utils.py 76.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
import copy
16 17
import logging
import os
18
import threading
19
import warnings
20
from functools import reduce
21

22 23 24
import numpy as np

import paddle
25
import paddle.fluid.core as core
26 27
from paddle.distributed.auto_parallel.dist_attribute import (
    OperatorDistributedAttribute,
28 29 30 31
    TensorDistributedAttribute,
)
from paddle.distributed.auto_parallel.process_group import (
    get_all_process_groups,
32
)
33 34 35
from paddle.distributed.fleet.meta_optimizers.common import OpRole
from paddle.fluid.framework import Variable
from paddle.fluid.io import is_belong_to_optimizer, is_parameter
36

37 38
OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()

Z
zhaoyingli 已提交
39
__no_shape_var_type__ = [
40 41
    core.VarDesc.VarType.READER,
    core.VarDesc.VarType.STEP_SCOPES,
Z
zhaoyingli 已提交
42 43 44
    core.VarDesc.VarType.LOD_TENSOR_ARRAY,
    core.VarDesc.VarType.FEED_MINIBATCH,
    core.VarDesc.VarType.FETCH_LIST,
45 46
]

47 48
__not_naive_data_parallel_op__ = ["expand_v2"]

49

50 51 52 53 54 55 56
def get_logger(log_level, name="auto_parallel"):
    logger = logging.getLogger(name)
    logger.propagate = False
    if not logger.handlers:
        logger.setLevel(log_level)
        log_handler = logging.StreamHandler()
        log_format = logging.Formatter(
57 58
            '%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s'
        )
59 60 61 62 63
        log_handler.setFormatter(log_format)
        logger.addHandler(log_handler)
    return logger


64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
def is_valid_list_index(list, index):
    if index >= -len(list) and index < len(list):
        return True
    else:
        return False


def is_dim_shard(mapping):
    if mapping != -1:
        return True
    else:
        return False


def is_dim_replicate(mapping):
    if mapping == -1:
        return True
    else:
        return False


85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
def verify_dims_mapping(dims_mapping, process_mesh):
    if dims_mapping is None:
        return False
    if not all(isinstance(d, int) for d in dims_mapping):
        return False
    for i in range(len(dims_mapping)):
        if dims_mapping[i] < -1 or dims_mapping[i] >= len(process_mesh.shape):
            return False
    for i in range(len(process_mesh.shape)):
        if dims_mapping.count(i) > 1:
            return False
    return True


def convert_to_dims_mapping(shard_spec, process_mesh):
    dims_mapping = []
    for shard in shard_spec:
        if shard is None:
            dims_mapping.append(-1)
Z
zhaoyingli 已提交
104 105
        elif process_mesh.topology[process_mesh.dim_names.index(shard)] == 1:
            dims_mapping.append(-1)
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
        else:
            dims_mapping.append(process_mesh.dim_names.index(shard))
    return dims_mapping


def convert_to_shard_spec(dims_mapping, process_mesh):
    shard_spec = []
    for dim_mapping in dims_mapping:
        if dim_mapping == -1:
            shard_spec.append(None)
        else:
            shard_spec.append(process_mesh.dim_names[dim_mapping])
    return shard_spec


def verify_shard_spec(shard_spec, tensor_shape, process_mesh):
    if len(shard_spec) != len(tensor_shape):
        return False
    for shard in shard_spec:
        if shard is not None and not isinstance(shard, str):
            return False
        if shard is not None and shard not in process_mesh.dim_names:
            return False
    dims_mapping = convert_to_dims_mapping(shard_spec, process_mesh)
    if not verify_dims_mapping(dims_mapping, process_mesh):
        return False
    for i in range(len(tensor_shape)):
133 134 135 136 137
        if (
            dims_mapping[i] != -1
            and tensor_shape[i] > 0
            and tensor_shape[i] % process_mesh.shape[dims_mapping[i]] != 0
        ):
138 139 140 141
            return False
    return True


142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
def compute_compatible_dim_mapping(dim_mappings):
    if not dim_mappings:
        return None
    compatible_mapping = dim_mappings[0]
    for mapping in dim_mappings:
        if compatible_mapping == -1:
            compatible_mapping = mapping
        elif mapping == -1:
            continue
        elif compatible_mapping == mapping:
            continue
        else:
            return None
    return compatible_mapping


def compute_compatible_dims_mapping(dims_mapping_list):
    if not dims_mapping_list:
        return None
    length = len(dims_mapping_list[0])
    for dims_mapping in dims_mapping_list:
163 164 165 166 167 168
        assert (
            dims_mapping is not None
        ), "Dims mapping must not be None for compatible computation"
        assert (
            len(dims_mapping) == length
        ), "The length of dims_mapping in list must be same for compatible computation."
169 170 171
    compatible_result = []
    for dim_mappings in zip(*dims_mapping_list):
        compatible_dim_mapping = compute_compatible_dim_mapping(
172 173
            list(dim_mappings)
        )
174 175 176 177 178 179 180 181 182 183 184 185
        if compatible_dim_mapping is None:
            return None
        compatible_result.append(compatible_dim_mapping)
    return compatible_result


