Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b91e8eec
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b91e8eec
编写于
9月 24, 2021
作者:
J
jiangcheng
提交者:
GitHub
9月 24, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add gradient kernel of det op and slogdet op (#36013)
* add gradient kernel of det op and slogdet op * fix CI APPROVAL problem
上级
787273ed
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
266 addition
and
75 deletion
+266
-75
paddle/fluid/operators/determinant_op.cc
paddle/fluid/operators/determinant_op.cc
+7
-4
paddle/fluid/operators/determinant_op.cu
paddle/fluid/operators/determinant_op.cu
+0
-36
paddle/fluid/operators/determinant_op.h
paddle/fluid/operators/determinant_op.h
+246
-16
python/paddle/fluid/tests/unittests/test_determinant_op.py
python/paddle/fluid/tests/unittests/test_determinant_op.py
+13
-19
未找到文件。
paddle/fluid/operators/determinant_op.cc
浏览文件 @
b91e8eec
...
...
@@ -48,6 +48,8 @@ class DeterminantGradOp : public framework::OperatorWithKernel {
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Input"
),
"Input"
,
"Input"
,
"DeterminantGradOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Out"
),
"Input"
,
"Out"
,
"DeterminantGradOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input"
,
framework
::
GradVarName
(
"Out"
),
"DeterminantGradOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Input"
)),
"Output"
,
framework
::
GradVarName
(
"Input"
),
"DeterminantGradOp"
);
...
...
@@ -117,7 +119,8 @@ class SlogDeterminantGradOp : public framework::OperatorWithKernel {
"SlogDeterminantGradOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Out"
),
"Input"
,
"Out"
,
"SlogDeterminantGradOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input"
,
framework
::
GradVarName
(
"Out"
),
"SlogDeterminantGradOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Input"
)),
"Output"
,
framework
::
GradVarName
(
"Input"
),
"SlogDeterminantGradOp"
);
...
...
@@ -179,7 +182,7 @@ REGISTER_OPERATOR(slogdeterminant, ops::SlogDeterminantOp,
ops
::
SlogDeterminantGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
slogdeterminant_grad
,
ops
::
DeterminantGradOp
)
// reuse det grad op
ops
::
Slog
DeterminantGradOp
)
// reuse det grad op
REGISTER_OP_CPU_KERNEL
(
slogdeterminant
,
ops
::
SlogDeterminantKernel
<
plat
::
CPUDeviceContext
,
float
>
,
...
...
@@ -187,5 +190,5 @@ REGISTER_OP_CPU_KERNEL(
REGISTER_OP_CPU_KERNEL
(
slogdeterminant_grad
,
ops
::
DeterminantGradKernel
<
plat
::
CPUDeviceContext
,
float
>
,
ops
::
DeterminantGradKernel
<
plat
::
CPUDeviceContext
,
double
>
);
ops
::
Slog
DeterminantGradKernel
<
plat
::
CPUDeviceContext
,
float
>
,
ops
::
Slog
DeterminantGradKernel
<
plat
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/determinant_op.cu
浏览文件 @
b91e8eec
...
...
@@ -14,42 +14,6 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/determinant_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
namespace
paddle
{
namespace
operators
{
using
platform
::
PADDLE_CUDA_NUM_THREADS
;
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
__global__
void
DeterminantGrad
(
const
size_t
numel
,
T
*
out
)
{
int
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
tid
<
numel
)
{
out
[
tid
]
=
static_cast
<
T
>
(
1
);
}
}
template
<
typename
T
>
class
DeterminantGradCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
auto
*
dout
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
const
T
*
dout_data
=
dout
->
data
<
T
>
();
auto
dout_dim
=
vectorize
(
dout
->
dims
());
auto
*
dx
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
T
*
dx_data
=
dx
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int64_t
numel
=
dx
->
numel
();
for
(
int64_t
idx
=
0
;
idx
<
numel
;
idx
++
)
{
dx_data
[
idx
]
=
static_cast
<
T
>
(
1
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
...
...
paddle/fluid/operators/determinant_op.h
浏览文件 @
b91e8eec
...
...
