determinant_op.h 8.7 KB
Newer Older
H
huangxu96 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <Eigen/Dense>
#include <Eigen/LU>
#include <algorithm>
#include <cmath>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/enforce.h"
23
#include "paddle/fluid/platform/for_range.h"
24
#include "paddle/phi/kernels/complex_kernel.h"
Y
YuanRisheng 已提交
25
#include "paddle/phi/kernels/elementwise_kernel.h"
26
#include "paddle/phi/kernels/full_kernel.h"
27
#include "paddle/phi/kernels/funcs/common_shape.h"
28 29
#include "paddle/phi/kernels/funcs/diag_functor.h"
#include "paddle/phi/kernels/funcs/math_function.h"
30
#include "paddle/phi/kernels/funcs/matrix_inverse.h"
31
#include "paddle/phi/kernels/funcs/unsqueeze.h"
32 33
#include "paddle/phi/kernels/impl/determinant_grad_kernel_impl.h"
#include "paddle/phi/kernels/impl/determinant_kernel_impl.h"
34 35
#include "paddle/phi/kernels/matmul_kernel.h"
#include "paddle/phi/kernels/transpose_kernel.h"
H
huangxu96 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T>
T sign(T val) {
  return static_cast<T>(T(0) < val) - (val < T(0));
}

template <typename T>
struct SlogDeterminantFunctor {
  void operator()(const Tensor& input, const framework::ExecutionContext ctx,
49
                  int64_t rank, int64_t batch_count, Tensor* output) {
H
huangxu96 已提交
50 51 52 53 54
    std::vector<T> input_vec;
    std::vector<T> sign_vec;
    std::vector<T> log_vec;
    std::vector<T> output_vec;
    framework::TensorToVector(input, ctx.device_context(), &input_vec);
55
    for (int64_t i = 0; i < batch_count; ++i) {  // maybe can be parallel
H
huangxu96 已提交
56 57 58 59
      auto begin_iter = input_vec.begin() + i * rank * rank;
      auto end_iter = input_vec.begin() + (i + 1) * rank * rank;
      std::vector<T> sub_vec(begin_iter,
                             end_iter);  // get every square matrix data
60
      typename phi::detail::EigenMatrix<T>::MatrixType matrix(rank, rank);
61 62
      for (int64_t i = 0; i < rank; ++i) {
        for (int64_t j = 0; j < rank; ++j) {
H
huangxu96 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
          matrix(i, j) = sub_vec[rank * i + j];
        }
      }
      VLOG(2) << "det value: " << matrix.determinant();
      VLOG(2) << "matrix val: " << matrix;
      auto det_val = matrix.determinant();
      sign_vec.push_back(sign(det_val));
      det_val >= 0
          ? log_vec.push_back(std::log(det_val))
          : log_vec.push_back(std::log(std::abs(
                det_val)));  // for computing log value of a negative value.
    }
    // merge sign_vec and log_vec as final output_vec
    output_vec.insert(output_vec.end(), sign_vec.begin(), sign_vec.end());
    output_vec.insert(output_vec.end(), log_vec.begin(), log_vec.end());
    framework::TensorFromVector(output_vec, output);
  }
};

template <typename DeviceContext, typename T>
class SlogDeterminantKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* input = context.Input<framework::Tensor>("Input");
    auto input_dim = vectorize(input->dims());
    auto input_dim_size = input_dim.size();
    auto* output = context.Output<framework::Tensor>("Out");

91
    auto batch_count = phi::detail::GetBatchCount(input->dims());
H
huangxu96 已提交
92 93 94 95 96 97 98 99 100 101 102 103
    VLOG(2) << "input dim:" << input->dims();
    PADDLE_ENFORCE_GE(
        input_dim_size, 2,
        platform::errors::InvalidArgument(
            "the input matrix dimension size should greater than 2."));
    PADDLE_ENFORCE_EQ(input_dim[input_dim_size - 1],
                      input_dim[input_dim_size - 2],
                      platform::errors::InvalidArgument(
                          "the input matrix should be square matrix."));
    auto rank = input_dim[input_dim_size - 1];  // square matrix length
    SlogDeterminantFunctor<T>()(*input, context, rank, batch_count, output);
    std::vector<int> output_dim_vec(input_dim.begin(), input_dim.end() - 2);
104 105 106 107
    if (input_dim.size() == static_cast<size_t>(2)) {
      // when input is a two-dimension matrix, The det value is a number.
      output_dim_vec = {1};
    }
H
huangxu96 已提交
108 109
    output_dim_vec.insert(output_dim_vec.begin(),
                          2);  // make the output dims as same as numpy
110
    auto output_dims = phi::make_ddim(output_dim_vec);
H
huangxu96 已提交
111 112 113 114 115 116 117 118 119
    output->Resize(output_dims);
    VLOG(2) << "output dim:" << output->dims();
  }
};

template <typename DeviceContext, typename T>
class SlogDeterminantGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
120
    auto& orig_dev_ctx = context.template device_context<DeviceContext>();
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    const auto* input = context.Input<framework::Tensor>("Input");
    const auto* slogdet = context.Input<framework::Tensor>("Out");
    const auto* grad =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* dslogdet =
        context.Output<framework::Tensor>(framework::GradVarName("Input"));