def compute_compatible_process_mesh(process_mesh_list):
    compatible_process_mesh = None
    if not process_mesh_list:
        return compatible_process_mesh
    for process_mesh in process_mesh_list:
        if process_mesh is not None:
186 187 188 189
            if (
                compatible_process_mesh is None
                or compatible_process_mesh == process_mesh
            ):
190 191
                compatible_process_mesh = process_mesh
            else:
192
                return None
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    return compatible_process_mesh


def compute_compatible_and_update_dim_mapping(dims_mapping_list, index_list):
    assert len(dims_mapping_list) == len(index_list)
    changed = False
    dim_mappings = []
    for i in range(len(dims_mapping_list)):
        assert is_valid_list_index(dims_mapping_list[i], index_list[i])
        dim_mappings.append(dims_mapping_list[i][index_list[i]])
    compatible_dim_mapping = compute_compatible_dim_mapping(dim_mappings)
    if compatible_dim_mapping is None:
        return False
    for i in range(len(dims_mapping_list)):
        if compatible_dim_mapping != dims_mapping_list[i][index_list[i]]:
            dims_mapping_list[i][index_list[i]] = compatible_dim_mapping
            changed = True
    return changed


def append_distributed_attr_suffix(name):
    """
    Append auto parallel suffix for distributed attribute name.
    """
    return name + core.kAutoParallelSuffix()


def remove_distributed_attr_suffix(name):
    """
    Remove auto parallel suffix from distributed attribute name.
    """
    return name.strip(core.kAutoParallelSuffix())


def check_distributed_attr_for_program(program, dist_context=None):
228
    from .dist_context import get_default_distributed_context
229

230 231
    if dist_context is None:
        dist_context = get_default_distributed_context()
232 233 234
    assert (
        dist_context.is_initialized_for_program()
    ), "Distributed attributes must be initialized before check."
235 236
    for block in program.blocks:
        for tensor in block.vars.values():
237 238
            dist_tensor = dist_context.get_dist_tensor_for_graph(tensor)
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
239 240
                tensor
            )
241
            if (tensor_dist_attr is not None) and (not dist_tensor.is_valid()):
242 243
                return False
        for op in block.ops:
244 245 246
            dist_op = dist_context.get_dist_op_for_graph(tensor)
            op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
            if (op_dist_attr is not None) and (not dist_op.is_valid()):
247 248 249 250
                return False
    return True


251
def print_program_with_dist_attr(program, dist_context=None):
252 253 254 255 256 257
    """
    This function reuses the original program output ability with a distributed context.
    Using lock can avoid multiple threads change the default distributed context simultaneously.
    """
    lock = threading.Lock()
    lock.acquire()
258 259 260 261
    from .dist_context import (
        get_default_distributed_context,
        set_default_distributed_context,
    )
262

263 264
    if dist_context is None:
        dist_context = get_default_distributed_context()
265
        print(program, flush=True)
266 267 268
    else:
        original_default_context = get_default_distributed_context()
        set_default_distributed_context(dist_context)
269
        print(program, flush=True)
270 271
        set_default_distributed_context(original_default_context)
    lock.release()
272 273 274 275


def _get_comm_group(processes, shape, axis, rank):
    """
276
    Given a rank and the processes mesh the rank belongs to,
277 278 279 280 281 282 283 284 285 286 287
    compute the communication peers of the rank based on the give axis in the mesh.

    Example: 16 processes managed in a 4-Dimensinal mesh with shape of [2, 2, 2, 2].
    the rank communication peers of rank 0 (included) are following:
    in axis 0: [0, 1]
    in axis 1: [0, 2]
    in axis 2: [0, 4]
    in axis 3: [0, 8]
    """

    # NOTE _linear_idx2coordinate assume processes mesh start with 0 and continuous
288 289
    # tricks to support processes mesh when it is not start with 0 or continuous
    assert rank in processes, "rank [{}] is NOT in processes group {}".format(
290 291
        rank, processes
    )
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
    rank_relatvie = processes.index(rank)
    coordinate = _linear_idx2coordinate(shape, rank_relatvie)
    coordinates_in_group = [coordinate[:] for i in range(shape[axis])]

    # select comm group
    for i in range(shape[axis]):
        coordinates_in_group[i][axis] = i

    ranks_in_group_relative = [
        _coordinate2linear_idx(shape, coordinate)
        for coordinate in coordinates_in_group
    ]
    ranks_in_group = [processes[idx] for idx in ranks_in_group_relative]

    return sorted(ranks_in_group)


309 310
def _get_idx_in_axis(processes, shape, axis, rank):
    """
311
    Given a rank and the processes mesh the rank belongs to,
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    compute the index of the rank in given axis.

    Example: 27 processes managed in a 3-Dimensinal mesh with shape of [3, 3, 3].
    the index of rank 22 are:
    in axis 0: 1
    in axis 1: 1
    in axis 2: 2
    """

    # NOTE _linear_idx2coordinate assume processes mesh start with 0 and continuous
    #  tricks to support processes mesh when it is not start with 0 or continuous
    rank_relatvie = processes.index(rank)
    coordinate = _linear_idx2coordinate(shape, rank_relatvie)
    return coordinate[axis]


328 329 330 331
def _coordinate2linear_idx(mesh_shape, coordinate):
    """
    convert a coordinate in multidimensional mesh space into a scala idx in linear space.