@@ -19,7 +19,11 @@
#include <cmath>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/operators/math/matrix_inverse.h"
#include "paddle/fluid/operators/svd_helper.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/for_range.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -48,11 +52,10 @@ class EigenMatrix<double> {
inline
int64_t
GetBatchCount
(
const
framework
::
DDim
dims
)
{
int64_t
batch_count
=
1
;
auto
dim_size
=
dims
.
size
();
PADDLE_ENFORCE_GT
(
dim_size
,
2
,
platform
::
errors
::
InvalidArgument
(
"To get the number of batch square matrices, "
"the size of dimension should greater than 2."
,
dim_size
));
PADDLE_ENFORCE_GE
(
dim_size
,
2
,
platform
::
errors
::
InvalidArgument
(
"the input matrix dimension size should greater than 2."
));
// Cumulative multiplying each dimension until the last 2 to get the batch
// count,
...
...
@@ -77,7 +80,7 @@ struct DeterminantFunctor {
auto
end_iter
=
input_vec
.
begin
()
+
(
i
+
1
)
*
rank
*
rank
;
std
::
vector
<
T
>
sub_vec
(
begin_iter
,
end_iter
);
// get every square matrix data
Eigen
::
MatrixXf
matrix
(
rank
,
rank
);
typename
EigenMatrix
<
T
>::
MatrixType
matrix
(
rank
,
rank
);
for
(
int64_t
i
=
0
;
i
<
rank
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
rank
;
++
j
)
{
matrix
(
i
,
j
)
=
sub_vec
[
rank
*
i
+
j
];
...
...
@@ -109,41 +112,169 @@ class DeterminantKernel : public framework::OpKernel<T> {
"the input matrix should be square matrix."
));
auto
rank
=
input_dim
[
input_dim_size
-
1
];
// square matrix length
DeterminantFunctor
<
T
>
()(
*
input
,
context
,
rank
,
batch_count
,
output
);
auto
output_dims
=
framework
::
slice_ddim
(
input
->
dims
(),
0
,
input_dim_size
-
2
);
if
(
input_dim_size
>
2
)
{
auto
output_dims
=
framework
::
slice_ddim
(
input
->
dims
(),
0
,
input_dim_size
-
2
);
output
->
Resize
(
output_dims
);
}
else
{
// when input is a two-dimension matrix, The det value is a number.
output
->
Resize
({
1
});
}
VLOG
(
2
)
<<
"output dim:"
<<
output
->
dims
();
}
};
template
<
typename
T
>
struct
FoundZeroFunctor
{
FoundZeroFunctor
(
const
T
*
x
,
int64_t
numel
,
bool
*
res
)
:
x_
(
x
),
numel_
(
numel
),
res_
(
res
)
{}
HOSTDEVICE
void
operator
()(
size_t
idx
)
const
{
if
(
*
res_
||
idx
>=
static_cast
<
size_t
>
(
numel_
))
{
// founded zero number
return
;
}
*
res_
=
(
x_
[
idx
]
==
static_cast
<
T
>
(
0
));
}
const
T
*
x_
;
int64_t
numel_
;
bool
*
res_
;
};
template
<
typename
DeviceContext
,
typename
T
>
inline
bool
CheckMatrixInvertible
(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
det
)
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
numel
=
det
->
numel
();
framework
::
Tensor
dev_tensor
;
auto
*
data
=
dev_tensor
.
mutable_data
<
bool
>
({
1
},
ctx
.
GetPlace
());
// set false
math
::
SetConstant
<
DeviceContext
,
bool
>
zero
;
zero
(
dev_ctx
,
&
dev_tensor
,
false
);
// find whether zero
platform
::
ForRange
<
DeviceContext
>
for_range
(
dev_ctx
,
numel
);
FoundZeroFunctor
<
T
>
functor
(
det
->
data
<
T
>
(),
numel
,
data
);
for_range
(
functor
);
// copy to host
dev_ctx
.
Wait
();
framework
::
Tensor
cpu_tensor
;
framework
::
TensorCopy
(
dev_tensor
,
platform
::
CPUPlace
(),
&
cpu_tensor
);
// if founded zero, the matrix is not invertible
// else the matrix is invertible
auto
*
res
=
cpu_tensor
.
data
<
bool
>
();
return
!
