Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7024ade7
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7024ade7
编写于
3月 08, 2022
作者:
C
Chen Weihang
提交者:
GitHub
3月 08, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Phi] Move matrix inverse into phi (#40237)
* move matrix inverse into phi * change license year
上级
975f99ab
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
208 addition
and
153 deletion
+208
-153
paddle/fluid/operators/determinant_op.h
paddle/fluid/operators/determinant_op.h
+3
-3
paddle/fluid/operators/inverse_op.h
paddle/fluid/operators/inverse_op.h
+2
-2
paddle/fluid/operators/math/CMakeLists.txt
paddle/fluid/operators/math/CMakeLists.txt
+0
-1
paddle/fluid/operators/math/matrix_inverse.cu.cc
paddle/fluid/operators/math/matrix_inverse.cu.cc
+0
-124
paddle/fluid/operators/matrix_power_op.h
paddle/fluid/operators/matrix_power_op.h
+3
-3
paddle/phi/kernels/funcs/CMakeLists.txt
paddle/phi/kernels/funcs/CMakeLists.txt
+1
-0
paddle/phi/kernels/funcs/matrix_inverse.cc
paddle/phi/kernels/funcs/matrix_inverse.cc
+37
-0
paddle/phi/kernels/funcs/matrix_inverse.cu.cc
paddle/phi/kernels/funcs/matrix_inverse.cu.cc
+141
-0
paddle/phi/kernels/funcs/matrix_inverse.h
paddle/phi/kernels/funcs/matrix_inverse.h
+21
-20
未找到文件。
paddle/fluid/operators/determinant_op.h
浏览文件 @
7024ade7
...
...
@@ -19,11 +19,11 @@
#include <cmath>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/matrix_inverse.h"
#include "paddle/fluid/operators/svd_helper.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/phi/kernels/funcs/complex_functors.h"
#include "paddle/phi/kernels/funcs/matrix_inverse.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -226,7 +226,7 @@ class DeterminantGradKernel : public framework::OpKernel<T> {
inverse_A
.
Resize
(
input
->
dims
());
inverse_A
.
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
MatrixInverseFunctor
<
DeviceContext
,
T
>
mat_inv
;
phi
::
funcs
::
MatrixInverseFunctor
<
DeviceContext
,
T
>
mat_inv
;
mat_inv
(
dev_ctx
,
*
input
,
&
inverse_A
);
VLOG
(
3
)
<<
"inverse(A) dims: "
<<
inverse_A
.
dims
();
...
...
@@ -381,7 +381,7 @@ class SlogDeterminantGradKernel : public framework::OpKernel<T> {
inverse_A
.
Resize
(
input
->
dims
());
inverse_A
.
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
MatrixInverseFunctor
<
DeviceContext
,
T
>
mat_inv
;
phi
::
funcs
::
MatrixInverseFunctor
<
DeviceContext
,
T
>
mat_inv
;
mat_inv
(
dev_ctx
,
*
input
,
&
inverse_A
);
VLOG
(
3
)
<<
"inverse(A) dims: "
<<
inverse_A
.
dims
();
...
...
paddle/fluid/operators/inverse_op.h
浏览文件 @
7024ade7
...
...
@@ -15,8 +15,8 @@ limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/matrix_inverse.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/matrix_inverse.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -30,7 +30,7 @@ class InverseKernel : public framework::OpKernel<T> {
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
math
::
MatrixInverseFunctor
<
DeviceContext
,
T
>
mat_inv
;
phi
::
funcs
::
MatrixInverseFunctor
<
DeviceContext
,
T
>
mat_inv
;
mat_inv
(
dev_ctx
,
*
input
,
output
);
}
};
...
...
paddle/fluid/operators/math/CMakeLists.txt
浏览文件 @
7024ade7
...
...
@@ -46,7 +46,6 @@ math_library(vol2col)
math_library
(
prelu
)
math_library
(
bert_encoder_functor
)
math_library
(
tree2col DEPS math_function
)
math_library
(
matrix_inverse
)
math_library
(
segment_pooling
)
math_library
(
matrix_solve
)
...