332
    it use Row-major order for dimension conversion.
333
    so it has:  [most_significant_dim, ..., least_significant_dim]
334
    assume:
335 336 337 338

        the size of i-th dimension to be:  S[i]
        the index of j-th dimension is: I[j]

339
    linear_idx of a n dimensional coordinate is:
340 341

        I[n-1] * (S[n-2] * S[n-3] * S[n-4] *     ....    S[0]) +
342 343
        I[n-2] * (         S[n-3] * S[n-4] *     ....    S[0]) +
        I[n-3] * (                  S[n-4] *     ....    S[0]) +
344
        ...
345
        I[1]   * (                                       S[0]) +
346 347 348 349
        I[0]

    """
    # NOTE the following function work based on a strong an assumption
350
    # that the processes in mesh are
351
    #    1. starts from 0
352 353
    #    2. continuous
    # it will be wrong if ths above condition doesnot meet,
354
    # e.g. process_mesh = { process_groups = [7, 8, 9,10, 12, 13, 14, 15], mesh = [2, 4]}
355
    # if you want a more general mapping, you should use cartesian product
356 357 358 359

    assert len(mesh_shape) == len(
        coordinate
    ), "coordinate should have the same size as mesh shape, but got shape: {}, coordinate: {}".format(
360 361
        mesh_shape, coordinate
    )
362
    for i in range(len(mesh_shape)):
363 364 365 366 367 368 369 370 371 372
        assert (
            coordinate[i] >= 0
        ), "index in dimension [{}] is least than zero. coordinate: {}".format(
            i, coordinate
        )
        assert (
            coordinate[i] < mesh_shape[i]
        ), "index beyond extent in dimension [{}]. shape: {}, coordinate: {}".format(
            i, mesh_shape, coordinate
        )
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389

    base = mesh_shape[-1]
    linear_idx = coordinate[-1]

    # row major order
    for i in range(len(mesh_shape) - 2, -1, -1):
        linear_idx += base * coordinate[i]
        base *= mesh_shape[i]

    return linear_idx


def _linear_idx2coordinate(mesh_shape, linear_idx):
    """
    mapping a linear scala into multidimensional mesh space, return it coordinate in that space.

    it is the inverse function of _coordinate2linear_idx.
390
    assume:
391 392 393 394 395 396 397 398 399 400 401 402 403 404

        the size of i-th dimension to be:  S[i]
        the index of j-th dimension is: I[j]

    the coordinate given linear_idx is:

        I[0] = linear_idx                                  % S[0]
        I[0] = (linear_idx / S[0])                         % S[1]
        I[0] = (linear_idx / (S[0] * S[1]))                % S[2]
        ....

    """

    assert linear_idx >= 0, "linear index [{}] is least than zero".format(
405 406
        linear_idx
    )
407 408 409
    assert linear_idx < np.prod(
        mesh_shape
    ), "linear index beyond the extent of mesh shape. shape: {}, linear index: {}".format(
410 411
        mesh_shape, linear_idx
    )
412 413 414 415 416 417 418 419 420 421 422

    base = 1
    coordinate = [-1] * len(mesh_shape)

    for i in reversed(range(len(mesh_shape))):
        offset = linear_idx / base
        coordinate[i] = int(offset % mesh_shape[i])
        base *= mesh_shape[i]

    # row major order
    return coordinate
423 424


425
def _get_corresponding_rank(dist_context, target_mesh, rank):
426 427 428 429 430 431

    # TODO(JZ-LIANG) a hack method to support varying mesh in Pipeline parallelism case.
    # we assume that all mesh are evenly divide from a parent mesh and should have same size.
    # to revise this in future.

    coordinate = None
432 433
    for mesh in dist_context.process_meshes:
        if rank in mesh.processes and mesh.topology == target_mesh.topology:
434 435 436
            coordinate = _linear_idx2coordinate(
                mesh.topology, mesh.processes.index(rank)
            )
437 438
            break

439 440 441
    # assert coordinate is not None, "could NOT found rank [{}] in any registered mesh".format(
    #     rank)
    if coordinate is not None:
442 443 444
        return target_mesh.processes[
            _coordinate2linear_idx(mesh.topology, coordinate)
        ]
445 446
    else:
        return target_mesh.processes[0]
447 448


449 450
def _get_unshard_dist_shape(var, dist_attr):
    var_shape = var.shape
451 452
    mapping = dist_attr.dims_mapping
    mesh = dist_attr.process_mesh.topology
453 454 455
    assert len(var_shape) == len(
        mapping
    ), "variable shape [{}] and dim_mapping [{}] is NOT match !".format(
456 457
        var_shape, mapping
    )
458 459 460 461 462 463 464 465 466 467
    new_shape = []
    for idx in range(len(var_shape)):
        if var_shape[idx] == -1 or mapping[idx] == -1:
            new_shape.append(var_shape[idx])
        else:
            new_shape.append(var_shape[idx] * mesh[mapping[idx]])

    return new_shape


468
def make_data_unshard(dist_main_prog, dist_startup_prog, dist_context=None):
469
    from .dist_context import get_default_distributed_context
470