(
*
res
);
}
template
<
typename
DeviceContext
,
typename
T
>
class
DeterminantGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Not support DeterminantGrad at this time."
));
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
const
auto
*
input
=
context
.
Input
<
framework
::
Tensor
>
(
"Input"
);
const
auto
*
det
=
context
.
Input
<
framework
::
Tensor
>
(
"Out"
);
const
auto
*
grad
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
ddet
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
auto
input_dims_size
=
input
->
dims
().
size
();
if
(
input_dims_size
>
2
)
{
PADDLE_ENFORCE_EQ
(
grad
->
dims
().
size
()
+
2
,
input_dims_size
,
platform
::
errors
::
InvalidArgument
(
"The grad tensor of det dims size should 2 less than"
" input tensor's, but here differ %d"
,
input_dims_size
-
grad
->
dims
().
size
()));
}
else
if
(
input_dims_size
==
2
)
{
// input dims size 2 and grad dims size 1 is possible
PADDLE_ENFORCE_EQ
(
grad
->
dims
().
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"The grad tensor of det dims size should 2 less than"
" input tensor's, but here differ %d"
,
input_dims_size
-
grad
->
dims
().
size
()));
}
else
{
// checked in forward, pass
}
// Check Whether the matrix is invertible
// (matrix A not invertible) == (det(A)=0)
if
(
!
CheckMatrixInvertible
<
DeviceContext
,
T
>
(
context
,
det
))
{
// The matrix is not invertible
VLOG
(
3
)
<<
"The input matrix not invertible!"
;
ddet
->
Resize
(
input
->
dims
());
ddet
->
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
SetConstant
<
DeviceContext
,
T
>
zero
;
zero
(
dev_ctx
,
ddet
,
static_cast
<
T
>
(
0.0
f
));
return
;
}
// The matrix is invertible
// let |A| = Determinant(A)
// Ref to https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
// we set d|A| = unsqueeze(dA * |A|, [-1, -2]) * inverse(A).transpose(-2,
// -1)
math
::
DeviceIndependenceTensorOperations
<
DeviceContext
,
T
>
helper
(
context
);
// First: inverse(A)
framework
::
Tensor
inverse_A
;
// A must be square matrices!
inverse_A
.
Resize
(
input
->
dims
());
inverse_A
.
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
MatrixInverseFunctor
<
DeviceContext
,
T
>
mat_inv
;
mat_inv
(
dev_ctx
,
*
input
,
&
inverse_A
);
VLOG
(
3
)
<<
"inverse(A) dims: "
<<
inverse_A
.
dims
();
// Second: inverse(A).transpose(-2, -1)
framework
::
Tensor
transpose_inverse_A
=
helper
.
Transpose
(
inverse_A
);
VLOG
(
3
)
<<
"(dA * |A|).transpose(-2, -1) dims: "
<<
transpose_inverse_A
.
dims
();
// Third: dA * |A|
auto
mul_dA_detA
=
helper
.
Mul
(
*
grad
,
*
det
);
VLOG
(
3
)
<<
"dA * |A| dims: "
<<
mul_dA_detA
.
dims
();
// Fourth: unsqueeze(dA * |A|, [-1, -2])
auto
unsqueeze1
=
helper
.
Unsqueeze
(
mul_dA_detA
,
-
1
);
auto
unsqueeze2
=
helper
.
Unsqueeze
(
unsqueeze1
,
-
2
);
VLOG
(
3
)
<<
"unsqueezed(dA * |A|) dims: "
<<
unsqueeze2
.
dims
();
// Finally: unsqueeze(dA * |A|) * inverse(A)
auto
res
=
helper
.
Mul
(
unsqueeze2
,
transpose_inverse_A
);
VLOG
(
3
)
<<
"unsqueeze(dA * |A|) * inverse(A) dims: "
<<
res
.
dims
();
framework
::
TensorCopy
(
res
,
context
.