...
paddle/fluid/operators/math/matrix_inverse.cu.cc
已删除
100644 → 0
浏览文件 @
975f99ab
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/matrix_inverse.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
namespace
paddle
{
namespace
platform
{
class
CUDADeviceContext
;
}
// namespace platform
}
// namespace paddle
namespace
paddle
{
namespace
operators
{
namespace
math
{
template
<
typename
DeviceContext
,
typename
T
>
class
MatrixInverseFunctor
;
template
<
typename
T
>
class
MatrixInverseFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
a
,
framework
::
Tensor
*
a_inv
)
{
#ifndef PADDLE_WITH_HIP
const
auto
&
mat_dims
=
a
.
dims
();
const
int
rank
=
mat_dims
.
size
();
int
n
=
mat_dims
[
rank
-
1
];
int
batch_size
=
rank
>
2
?
a
.
numel
()
/
(
n
*
n
)
:
1
;
memory
::
allocation
::
AllocationPtr
tmp_gpu_mat_data
;
const
T
*
gpu_mat
=
a
.
data
<
T
>
();
if
(
n
>=
32
)
{
// Copy all elements of input matrix A to a temporary memory space to
// avoid being overriden by getrf.
tmp_gpu_mat_data
=
memory
::
Alloc
(
context
,
a
.
numel
()
*
sizeof
(
T
));
memory
::
Copy
(
context
.
GetPlace
(),
tmp_gpu_mat_data
->
ptr
(),
context
.
GetPlace
(),
a
.
data
(),
a
.
numel
()
*
sizeof
(
T
),
context
.
stream
());
gpu_mat
=
reinterpret_cast
<
const
T
*>
(
tmp_gpu_mat_data
->
ptr
());
}
std
::
vector
<
const
T
*>
cpu_ptrs
(
batch_size
*
2
);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
cpu_ptrs
[
i
]
=
gpu_mat
+
i
*
n
*
n
;
cpu_ptrs
[
i
+
batch_size
]
=
a_inv
->
data
<
T
>
()
+
i
*
n
*
n
;
}
// Copy the addresses of A and A_inv from host to device.
memory
::
allocation
::
AllocationPtr
tmp_gpu_ptrs_data
=
memory
::
Alloc
(
context
,
cpu_ptrs
.
size
()
*
sizeof
(
T
*
));
memory
::
Copy
(
context
.
GetPlace
(),
tmp_gpu_ptrs_data
->
ptr
(),
platform
::
CPUPlace
(),
static_cast
<
void
*>
(
cpu_ptrs
.
data
()),
cpu_ptrs
.
size
()
*
sizeof
(
T
*
),
context
.
stream
());
T
**
gpu_inv_ptrs
=
reinterpret_cast
<
T
**>
(
tmp_gpu_ptrs_data
->
ptr
())
+
batch_size
;
// Allocate device memory for info and pivots.
int
num_ints
=
n
<
32
?
batch_size
:
batch_size
*
(
n
+
1
);
memory
::
allocation
::
AllocationPtr
tmp_gpu_info_data
=
memory
::
Alloc
(
context
,
num_ints
*
sizeof
(
int
));
int
*
gpu_info_ptr
=
reinterpret_cast
<
int
*>
(
tmp_gpu_info_data
->
ptr
());
auto
blas
=
phi
::
funcs
::
GetBlas
<
platform
::
CUDADeviceContext
,
T
>
(
context
);
std
::
vector
<
int
>
info
;
// only for singular checking
info
.
resize
(
batch_size
);
// This functions in cuBLAS is intended to be used for matrices of small
// sizes where the launch overhead is a significant factor.
// TODO(Xreki): call function in cusolver for large matrices.
if
(
n
<
32
)
{
// cublas<S/D>matinvBatched is a short cut of cublas<S/D>getrfBatched
// plus cublas<S/D>getriBatched.
// However it only works if N is less than 32. If not, we need to
// go through cublas<S/D>getrfBatched and cublas<S/D>getriBatched.
blas
.
BatchedMatInv
(
n
,
reinterpret_cast
<
const
T
**>
(
tmp_gpu_ptrs_data
->
ptr
()),
gpu_inv_ptrs
,
gpu_info_ptr
,
batch_size
);
}
else
{
// This function performs the LU factorization of each matrix A by the
// equation P * A = L * U. L and U are written back to original matrix A,
// and diagonal elements of L are discarded.
int
*
gpu_pivot_ptr
=
reinterpret_cast
<
int
*>
(
tmp_gpu_info_data
->
ptr
())
+
batch_size
;
blas
.
BatchedGETRF
(
n
,
reinterpret_cast
<
T
**>
(
tmp_gpu_ptrs_data
->
ptr
()),
gpu_pivot_ptr
,
gpu_info_ptr
,
batch_size
);
blas
.
BatchedGETRI
(
n
,
reinterpret_cast
<
const
T
**>
(
tmp_gpu_ptrs_data
->
ptr
()),
gpu_pivot_ptr
,
gpu_inv_ptrs
,
gpu_info_ptr
,
batch_size
);
}
memory
::
Copy
(
platform
::
CPUPlace
(),
info
.
data
(),
context
.