471 472
    if dist_context is None:
        dist_context = get_default_distributed_context()
473 474 475

    for var in dist_main_prog.list_vars():
        if var.is_data:
476
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
477 478
                var
            )
479 480
            inverse_shape = _get_unshard_dist_shape(var, tensor_dist_attr)
            var.desc.set_shape(inverse_shape)
481
            dim_mapping = tensor_dist_attr.dims_mapping
482
            dim_mapping = [-1] * len(dim_mapping)
483 484
            tensor_dist_attr.dims_mapping = dim_mapping
            dist_context.set_tensor_dist_attr_for_program(var, tensor_dist_attr)
485 486


487
def _update_addition_info(addition_info):
488
    """Update default addition_info with inputs"""
489
    add_info = {"epoch": 0, "batch": 0, "batch_size": 0}
490
    if not addition_info:
491
        return add_info
492
    elif not isinstance(addition_info, dict):
493 494 495 496
        raise TypeError(
            "The type of 'addition_info' should be 'dict', "
            "but got '{}'.".format(str(type(addition_info)))
        )
497
    else:
498 499 500 501
        for item, value in addition_info.items():
            if item not in ["epoch", "batch", "batch_size"]:
                raise ValueError(
                    "The key of 'addition_info' should be one of the "
502
                    "['epoch', 'batch', 'batch_size'], but got '{}'.".format(
503 504 505
                        str(item)
                    )
                )
506 507 508
            if not isinstance(value, int):
                raise ValueError(
                    "The value of 'addition_info' should be 'int', "
509 510
                    "but got '{}'.".format(str(type(value)))
                )
511 512
            add_info[item] = value
        return add_info
513 514 515


def _check_valid_path(file_path):
516
    """Validity check of input file path"""
517 518 519
    if not file_path:
        return file_path
    elif isinstance(file_path, list):
520 521
        for file in file_path:
            if not isinstance(file, str):
522 523 524 525
                raise TypeError(
                    "The type of file path should be 'str', "
                    "but got '{}'.".format(str(type(file)))
                )
526
            if not os.path.exists(file):
527
                raise ValueError(
528 529
                    "The file path '{}' does not exist.".format(file)
                )
530 531
        return file_path
    else:
532 533 534 535
        raise TypeError(
            "The type of file path should be 'list', "
            "but got '{}'.".format(str(type(file_path)))
        )
536 537 538 539 540 541


def _check_param_dict(param_dict):
    if not param_dict:
        raise ValueError("'param_dict' cannot be None.")
    elif not isinstance(param_dict, dict):
542 543 544 545
        raise TypeError(
            "The type of 'param_dict' should be 'dict', "
            "but got '{}'.".format(str(type(param_dict)))
        )
546 547 548 549 550
    else:
        for name, value in param_dict.items():
            if not isinstance(name, str):
                raise TypeError(
                    "The type of key of 'param_dict' should be 'str', "
551 552
                    "but got '{}'.".format(str(type(name)))
                )
553 554 555
            if not isinstance(value, paddle.fluid.LoDTensor):
                raise TypeError(
                    "The type of value of 'param_dict' should be 'LoDTensor', "
556 557
                    "but got '{}'.".format(str(type(value)))
                )
558 559 560 561 562 563 564
        return param_dict


def _check_dist_attr(dist_attr):
    if not dist_attr:
        return dist_attr
    elif not isinstance(dist_attr, dict):
565 566 567 568
        raise TypeError(
            "The type of 'dist_attr' should be 'dict', "
            "but got '{}'.".format(str(type(dist_attr)))
        )
569 570 571 572 573
    else:
        for name, value in dist_attr.items():
            if not isinstance(name, str):
                raise TypeError(
                    "The type of param name of 'dist_attr' should be 'str', "
574 575
                    "but got '{}'.".format(str(type(name)))
                )
576 577 578
            if not isinstance(value, dict):
                raise TypeError(
                    "The type of distributed attribute should be 'dict', "
579 580
                    "but got '{}'".format(str(type(value)))
                )
581 582 583 584 585
            attr = ['process_shape', 'process_group', 'dims_mapping']
            if list(value.keys()) != attr:
                raise ValueError(
                    "The key of distributed attribute should be "
                    "'['process_shape', 'process_group', 'dims_mapping']', "
586 587
                    "but got {}.".format(str(value.keys()))
                )
588
        return dist_attr
589 590


591 592 593 594 595 596 597 598
def save_distributed_checkpoint(
    program,
    checkpoint_path,
    dist_attr_path,
    addition_info=None,
    is_integrated=False,
    dist_context=None,
):
599 600
    """
    Save model parameter state, optimzer state, distributed attribute and
601 602 603 604 605
    additional information of each rank.