GetPlace
(),
ddet
);
ddet
->
Resize
(
input
->
dims
());
VLOG
(
3
)
<<
"d|A| dims: "
<<
ddet
->
dims
();
}
};
template
<
typename
T
>
struct
SlogDeterminantFunctor
{
void
operator
()(
const
Tensor
&
input
,
const
framework
::
ExecutionContext
ctx
,
int
rank
,
in
t
batch_count
,
Tensor
*
output
)
{
int
64_t
rank
,
int64_
t
batch_count
,
Tensor
*
output
)
{
std
::
vector
<
T
>
input_vec
;
std
::
vector
<
T
>
sign_vec
;
std
::
vector
<
T
>
log_vec
;
std
::
vector
<
T
>
output_vec
;
framework
::
TensorToVector
(
input
,
ctx
.
device_context
(),
&
input_vec
);
for
(
int
i
=
0
;
i
<
batch_count
;
++
i
)
{
// maybe can be parallel
for
(
int
64_t
i
=
0
;
i
<
batch_count
;
++
i
)
{
// maybe can be parallel
auto
begin_iter
=
input_vec
.
begin
()
+
i
*
rank
*
rank
;
auto
end_iter
=
input_vec
.
begin
()
+
(
i
+
1
)
*
rank
*
rank
;
std
::
vector
<
T
>
sub_vec
(
begin_iter
,
end_iter
);
// get every square matrix data
typename
EigenMatrix
<
T
>::
MatrixType
matrix
(
rank
,
rank
);
for
(
int
i
=
0
;
i
<
rank
;
++
i
)
{
for
(
int
j
=
0
;
j
<
rank
;
++
j
)
{
for
(
int
64_t
i
=
0
;
i
<
rank
;
++
i
)
{
for
(
int
64_t
j
=
0
;
j
<
rank
;
++
j
)
{
matrix
(
i
,
j
)
=
sub_vec
[
rank
*
i
+
j
];
}
}
...
...
@@ -185,6 +316,10 @@ class SlogDeterminantKernel : public framework::OpKernel<T> {
auto
rank
=
input_dim
[
input_dim_size
-
1
];
// square matrix length
SlogDeterminantFunctor
<
T
>
()(
*
input
,
context
,
rank
,
batch_count
,
output
);
std
::
vector
<
int
>
output_dim_vec
(
input_dim
.
begin
(),
input_dim
.
end
()
-
2
);
if
(
input_dim
.
size
()
==
static_cast
<
size_t
>
(
2
))
{
// when input is a two-dimension matrix, The det value is a number.
output_dim_vec
=
{
1
};
}
output_dim_vec
.
insert
(
output_dim_vec
.
begin
(),
2
);
// make the output dims as same as numpy
auto
output_dims
=
framework
::
make_ddim
(
output_dim_vec
);
...
...
@@ -197,8 +332,103 @@ template <typename DeviceContext, typename T>
class
SlogDeterminantGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Not support SlogDeterminantGrad at this time."
));
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
const
auto
*
input
=
context
.
Input
<
framework
::
Tensor
>
(
"Input"
);
const
auto
*
slogdet
=
context
.
Input
<
framework
::
Tensor
>
(
"Out"
);
const
auto
*
grad
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dslogdet
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
PADDLE_ENFORCE_EQ
(
grad
->
dims
()[
0
],
2
,
platform
::
errors
::
InvalidArgument
(
"The grad tensor of SlogDet should contain two"
" grad: sign and absslogdet, but here %ld."
,
grad
->
dims
()[
0
]));
if
(
input
->
dims
().
size
()
>
2
)
{
PADDLE_ENFORCE_EQ
(
grad
->
dims
().
size
()
+
1
,
input
->
dims
().
size
(),
platform
::
errors
::
InvalidArgument
(
"The grad tensor of slogdet dims size should 1 less than"
" input tensor's, but here differ %d"
,
input
->
dims
().
size
()
-
grad
->
dims
().
size
()));
}
// Check Whether the matrix is invertible
// (matrix A not invertible) == (absslogdet(A)=0)
auto
slogdet_vec
=
slogdet
->
Split
(
1
,
0
);
auto
absslogdet_val
=
slogdet_vec
[
0
];
if
(
!
CheckMatrixInvertible
<
DeviceContext
,
T
>
(
context
,
&
absslogdet_val
))
{
// The matrix is not invertible
VLOG
(
3
)
<<
"The input matrix not invertible!"
