determinant_op.h 8.7 KB
Newer Older
H
huangxu96 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <Eigen/Dense>
#include <Eigen/LU>
#include <algorithm>
#include <cmath>
#include <vector>
21

H
huangxu96 已提交
22 23
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/enforce.h"
24
#include "paddle/fluid/platform/for_range.h"
25
#include "paddle/phi/kernels/complex_kernel.h"
26
#include "paddle/phi/kernels/elementwise_multiply_kernel.h"
27
#include "paddle/phi/kernels/full_kernel.h"
28
#include "paddle/phi/kernels/funcs/common_shape.h"
29 30
#include "paddle/phi/kernels/funcs/diag_functor.h"
#include "paddle/phi/kernels/funcs/math_function.h"
31
#include "paddle/phi/kernels/funcs/matrix_inverse.h"
32
#include "paddle/phi/kernels/funcs/unsqueeze.h"
33 34
#include "paddle/phi/kernels/impl/determinant_grad_kernel_impl.h"
#include "paddle/phi/kernels/impl/determinant_kernel_impl.h"
35 36
#include "paddle/phi/kernels/matmul_kernel.h"
#include "paddle/phi/kernels/transpose_kernel.h"
H
huangxu96 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T>
T sign(T val) {
  return static_cast<T>(T(0) < val) - (val < T(0));
}

template <typename T>
struct SlogDeterminantFunctor {
  void operator()(const Tensor& input, const framework::ExecutionContext ctx,
50
                  int64_t rank, int64_t batch_count, Tensor* output) {
H
huangxu96 已提交
51 52 53 54 55
    std::vector<T> input_vec;
    std::vector<T> sign_vec;
    std::vector<T> log_vec;
    std::vector<T> output_vec;
    framework::TensorToVector(input, ctx.device_context(), &input_vec);
56
    for (int64_t i = 0; i < batch_count; ++i) {  // maybe can be parallel
H
huangxu96 已提交
57 58 59 60
      auto begin_iter = input_vec.begin() + i * rank * rank;
      auto end_iter = input_vec.begin() + (i + 1) * rank * rank;
      std::vector<T> sub_vec(begin_iter,
                             end_iter);  // get every square matrix data
61
      typename phi::detail::EigenMatrix<T>::MatrixType matrix(rank, rank);
62 63
      for (int64_t i = 0; i < rank; ++i) {
        for (int64_t j = 0; j < rank; ++j) {
H
huangxu96 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
          matrix(i, j) = sub_vec[rank * i + j];
        }
      }
      VLOG(2) << "det value: " << matrix.determinant();
      VLOG(2) << "matrix val: " << matrix;
      auto det_val = matrix.determinant();
      sign_vec.push_back(sign(det_val));
      det_val >= 0
          ? log_vec.push_back(std::log(det_val))
          : log_vec.push_back(std::log(std::abs(
                det_val)));  // for computing log value of a negative value.
    }
    // merge sign_vec and log_vec as final output_vec
    output_vec.insert(output_vec.end(), sign_vec.begin(), sign_vec.end());
    output_vec.insert(output_vec.end(), log_vec.begin(), log_vec.end());
    framework::TensorFromVector(output_vec, output);
  }
};

template <typename DeviceContext, typename T>
class SlogDeterminantKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* input = context.Input<framework::Tensor>("Input");
    auto input_dim = vectorize(input->dims());
    auto input_dim_size = input_dim.size();
    auto* output = context.Output<framework::Tensor>("Out");

92
    auto batch_count = phi::detail::GetBatchCount(input->dims());
H
huangxu96 已提交
93 94 95 96 97 98 99 100 101 102 103 104
    VLOG(2) << "input dim:" << input->dims();
    PADDLE_ENFORCE_GE(
        input_dim_size, 2,
        platform::errors::InvalidArgument(
            "the input matrix dimension size should greater than 2."));
    PADDLE_ENFORCE_EQ(input_dim[input_dim_size - 1],
                      input_dim[input_dim_size - 2],
                      platform::errors::InvalidArgument(
                          "the input matrix should be square matrix."));
    auto rank = input_dim[input_dim_size - 1];  // square matrix length
    SlogDeterminantFunctor<T>()(*input, context, rank, batch_count, output);
    std::vector<int> output_dim_vec(input_dim.begin(), input_dim.end() - 2);
105 106 107 108
    if (input_dim.size() == static_cast<size_t>(2)) {
      // when input is a two-dimension matrix, The det value is a number.
      output_dim_vec = {1};
    }
H
huangxu96 已提交
109 110
    output_dim_vec.insert(output_dim_vec.begin(),
                          2);  // make the output dims as same as numpy
111
    auto output_dims = phi::make_ddim(output_dim_vec);
H
huangxu96 已提交
112 113 114 115 116 117 118 119 120
    output->Resize(output_dims);
    VLOG(2) << "output dim:" << output->dims();
  }
};

template <typename DeviceContext, typename T>
class SlogDeterminantGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
121
    auto& orig_dev_ctx = context.template device_context<DeviceContext>();
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    const auto* input = context.Input<framework::Tensor>("Input");
    const auto* slogdet = context.Input<framework::Tensor>("Out");
    const auto* grad =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* dslogdet =
        context.Output<framework::Tensor>(framework::GradVarName("Input"));