    Args:
        program(Program): The program to be saved.
        checkpoint_path(str): The path of the checkpoint file to be saved.
606 607 608
        dist_attr_path(str): The path of distributed attribute file to be saved.
        addition_info(dict, optional): Additional information, key should be selected in ['epoch', 'batch', 'batch_size'].
            Default values are 0, when 'addition_info' is None. Default: None.
609
        is_integrated(bool, optional): Whether to integrate param before save. Default: False.
610
        dist_context(DistributedContext ,optional): collect related distributed information for program
611 612 613 614 615 616 617

    Returns:
        None

    Examples:
        .. code-block:: python

618 619 620 621
            path = os.path.join("./output", "step_%d" % step)
            os.makedirs(path, exist_ok=True)
            add_info = {'batch': step, "batch_size": global_batch_size}
            save_distributed_checkpoint(program, path, path, add_info)
622
    """
623 624 625 626 627 628 629 630
    from .dist_context import get_default_distributed_context

    assert isinstance(program, paddle.fluid.framework.Program)
    assert isinstance(is_integrated, bool)
    if dist_context is None:
        dist_context = get_default_distributed_context()
    addition_info = _update_addition_info(addition_info)

631
    if not is_integrated:
632 633
        _save_distributed_state_dict(program, addition_info, checkpoint_path)
        _save_distributed_attribute(program, dist_attr_path, dist_context)
634 635 636
    else:
        # TODO: integrate param before save
        raise NotImplementedError(
637 638
            "Integrating parameter has not been implemented."
        )
639 640


641
def load_distributed_checkpoint(checkpoint_path, dist_attr_path):
642
    """
643
    Load parameter, optimizer, distributed attribute and addition_info.
644 645

    Args:
646 647
        checkpoint_path(list[str]): model parameter file path, must be in order of rank id.
        dist_attr_path(list[str]): distributed attribute file path, must be in order of rank id.
648 649

    Returns:
650 651
        param_dict(dict): parameters' value of all ranks.
        dist_attr(dict): parameters' distributed attribute.
652
        addition_info(dict): additional information user saved in last training.
653 654 655 656 657 658 659

    Notes:
        The return, 'addition_info', is belonging to the first file of checkpoint_path by default.

    Examples:
        .. code-block:: python

660
            ckpt_path = ['./model_state_rank0.pdmodel',
661
                         './model_state_rank1.pdmodel']
662
            dist_attr_path = ['./dist_attr_rank0.pdattr',
663 664 665
                              './dist_attr_rank1.pdattr']
            param_dict, dist_attr, add_info = load_distributed_checkpoint(ckpt_path, dist_attr_path)
    """
666 667 668 669
    assert _check_valid_path(
        checkpoint_path
    ), "'checkpoint_path' cannot be None."
    assert _check_valid_path(dist_attr_path), "'dist_attr_path' cannot be None."
670 671 672 673 674 675 676 677

    state_dict_info = _load_distributed_state_dict(checkpoint_path)
    dist_attr = _load_distributed_attribute(dist_attr_path)
    param_dict = state_dict_info["model"]
    addition_info = state_dict_info["addition_info"]
    return param_dict, dist_attr, addition_info


678 679 680
def load_checkpoint_into_program(
    checkpoint_path, dist_attr_path, program, dist_context=None
):
681
    """
682 683 684 685 686 687 688 689 690 691
    Load parameter, optimizer, distributed attribute and addition_info into model.

    Args:
        checkpoint_path(list[str]): model parameter file path, must be in order of rank id.
        dist_attr_path(list[str]): distributed attribute file path, must be in order of rank id.
        program(Program): the program to be updated with checkpoint_path.
        dist_context(DistributedContext ,optional): collect related distributed information for program

    Returns:
        addition_info(dict): user saved in last train.
692

693 694
    Notes:
        The return, 'addition_info', is belonging to the first file of checkpoint_path by default.
695 696 697 698 699

    Examples:
        .. code-block:: python

            exe.run(startup_program)
700
            ckpt_path = ['./model_state_rank0.pdmodel',
701
                         './model_state_rank1.pdmodel']
702
            dist_attr_path = ['./dist_attr_rank0.pdattr',
703 704
                              './dist_attr_rank1.pdattr']
            load_checkpoint_into_program(ckpt_path, dist_attr_path, main_program)
705
    """
706
    from .dist_context import get_default_distributed_context
707

708
    assert isinstance(program, paddle.fluid.framework.Program)
709 710 711 712
    assert _check_valid_path(
        checkpoint_path
    ), "'checkpoint_path' cannot be None."
    assert _check_valid_path(dist_attr_path), "'dist_attr_path' cannot be None."
713 714 715 716 717 718 719
    if dist_context is None:
        dist_context = get_default_distributed_context()
    all_state_dict_info = _load_distributed_state_dict(checkpoint_path)
    all_pre_dist_attr = _load_distributed_attribute(dist_attr_path)
    all_cur_dist_attr = get_dist_attr(program, dist_context)
    all_param_dict = all_state_dict_info["model"]
    addition_info = all_state_dict_info["addition_info"]
720 721 722
    sliced_param_dict = merge_and_slice_parameter(
        all_param_dict, all_pre_dist_attr, all_cur_dist_attr
    )
723 724 725 726 727 728
    load_parameter_into_program(sliced_param_dict, program)

    return addition_info


def load_parameter_into_program(param_dict, program):
729
    """
730 731 732 733 734 735
    Load parameters into program.