GetPlace
(),
gpu_info_ptr
,
sizeof
(
int
)
*
batch_size
,
context
.
stream
());
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
PADDLE_ENFORCE_EQ
(
info
[
i
],
0
,
platform
::
errors
::
PreconditionNotMet
(
"For batch [%d]: U(%d, %d) is zero, singular U. "
"Please check the matrix value and change it to a "
"non-singular matrix"
,
i
,
info
[
i
],
info
[
i
]));
}
#else
compute_inverse_eigen
<
platform
::
CUDADeviceContext
,
T
>
(
context
,
a
,
a_inv
);
#endif
}
};
template
class
MatrixInverseFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
class
MatrixInverseFunctor
<
platform
::
CUDADeviceContext
,
double
>;
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/matrix_power_op.h
浏览文件 @
7024ade7
...
...
@@ -18,9 +18,9 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/matrix_inverse.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/matrix_inverse.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -67,7 +67,7 @@ void MatrixPowerFunction(const Tensor* X, const int n, Tensor* Out,
framework
::
TensorCopy
(
*
X
,
ctx
.
GetPlace
(),
dev_ctx
,
&
new_x
);
}
else
{
// newX = X^{-1}, n = -n
math
::
MatrixInverseFunctor
<
DeviceContext
,
T
>
mat_inv
;
phi
::
funcs
::
MatrixInverseFunctor
<
DeviceContext
,
T
>
mat_inv
;
mat_inv
(
dev_ctx
,
*
X
,
&
new_x
);
new_n
=
-
n
;
}
...
...
@@ -200,7 +200,7 @@ void MatrixPowerGradFunction(const Tensor* X, const Tensor* Out,
framework
::
TensorCopy
(
*
X
,
ctx
.
GetPlace
(),
dev_ctx
,
&
new_x
);
}
else
{
// newX = X^{-1}, n = -n
math
::
MatrixInverseFunctor
<
DeviceContext
,
T
>
mat_inv
;
phi
::
funcs
::
MatrixInverseFunctor
<
DeviceContext
,
T
>
mat_inv
;
mat_inv
(
dev_ctx
,
*
X
,
&
new_x
);
new_n
=
-
n
;
}
...
...
paddle/phi/kernels/funcs/CMakeLists.txt
浏览文件 @
7024ade7
...
...
@@ -9,3 +9,4 @@ math_library(gru_compute DEPS activation_functions math_function)
math_library
(
lstm_compute DEPS activation_functions
)
math_library
(
concat_and_split_functor DEPS dense_tensor
)
math_library
(
matrix_reduce DEPS dense_tensor
)
math_library
(
matrix_inverse DEPS dense_tensor eigen3 blas
)
paddle/
fluid/operators/math
/matrix_inverse.cc
→
paddle/
phi/kernels/funcs
/matrix_inverse.cc
浏览文件 @
7024ade7
/* Copyright (c) 202
0
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 202
2
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -12,27 +12,26 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/matrix_inverse.h"
#include "Eigen/Core"
#include "Eigen/LU"
#include "paddle/phi/kernels/funcs/matrix_inverse.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
namespace
p
addle
{
namespace
operator
s
{
namespace
math
{
template
<
typename
T
>
class
MatrixInverseFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
public:
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
framework
::
Tensor
&
a
,
framework
::
Tensor
*
a_inv
)
{
compute_inverse_eigen
<
platform
::
CPUDeviceContext
,
T
>
(
context
,
a
,
a_inv
);
}
}
;
template
class
MatrixInverseFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
class
MatrixInverseFunctor
<
p
latform
::
CPUDeviceContext
,
double
>;
}
// namespace math
}
// namespace
operator
s
}
// namespace p
addle
namespace
p
hi
{
namespace
func
s
{
template
<
typename
Context
,
typename
T
>
void
MatrixInverseFunctor
<
Context
,
T
>::
operator
()(
const
Context
&
dev_ctx
,
const
DenseTensor
&
a
,
DenseTensor
*
a_inv
)
{
ComputeInverseEigen
<
Context
,
T
>
(
dev_ctx
,
a
,
a_inv
);
}
template
class
MatrixInverseFunctor
<
CPUContext
,
float
>;
template
class
MatrixInverseFunctor
<
CPUContext
,
double
>
;
// TODO(chenweihang): remove these instantiations later
template
class
MatrixInverseFunctor
<
p
addle
::
platform
::
CPUDeviceContext
,
float
>;
template
class
MatrixInverseFunctor
<
paddle
::
platform
::
CPUDeviceContext
,
double
>;
}
// namespace
func
s
}
// namespace p
hi
paddle/phi/kernels/funcs/matrix_inverse.cu.cc
0 → 100644
浏览文件 @
7024ade7
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/funcs/matrix_inverse.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/memory/memcpy.h"
namespace
phi
{
namespace
funcs
{
template
<
typename
Context
,
typename
T
>
void
MatrixInverseFunctor
<
Context
,
T
>::
operator
()(
const
Context
&
dev_ctx
,
const
DenseTensor
&
a
,
DenseTensor
*
a_inv
)
{
#ifndef PADDLE_WITH_HIP
const
auto
&
mat_dims
=
a
.