    PADDLE_ENFORCE_EQ(grad->dims()[0], 2,
                      platform::errors::InvalidArgument(
                          "The grad tensor of SlogDet should contain two"
                          " grad: sign and absslogdet, but here %ld.",
                          grad->dims()[0]));
    if (input->dims().size() > 2) {
      PADDLE_ENFORCE_EQ(
          grad->dims().size() + 1, input->dims().size(),
          platform::errors::InvalidArgument(
              "The grad tensor of slogdet dims size should 1 less than"
              " input tensor's, but here differ %d",
              input->dims().size() - grad->dims().size()));
    }

143 144 145 146
    auto& dev_ctx = static_cast<
        const typename framework::ConvertToPhiContext<DeviceContext>::TYPE&>(
        orig_dev_ctx);

147 148 149 150
    // Check Whether the matrix is invertible
    // (matrix A not invertible) == (absslogdet(A)=0)
    auto slogdet_vec = slogdet->Split(1, 0);
    auto absslogdet_val = slogdet_vec[0];
151 152 153
    if (!phi::detail::CheckMatrixInvertible<
            T, typename framework::ConvertToPhiContext<DeviceContext>::TYPE>(
            dev_ctx, &absslogdet_val)) {
154 155 156
      // The matrix is not invertible
      VLOG(3) << "The input matrix not invertible!";
      dslogdet->Resize(input->dims());
157 158
      phi::Full<T>(dev_ctx, phi::vectorize(input->dims()),
                   std::numeric_limits<T>::quiet_NaN(), dslogdet);
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
      return;
    }

    // The matrix is invertible
    // let sl|A| = SlogDeterminant(A)
    // Ref to https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
    // we set dsl|A| = unsqueeze(dslA, [-1, -2]) *
    // inverse(A).conj().transpose(-2, -1)

    // First: inverse(A)
    framework::Tensor inverse_A;
    // A must be square matrices!
    inverse_A.Resize(input->dims());
    inverse_A.mutable_data<T>(context.GetPlace());

174
    phi::funcs::MatrixInverseFunctor<DeviceContext, T> mat_inv;
175
    mat_inv(orig_dev_ctx, *input, &inverse_A);
176 177 178 179

    VLOG(3) << "inverse(A) dims: " << inverse_A.dims();

    // Second: inverse(A).conj()
180
    auto conj_inverse_A = phi::Conj<T>(dev_ctx, inverse_A);
181 182 183 184

    VLOG(3) << "inverse(A).conj() dims: " << conj_inverse_A.dims();

    // Third: inverse(A).conj().transpose(-2, -1)
185 186
    framework::Tensor transpose_inverse_A =
        phi::TransposeLast2Dim<T>(dev_ctx, conj_inverse_A);
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    VLOG(3) << "inverse(A).conj().transpose(-2, -1) dims: "
            << transpose_inverse_A.dims();

    // Fourth: split grad value to [sign_grad, absslogdet_grad]
    auto grad_vec = grad->Split(1, 0);
    auto det_grad = grad_vec[1];

    // remmove useless first dimension
    int det_grad_size = det_grad.dims().size();
    std::vector<int> det_grad_vec;
    for (int i = 1; i < det_grad_size; ++i) {
      det_grad_vec.emplace_back(det_grad.dims()[i]);
    }
    det_grad.Resize(det_grad.dims().reshape(det_grad_vec));

    // Fifth: unsqueeze(dslA, [-1, -2])
203 204
    auto unsqueeze1 = phi::funcs::Unsqueeze(det_grad, -1);
    auto unsqueeze2 = phi::funcs::Unsqueeze(unsqueeze1, -2);
205 206 207
    VLOG(3) << "unsqueezed(dslA, [-1, -2]) dims: " << unsqueeze2.dims();

    // Finally: unsqueeze(dslA) * inverse(A)
208
    auto res = phi::Multiply<T>(dev_ctx, unsqueeze2, transpose_inverse_A);
209 210 211 212 213
    VLOG(3) << "unsqueeze(dslA) * inverse(A) dims: " << res.dims();

    framework::TensorCopy(res, context.GetPlace(), dslogdet);
    dslogdet->Resize(input->dims());
    VLOG(3) << "dsl|A| dims: " << dslogdet->dims();
H
huangxu96 已提交
214 215 216 217 218
  }
};

}  // namespace operators
}  // namespace paddle