    Args:
        param_dict(dict): parameters' name and value.
        program(Program): the program to be updated
    """
736
    assert isinstance(param_dict, dict)
737
    assert program and isinstance(program, paddle.fluid.framework.Program)
738 739
    if not param_dict:
        return
740 741 742 743
    program.set_state_dict(param_dict)


def _save_distributed_attribute(program, dist_attr_path, dist_context):
744
    """Save distributed attribute of all parameters"""
745 746
    # TODO: just save a complete distributed attribute file
    rank_id = paddle.distributed.get_rank()
747 748 749
    dist_attr_name = os.path.join(
        dist_attr_path, "dist_attr_rank{}.pdattr".format(rank_id)
    )
750 751
    dist_attr_dict = {
        "model": get_dist_attr(program, dist_context),
752
        "world_size": paddle.distributed.get_world_size(),
753 754
    }
    paddle.save(dist_attr_dict, dist_attr_name)
755
    logging.info(
756 757
        "Already saved distributed attribute to '{}'.".format(dist_attr_path)
    )
758 759 760


def _load_distributed_attribute(dist_attr_path):
761
    """Load parameters' distributed attribute from dist_attr_path"""
762 763 764 765
    total_dist_attr = {}
    for dist_attr_file in dist_attr_path:
        dist_attr = paddle.load(dist_attr_file)
        pre_world_size = dist_attr["world_size"]
766 767 768
        assert pre_world_size == len(
            dist_attr_path
        ), "The number of 'dist_attr_path' must be equal to the last training world size."
769 770 771 772 773 774 775 776
        for name, attr in dist_attr["model"].items():
            if name not in total_dist_attr:
                total_dist_attr[name] = attr

    return total_dist_attr


def _save_distributed_state_dict(program, addition_info, checkpoint_path):
777
    """Save parameters' state_dict"""
778
    rank = paddle.distributed.get_rank()
779 780 781
    ckpt_file_name = os.path.join(
        checkpoint_path, "model_state_rank{}.pdmodel".format(rank)
    )
782 783 784
    state_dict = {
        "model": program.state_dict(),
        "world_size": paddle.distributed.get_world_size(),
785
        "addition_info": addition_info,
786 787 788 789 790 791
    }
    paddle.save(state_dict, ckpt_file_name)
    logging.info("Already saved model to '{}'.".format(checkpoint_path))


def _load_distributed_state_dict(checkpoint_path):
792
    """Load parameters' state_dict from checkpoint_path"""
793 794
    all_state_dict = {}
    for idx, ckpt_file in enumerate(checkpoint_path):
Z
zhaoyingli 已提交
795
        state_dict_info = paddle.load(ckpt_file, return_numpy=True)
796
        pre_world_size = state_dict_info["world_size"]
797 798 799
        assert pre_world_size == len(
            checkpoint_path
        ), "The number of 'checkpoint_path' must be equal to the last training world size."
800 801 802 803 804 805 806 807 808 809
        if idx == 0:
            addition_info = state_dict_info["addition_info"]
        for name, value in state_dict_info["model"].items():
            if name in all_state_dict:
                all_state_dict[name].append(np.array(value))
            else:
                all_state_dict[name] = [np.array(value)]

    all_state_dict_info = {
        "model": all_state_dict,
810
        "addition_info": addition_info,
811 812 813 814 815
    }
    return all_state_dict_info


def get_dist_attr(program, dist_context=None):
816
    """
817 818 819 820 821 822 823 824 825 826 827 828 829 830
    Get distributed attribute of current rank.

    Args:
        program(Program): main program for training
    """
    from .dist_context import get_default_distributed_context

    assert isinstance(program, paddle.fluid.framework.Program)
    if dist_context is None:
        dist_context = get_default_distributed_context()
    dist_attr = {}
    for var in program.list_vars():
        if is_parameter(var) or is_belong_to_optimizer(var):
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
831 832
                var
            )
833 834 835 836 837
            process_mesh = tensor_dist_attr.process_mesh
            dims_mapping = tensor_dist_attr.dims_mapping
            dist_attr[var.name] = {
                "process_shape": process_mesh.topology,
                "process_group": process_mesh.processes,
838
                "dims_mapping": dims_mapping,
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
            }
    return dist_attr


def merge_and_slice_parameter(dist_param_dict, pre_dist_attr, cur_dist_attr):
    """
    Merge parameters with previous dist_attr and slice parameters with current dist_attr

    Arags:
        dist_param_dict(dict): parameters' value of all ranks.
        pre_dist_attr(dict): parameters' dist_attr of last training process.
        cur_dist_attr(dict): parameters' dist_attr of current training process.