dims
();
const
int
rank
=
mat_dims
.
size
();
int
n
=
mat_dims
[
rank
-
1
];
int
batch_size
=
rank
>
2
?
a
.
numel
()
/
(
n
*
n
)
:
1
;
paddle
::
memory
::
allocation
::
AllocationPtr
tmp_gpu_mat_data
;
const
T
*
gpu_mat
=
a
.
data
<
T
>
();
if
(
n
>=
32
)
{
// Copy all elements of input matrix A to a temporary memory space to
// avoid being overriden by getrf.
tmp_gpu_mat_data
=
paddle
::
memory
::
Alloc
(
dev_ctx
,
a
.
numel
()
*
sizeof
(
T
));
paddle
::
memory
::
Copy
(
dev_ctx
.
GetPlace
(),
tmp_gpu_mat_data
->
ptr
(),
dev_ctx
.
GetPlace
(),
a
.
data
(),
a
.
numel
()
*
sizeof
(
T
),
dev_ctx
.
stream
());
gpu_mat
=
reinterpret_cast
<
const
T
*>
(
tmp_gpu_mat_data
->
ptr
());
}
std
::
vector
<
const
T
*>
cpu_ptrs
(
batch_size
*
2
);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
cpu_ptrs
[
i
]
=
gpu_mat
+
i
*
n
*
n
;
cpu_ptrs
[
i
+
batch_size
]
=
a_inv
->
data
<
T
>
()
+
i
*
n
*
n
;
}
// Copy the addresses of A and A_inv from host to device.
paddle
::
memory
::
allocation
::
AllocationPtr
tmp_gpu_ptrs_data
=
paddle
::
memory
::
Alloc
(
dev_ctx
,
cpu_ptrs
.
size
()
*
sizeof
(
T
*
));
paddle
::
memory
::
Copy
(
dev_ctx
.
GetPlace
(),
tmp_gpu_ptrs_data
->
ptr
(),
phi
::
CPUPlace
(),
static_cast
<
void
*>
(
cpu_ptrs
.
data
()),
cpu_ptrs
.
size
()
*
sizeof
(
T
*
),
dev_ctx
.
stream
());
T
**
gpu_inv_ptrs
=
reinterpret_cast
<
T
**>
(
tmp_gpu_ptrs_data
->
ptr
())
+
batch_size
;
// Allocate device memory for info and pivots.
int
num_ints
=
n
<
32
?
batch_size
:
batch_size
*
(
n
+
1
);
paddle
::
memory
::
allocation
::
AllocationPtr
tmp_gpu_info_data
=
paddle
::
memory
::
Alloc
(
dev_ctx
,
num_ints
*
sizeof
(
int
));
int
*
gpu_info_ptr
=
reinterpret_cast
<
int
*>
(
tmp_gpu_info_data
->
ptr
());
auto
blas
=
phi
::
funcs
::
GetBlas
<
Context
,
T
>
(
dev_ctx
);
std
::
vector
<
int
>
info
;
// only for singular checking
info
.
resize
(
batch_size
);
// This functions in cuBLAS is intended to be used for matrices of small
// sizes where the launch overhead is a significant factor.
// TODO(Xreki): call function in cusolver for large matrices.
if
(
n
<
32
)
{
// cublas<S/D>matinvBatched is a short cut of cublas<S/D>getrfBatched
// plus cublas<S/D>getriBatched.
// However it only works if N is less than 32. If not, we need to
// go through cublas<S/D>getrfBatched and cublas<S/D>getriBatched.
blas
.
BatchedMatInv
(
n
,
reinterpret_cast
<
const
T
**>
(
tmp_gpu_ptrs_data
->
ptr
()),
gpu_inv_ptrs
,
gpu_info_ptr
,
batch_size
);
}
else
{
// This function performs the LU factorization of each matrix A by the
// equation P * A = L * U. L and U are written back to original matrix A,
// and diagonal elements of L are discarded.
int
*
gpu_pivot_ptr
=
reinterpret_cast
<
int
*>
(
tmp_gpu_info_data
->
ptr
())
+
batch_size
;
blas
.