;
dslogdet
->
Resize
(
input
->
dims
());
dslogdet
->
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
SetConstant
<
DeviceContext
,
T
>
zero
;
zero
(
dev_ctx
,
dslogdet
,
std
::
numeric_limits
<
T
>::
quiet_NaN
());
return
;
}
// The matrix is invertible
// let sl|A| = SlogDeterminant(A)
// Ref to https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
// we set dsl|A| = unsqueeze(dslA, [-1, -2]) *
// inverse(A).conj().transpose(-2, -1)
math
::
DeviceIndependenceTensorOperations
<
DeviceContext
,
T
>
helper
(
context
);
// First: inverse(A)
framework
::
Tensor
inverse_A
;
// A must be square matrices!
inverse_A
.
Resize
(
input
->
dims
());
inverse_A
.
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
MatrixInverseFunctor
<
DeviceContext
,
T
>
mat_inv
;
mat_inv
(
dev_ctx
,
*
input
,
&
inverse_A
);
VLOG
(
3
)
<<
"inverse(A) dims: "
<<
inverse_A
.
dims
();
// Second: inverse(A).conj()
framework
::
Tensor
conj_inverse_A
;
conj_inverse_A
.
Resize
(
inverse_A
.
dims
());
auto
numel
=
input
->
numel
();
auto
*
conj_data
=
conj_inverse_A
.
mutable_data
<
T
>
(
context
.
GetPlace
(),
size_t
(
numel
*
sizeof
(
T
)));
platform
::
ForRange
<
DeviceContext
>
for_range
(
dev_ctx
,
numel
);
math
::
ConjFunctor
<
T
>
functor
(
inverse_A
.
data
<
T
>
(),
numel
,
conj_data
);
for_range
(
functor
);
VLOG
(
3
)
<<
"inverse(A).conj() dims: "
<<
conj_inverse_A
.
dims
();
// Third: inverse(A).conj().transpose(-2, -1)
framework
::
Tensor
transpose_inverse_A
=
helper
.
Transpose
(
conj_inverse_A
);
VLOG
(
3
)
<<
"inverse(A).conj().transpose(-2, -1) dims: "
<<
transpose_inverse_A
.
dims
();
// Fourth: split grad value to [sign_grad, absslogdet_grad]
auto
grad_vec
=
grad
->
Split
(
1
,
0
);
auto
det_grad
=
grad_vec
[
1
];
// remmove useless first dimension
int
det_grad_size
=
det_grad
.
dims
().
size
();
std
::
vector
<
int
>
det_grad_vec
;
for
(
int
i
=
1
;
i
<
det_grad_size
;
++
i
)
{
det_grad_vec
.
emplace_back
(
det_grad
.
dims
()[
i
]);
}
det_grad
.
Resize
(
det_grad
.
dims
().
reshape
(
det_grad_vec
));
// Fifth: unsqueeze(dslA, [-1, -2])
auto
unsqueeze1
=
helper
.
Unsqueeze
(
det_grad
,
-
1
);
auto
unsqueeze2
=
helper
.
Unsqueeze
(
unsqueeze1
,
-
2
);
VLOG
(
3
)
<<
"unsqueezed(dslA, [-1, -2]) dims: "
<<
unsqueeze2
.
dims
();
// Finally: unsqueeze(dslA) * inverse(A)
auto
res
=
helper
.
Mul
(
unsqueeze2
,
transpose_inverse_A
);
VLOG
(
3
)
<<
"unsqueeze(dslA) * inverse(A) dims: "
<<
res
.
dims
();
framework
::
TensorCopy
(
res
,
context
.
GetPlace
(),
dslogdet
);
dslogdet
->
Resize
(
input
->
dims
());
VLOG
(
3
)
<<
"dsl|A| dims: "
<<
dslogdet
->
dims
();
}
};
...
...
python/paddle/fluid/tests/unittests/test_determinant_op.py
浏览文件 @
b91e8eec
...
...
@@ -16,7 +16,7 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
,
skip_check_grad_ci
from
op_test
import
OpTest
import
paddle
import
paddle.nn.functional
as
F
import
paddle.fluid
as
fluid
...
...
@@ -26,7 +26,6 @@ import paddle.tensor as tensor
paddle
.
enable_static
()
@
skip_check_grad_ci
(
reason
=
"determinant grad is in progress."