    Returns:
        dist_param_dict(dict): parameters' value of current rank.
    """
    assert _check_dist_attr(pre_dist_attr), "'pre_dist_attr' cannot be None."
856 857 858 859 860
    assert isinstance(
        dist_param_dict, dict
    ), "The type of 'dist_param_dict' should be 'dict', but got {}.".format(
        str(type(dist_param_dict))
    )
861 862
    for name, value in dist_param_dict.items():
        if not isinstance(name, str):
863 864 865 866 867 868
            raise TypeError(
                "The key of 'dist_param_dict' is parameter's name, "
                "and its type should be 'str', but got {}.".format(
                    str(type(name))
                )
            )
869
        if not isinstance(value, list) or not all(
870 871
            isinstance(v, np.ndarray) for v in value
        ):
872 873
            raise TypeError(
                "The value of 'dist_param_dict' is parameter's value of all ranks, "
874 875
                "and its type should be 'list(numpy.ndarray)'."
            )
876

877 878 879
    if cur_dist_attr is None:
        return {}

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
    param_not_in_pre = []
    param_not_in_cur = []
    logging.info("Start to merge and slice parameters.")
    for var_name in cur_dist_attr.keys():
        if var_name not in pre_dist_attr:
            param_not_in_pre.append(var_name)
            continue

        pre_attr = pre_dist_attr[var_name]
        cur_attr = cur_dist_attr[var_name]
        if pre_attr == cur_attr:
            # skip merge and slice
            rank_id = paddle.distributed.get_rank()
            index = cur_attr["process_group"].index(rank_id)
            param = dist_param_dict[var_name][index]
895
            dist_param_dict[var_name] = param
896 897 898 899 900 901
            continue

        pre_param = dist_param_dict[var_name]
        pre_dims_mapping = pre_attr["dims_mapping"]
        cur_dims_mapping = cur_attr["dims_mapping"]
        if len(set(pre_dims_mapping)) > 1 or -1 not in pre_dims_mapping:
902
            complete_param = _merge_parameter_with_dist_attr(
903 904
                pre_param, pre_attr
            )
905 906 907
            dist_param_dict[var_name] = complete_param
        else:
            complete_param = pre_param[0]
908
            dist_param_dict[var_name] = complete_param
909 910

        if len(set(cur_dims_mapping)) > 1 or -1 not in cur_dims_mapping:
911
            sliced_param = _slice_parameter_with_dist_attr(
912 913
                complete_param, cur_attr
            )
914 915 916 917 918 919 920 921
            dist_param_dict[var_name] = sliced_param

    for var_name in pre_dist_attr:
        if var_name not in cur_dist_attr:
            param_not_in_cur.append(var_name)
            dist_param_dict.pop(var_name)

    if param_not_in_pre:
922 923
        warnings.warn(
            "Parameters '{}' are not found in last training process.".format(
924 925 926
                str(param_not_in_pre)
            )
        )
927 928
    if param_not_in_cur:
        warnings.warn(
929
            "Parameters '{}' are not found in current training process.".format(
930 931 932
                str(param_not_in_cur)
            )
        )
933 934 935 936 937

    return dist_param_dict


def _merge_parameter_with_dist_attr(param_list, dist_attr):
938
    """Merge parameter with distributed attribute"""
939
    from .reshard import Resharder
940 941 942 943 944

    dims_mapping = dist_attr["dims_mapping"]
    process_shape = dist_attr["process_shape"]
    process_group = dist_attr["process_group"]
    # get the complete shape of the parameter
945 946 947
    complete_shape = Resharder.compute_complete_shape(
        param_list[0].shape, process_shape, dims_mapping
    )
948 949
    # merge the parameter with dist_attr
    partition_param_list = []
Z
zhaoyingli 已提交
950
    merged_partiton = []
951
    for process in process_group:
952
        partition_index = Resharder.compute_partition_index(
953 954
            process, complete_shape, dims_mapping, process_shape, process_group
        )
955
        index = process_group.index(process)
Z
zhaoyingli 已提交
956 957
        if partition_index not in merged_partiton:
            merged_partiton.append(partition_index)
958 959 960 961 962 963
            _merge_parameter(
                partition_param_list,
                param_list[index],
                partition_index,
                complete_shape,
            )
Z
zhaoyingli 已提交
964

965 966 967
    assert (
        len(partition_param_list) == 1 or not partition_param_list
    ), "Fail to merge parameter"
968
    complete_param = partition_param_list[0][0]
969 970 971 972
    return complete_param


def _slice_parameter_with_dist_attr(param, dist_attr):
973 974 975 976
    """Slice parameter with distributed attribute"""
    param = (
        np.array(param) if isinstance(param, paddle.fluid.LoDTensor) else param
    )
977 978 979 980
    dims_mapping = dist_attr["dims_mapping"]
    process_shape = dist_attr["process_shape"]
    process_group = dist_attr["process_group"]
    # slice the parameter with dist_attr
981 982 983 984 985 986
    partition_index_list = _get_split_indices(
        param.shape, dims_mapping, process_shape, process_group
    )
    sliced_param_list = _slice_parameter(
        param, partition_index_list, len(partition_index_list)
    )
987 988
    # get the current parameter's index in sliced_param_list
    rank_id = paddle.distributed.get_rank()
989 990 991
    sliced_param_index = _get_sliced_param_index(
        rank_id, param.shape, dims_mapping, process_shape, process_group
    )
992
    sliced_param = sliced_param_list[sliced_param_index]
993 994 995
    return sliced_param


996 997 998
def _merge_parameter(
    partition_param_list, param, partition_index, complete_shape
):
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
    """
    Merge partitial parameters to a complete one.