BatchedGETRF
(
n
,
reinterpret_cast
<
T
**>
(
tmp_gpu_ptrs_data
->
ptr
()),
gpu_pivot_ptr
,
gpu_info_ptr
,
batch_size
);
blas
.
BatchedGETRI
(
n
,
reinterpret_cast
<
const
T
**>
(
tmp_gpu_ptrs_data
->
ptr
()),
gpu_pivot_ptr
,
gpu_inv_ptrs
,
gpu_info_ptr
,
batch_size
);
}
paddle
::
memory
::
Copy
(
phi
::
CPUPlace
(),
info
.
data
(),
dev_ctx
.
GetPlace
(),
gpu_info_ptr
,
sizeof
(
int
)
*
batch_size
,
dev_ctx
.
stream
());
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
PADDLE_ENFORCE_EQ
(
info
[
i
],
0
,
phi
::
errors
::
PreconditionNotMet
(
"For batch [%d]: U(%d, %d) is zero, singular U. "
"Please check the matrix value and change it to a "
"non-singular matrix"
,
i
,
info
[
i
],
info
[
i
]));
}
#else
ComputeInverseEigen
<
Context
,
T
>
(
dev_ctx
,
a
,
a_inv
);
#endif
}
template
class
MatrixInverseFunctor
<
GPUContext
,
float
>;
template
class
MatrixInverseFunctor
<
GPUContext
,
double
>;
// TODO(chenweihang): remove these instantiations later
template
class
MatrixInverseFunctor
<
paddle
::
platform
::
CUDADeviceContext
,
float
>;
template
class
MatrixInverseFunctor
<
paddle
::
platform
::
CUDADeviceContext
,
double
>;
}
// namespace funcs
}
// namespace phi
paddle/
fluid/operators/math
/matrix_inverse.h
→
paddle/
phi/kernels/funcs
/matrix_inverse.h
浏览文件 @
7024ade7
/* Copyright (c) 202
0
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 202
2
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -17,17 +17,18 @@ limitations under the License. */
#include <string>
#include "Eigen/Core"
#include "Eigen/LU"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/enforce.h"
template
<
typename
DeviceContext
,
typename
T
>
void
compute_inverse_eigen
(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
a
,
framework
::
Tensor
*
a_inv
)
{
namespace
phi
{
namespace
funcs
{
template
<
typename
Context
,
typename
T
>
void
ComputeInverseEigen
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
a
,
DenseTensor
*
a_inv
)
{
using
Matrix
=
Eigen
::
Matrix
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>
;
using
EigenMatrixMap
=
Eigen
::
Map
<
Matrix
>
;
...
...
@@ -38,7 +39,7 @@ void compute_inverse_eigen(const DeviceContext& context,
int
batch_size
=
rank
>
2
?
a
.
numel
()
/
(
n
*
n
)
:
1
;
const
T
*
a_ptr
=
a
.
data
<
T
>
();
T
*
a_inv_ptr
=
a_inv
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
a_inv_ptr
=
a_inv
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
());
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
ConstEigenMatrixMap
mat
(
a_ptr
+
i
*
n
*
n
,
n
,
n
);
...
...
@@ -47,20 +48,20 @@ void compute_inverse_eigen(const DeviceContext& context,
lu
.
compute
(
mat
);
const
T
min_abs_pivot
=
lu
.
matrixLU
().
diagonal
().
cwiseAbs
().
minCoeff
();
PADDLE_ENFORCE_GT
(
min_abs_pivot
,
static_cast
<
T
>
(
0
),
platform
::
errors
::
InvalidArgument
(
"Input is not invertible."
));
PADDLE_ENFORCE_GT
(
min_abs_pivot
,
static_cast
<
T
>
(
0
),
errors
::
InvalidArgument
(
"Input is not invertible."
));
mat_inv
.
noalias
()
=
lu
.
inverse
();
}
}
template
<
typename
Device
Context
,
typename
T
>
template
<
typename
Context
,
typename
T
>
class
MatrixInverseFunctor
{
public:
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
a
,
framework
::
Tensor
*
a_inv
);
void
operator
()(
const
Context
&
dev_ctx
,
const
DenseTensor
&
a
,
DenseTensor
*
a_inv
);
};
}
// namespace math
}
// namespace operators
}
// namespace paddle
}
// namespace funcs
}
// namespace phi
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录