    PADDLE_ENFORCE_EQ(grad->dims()[0], 2,
                      platform::errors::InvalidArgument(
                          "The grad tensor of SlogDet should contain two"
                          " grad: sign and absslogdet, but here %ld.",
                          grad->dims()[0]));
    if (input->dims().size() > 2) {
      PADDLE_ENFORCE_EQ(
          grad->dims().size() + 1, input->dims().size(),
          platform::errors::InvalidArgument(
              "The grad tensor of slogdet dims size should 1 less than"
              " input tensor's, but here differ %d",
              input->dims().size() - grad->dims().size()));
    }

142 143 144 145
    auto& dev_ctx = static_cast<
        const typename framework::ConvertToPhiContext<DeviceContext>::TYPE&>(
        orig_dev_ctx);

146 147 148 149
    // Check Whether the matrix is invertible
    // (matrix A not invertible) == (absslogdet(A)=0)
    auto slogdet_vec = slogdet->Split(1, 0);
    auto absslogdet_val = slogdet_vec[0];
150 151 152
    if (!phi::detail::CheckMatrixInvertible<
            T, typename framework::ConvertToPhiContext<DeviceContext>::TYPE>(
            dev_ctx, &absslogdet_val)) {
153 154 155
      // The matrix is not invertible
      VLOG(3) << "The input matrix not invertible!";
      dslogdet->Resize(input->dims());
156 157
      phi::Full<T>(dev_ctx, phi::vectorize(input->dims()),
                   std::numeric_limits<T>::quiet_NaN(), dslogdet);
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
      return;
    }

    // The matrix is invertible
    // let sl|A| = SlogDeterminant(A)
    // Ref to https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
    // we set dsl|A| = unsqueeze(dslA, [-1, -2]) *
    // inverse(A).conj().transpose(-2, -1)

    // First: inverse(A)
    framework::Tensor inverse_A;
    // A must be square matrices!
    inverse_A.Resize(input->dims());
    inverse_A.mutable_data<T>(context.GetPlace());

173
    phi::funcs::MatrixInverseFunctor<DeviceContext, T> mat_inv;
174
    mat_inv(orig_dev_ctx, *input, &inverse_A);
175 176 177 178

    VLOG(3) << "inverse(A) dims: " << inverse_A.dims();

    // Second: inverse(A).conj()
179
    auto conj_inverse_A = phi::Conj<T>(dev_ctx, inverse_A);
180 181 182 183

    VLOG(3) << "inverse(A).conj() dims: " << conj_inverse_A.dims();

    // Third: inverse(A).conj().transpose(-2, -1)
184 185
    framework::Tensor transpose_inverse_A =
        phi::TransposeLast2Dim<T>(dev_ctx, conj_inverse_A);
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    VLOG(3) << "inverse(A).conj().transpose(-2, -1) dims: "
            << transpose_inverse_A.dims();

    // Fourth: split grad value to [sign_grad, absslogdet_grad]
    auto grad_vec = grad->Split(1, 0);
    auto det_grad = grad_vec[1];

    // remmove useless first dimension
    int det_grad_size = det_grad.dims().size();
    std::vector<int> det_grad_vec;
    for (int i = 1; i < det_grad_size; ++i) {
      det_grad_vec.emplace_back(det_grad.dims()[i]);
    }
    det_grad.Resize(det_grad.dims().reshape(det_grad_vec));

    // Fifth: unsqueeze(dslA, [-1, -2])
202 203
    auto unsqueeze1 = phi::funcs::Unsqueeze(det_grad, -1);
    auto unsqueeze2 = phi::funcs::Unsqueeze(unsqueeze1, -2);
204 205 206
    VLOG(3) << "unsqueezed(dslA, [-1, -2]) dims: " << unsqueeze2.dims();

    // Finally: unsqueeze(dslA) * inverse(A)
207
    auto res = phi::Multiply<T>(dev_ctx, unsqueeze2, transpose_inverse_A);
208 209 210 211 212
    VLOG(3) << "unsqueeze(dslA) * inverse(A) dims: " << res.dims();

    framework::TensorCopy(res, context.GetPlace(), dslogdet);
    dslogdet->Resize(input->dims());
    VLOG(3) << "dsl|A| dims: " << dslogdet->dims();
H
huangxu96 已提交
213 214 215 216 217
  }
};

}  // namespace operators
}  // namespace paddle