)
class
TestDeterminantOp
(
OpTest
):
def
setUp
(
self
):
self
.
init_data
()
...
...
@@ -37,11 +36,11 @@ class TestDeterminantOp(OpTest):
self
.
check_output
()
def
test_check_grad
(
self
):
pass
self
.
check_grad
([
'Input'
],
[
'Out'
])
def
init_data
(
self
):
np
.
random
.
seed
(
0
)
self
.
case
=
np
.
random
.
rand
(
3
,
3
,
3
,
3
,
3
).
astype
(
'float64'
)
self
.
case
=
np
.
random
.
rand
(
3
,
3
,
3
,
5
,
5
).
astype
(
'float64'
)
self
.
inputs
=
{
'Input'
:
self
.
case
}
self
.
target
=
np
.
linalg
.
det
(
self
.
case
)
...
...
@@ -49,30 +48,25 @@ class TestDeterminantOp(OpTest):
class
TestDeterminantOpCase1
(
TestDeterminantOp
):
def
init_data
(
self
):
np
.
random
.
seed
(
0
)
self
.
case
=
np
.
random
.
rand
(
3
,
3
,
3
,
3
).
astype
(
np
.
float32
)
self
.
case
=
np
.
random
.
rand
(
10
,
10
).
astype
(
'float32'
)
self
.
inputs
=
{
'Input'
:
self
.
case
}
self
.
target
=
np
.
linalg
.
det
(
self
.
case
)
def
test_check_grad
(
self
):
pass
class
TestDeterminantOpCase2
(
TestDeterminantOp
):
def
init_data
(
self
):
np
.
random
.
seed
(
0
)
self
.
case
=
np
.
random
.
rand
(
4
,
2
,
4
,
4
).
astype
(
'float64'
)
# not invertible matrix
self
.
case
=
np
.
ones
([
4
,
2
,
4
,
4
]).
astype
(
'float64'
)
self
.
inputs
=
{
'Input'
:
self
.
case
}
self
.
target
=
np
.
linalg
.
det
(
self
.
case
)
def
test_check_grad
(
self
):
pass
class
TestDeterminantAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
shape
=
[
3
,
3
,
3
,
3
]
np
.
random
.
seed
(
0
)
self
.
x
=
np
.
random
.
rand
(
3
,
3
,
3
,
3
).
astype
(
np
.
float32
)
self
.
shape
=
[
3
,
3
,
5
,
5
]
self
.
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
np
.
float32
)
self
.
place
=
paddle
.
CPUPlace
()
def
test_api_static
(
self
):
...
...
@@ -96,7 +90,6 @@ class TestDeterminantAPI(unittest.TestCase):
paddle
.
enable_static
()
@
skip_check_grad_ci
(
reason
=
"slogdeterminant grad is in progress."
)
class
TestSlogDeterminantOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slogdeterminant"
...
...
@@ -107,11 +100,12 @@ class TestSlogDeterminantOp(OpTest):
self
.
check_output
()
def
test_check_grad
(
self
):
pass
# the slog det's grad value is always huge
self
.
check_grad
([
'Input'
],
[
'Out'
],
max_relative_error
=
0.1
)
def
init_data
(
self
):
np
.
random
.
seed
(
0
)
self
.
case
=
np
.
random
.
rand
(
3
,
3
,
3
,
3
).
astype
(
'float64'
)
self
.
case
=
np
.
random
.
rand
(
4
,
5
,
5
).
astype
(
'float64'
)
self
.
inputs
=
{
'Input'
:
self
.
case
}
self
.
target
=
np
.
array
(
np
.
linalg
.
slogdet
(
self
.
case
))
...
...
@@ -126,9 +120,9 @@ class TestSlogDeterminantOpCase1(TestSlogDeterminantOp):
class
TestSlogDeterminantAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
shape
=
[
3
,
3
,
3
,
3
]
np
.
random
.
seed
(
0
)
self
.
x
=
np
.
random
.
rand
(
3
,
3
,
3
,
3
).
astype
(
np
.
float32
)
self
.
shape
=
[
3
,
3
,
5
,
5
]
self
.
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
np
.
float32
)
self
.
place
=
paddle
.
CPUPlace
()
def
test_api_static
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录