size
,
T
*
dx
)
{
__global__
void
DropoutGradCUDAKernel
(
const
T
*
dout
,
const
MaskType
*
mask
,
const
typename
details
::
MPTypeTrait
<
T
>::
Type
factor
,
const
int64_t
size
,
T
*
dx
)
{
using
MT
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
using
LoadT
=
platform
::
AlignedVector
<
T
,
VecSize
>
;
using
MaskLoadT
=
platform
::
AlignedVector
<
MaskType
,
VecSize
>
;
...
...
@@ -156,7 +168,8 @@ __global__ void DropoutGradCUDAKernel(const T* dout, const MaskType* mask,
#pragma unroll
for
(
int
j
=
0
;
j
<
VecSize
;
j
++
)
{
dx_val
[
j
]
=
dout_val
[
j
]
*
static_cast
<
T
>
(
mask_val
[
j
])
*
factor
;
dx_val
[
j
]
=
static_cast
<
T
>
(
static_cast
<
MT
>
(
dout_val
[
j
])
*
static_cast
<
MT
>
(
mask_val
[
j
])
*
factor
);
}
platform
::
Store
<
T
,
VecSize
>
(
dx_val
,
&
dx
[
i
]);
...
...
@@ -257,6 +270,7 @@ void DropoutGradGPUKernelDriver(const platform::CUDADeviceContext& dev_ctx,
float
dropout_prob
,
const
Tensor
&
grad_y
,
const
Tensor
&
mask
,
int64_t
size
,
Tensor
*
grad_x
,
bool
is_test
=
false
)
{
using
MT
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
auto
dX
=
EigenVector
<
T
>::
Flatten
(
*
grad_x
);
auto
dY
=
EigenVector
<
T
>::
Flatten
(
grad_y
);
...
...
@@ -273,7 +287,7 @@ void DropoutGradGPUKernelDriver(const platform::CUDADeviceContext& dev_ctx,
if
(
dropout_prob
==
1.0
f
)
{
dX
.
device
(
place
)
=
static_cast
<
T
>
(
0
)
*
dY
;
}
else
{
auto
factor
=
static_cast
<
T
>
(
1.0
f
/
(
1.0
f
-
dropout_prob
));
auto
factor
=
static_cast
<
M
T
>
(
1.0
f
/
(
1.0
f
-
dropout_prob
));
auto
stream
=
dev_ctx
.
stream
();
std
::
vector
<
const
framework
::
Tensor
*>
ins
=
{
&
grad_y
,
&
mask
};
std
::
vector
<
framework
::
Tensor
*>
outs
=
{
grad_x
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录