    Returns:
        None

    Examples:
        .. code-block:: python

            import numpy as np
            partition_param_list = [(np.array([[[1.11, 1.12]]]), [[0,1],[0,1],[0,2]])]
            param = np.array([[[1.13, 1.14]]])
            partition_index = [[0,1],[0,1],[2,4]]

            _merge_parameter(partition_param_list, param, partition_index)
            # partition_param_list: [(np.array([[[1.11, 1.12, 1.13, 1.14]]]), [[0,1],[0,1],[0,4]])]
    """
1016
    from .reshard import Resharder
1017

Z
zhaoyingli 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026
    if len(partition_param_list) == 1:
        is_complete_data = True
        for idx, item in enumerate(partition_param_list[0][1]):
            if item[0] != 0 or item[1] != complete_shape[idx]:
                is_complete_data = False
                break
        if is_complete_data:
            return

1027 1028
    if not partition_param_list:
        partition_param_list.append((param, partition_index))
1029
    else:
1030 1031
        i = 0
        while i < len(partition_param_list):
1032 1033 1034 1035 1036 1037 1038
            (
                concat_axis,
                first_order,
                new_partition,
            ) = Resharder.compute_concat_info(
                partition_param_list[i][1], partition_index
            )
1039 1040 1041
            if concat_axis != -1:
                if first_order == 0:
                    new_param = np.concatenate(
1042 1043
                        (partition_param_list[i][0], param), axis=concat_axis
                    )
1044 1045
                else:
                    new_param = np.concatenate(
1046 1047
                        (param, partition_param_list[i][0]), axis=concat_axis
                    )
1048 1049

                partition_param_list.pop(i)
1050 1051 1052 1053 1054 1055
                _merge_parameter(
                    partition_param_list,
                    new_param,
                    new_partition,
                    complete_shape,
                )
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
                break
            i += 1


def _slice_parameter(complete_param, partition_index_list, length):
    """
    Slice a complete parameter.

    Returns:
        sliced_param_list(list): sliced parameters with 'partition_index_list'

    Examples:
        .. code-block:: python

            import numpy as np
            complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
            rank = 2
            complete_shape = [1, 1, 6]
            dims_mapping = [-1, -1, 0]
            process_shape = [3]
            process_group = [0, 1, 2]

            sliced_param_list = _slice_parameter(complete_param, [[], [], [2, 4]], 3)
            # [array([[[1.11, 1.12]]]), array([[[1.13, 1.14]]]), array([[[1.15, 1.16]]])]
    """
    sliced_param_list = []
    axis = len(complete_param.shape) - length
1083 1084 1085
    sliced_param = np.split(
        complete_param, partition_index_list[axis], axis=axis
    )
1086 1087 1088 1089
    if length == 1:
        return sliced_param
    for param in sliced_param:
        sliced_param_list.extend(
1090 1091
            _slice_parameter(param, partition_index_list, length - 1)
        )
1092 1093 1094
    return sliced_param_list


1095 1096 1097
def _get_sliced_param_index(
    rank, complete_shape, dims_mapping, process_shape, process_group
):
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
    """
    Get sliced_param's index of current rank in all sliced parameters list.

    Returns:
        sliced_param_index(int): the index of sliced param in sliced_param_list

    Examples:
        .. code-block:: python

            import numpy as np
            complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
            rank = 2
            complete_shape = [1, 1, 6]
            dims_mapping = [-1, -1, 0]
            process_shape = [3]
            process_group = [0, 1, 2]

            slice_param = _slice_parameter(complete_param, [[], [], [2, 4]], 3)
1116
            # slice_param:
1117 1118 1119 1120 1121 1122
            # [array([[[1.11, 1.12]]]), array([[[1.13, 1.14]]]), array([[[1.15, 1.16]]])]

            index = _get_sliced_param_index(rank, complete_shape, dims_mapping
                                            process_shape, process_group)
            # index: 2
    """
1123
    from .reshard import Resharder
1124

1125 1126 1127
    partition_index = Resharder.compute_partition_index(
        rank, complete_shape, dims_mapping, process_shape, process_group
    )
1128 1129 1130 1131 1132 1133
    sliced_param_index = 0
    for i, shape in enumerate(complete_shape):
        if dims_mapping[i] == -1:
            slice_shape = shape
        else:
            slice_shape = shape // process_shape[dims_mapping[i]]
1134 1135
        if slice_shape == 1:
            index = partition_index[i][0]
1136 1137 1138 1139
        else:
            index = (partition_index[i][0] + 1) // slice_shape
        sliced_param_index = sliced_param_index * (shape // slice_shape) + index
    return sliced_param_index
1140 1141


1142 1143 1144
def _get_split_indices(
    complete_shape, dims_mapping, process_shape, process_group
):
1145 1146 1147 1148 1149
    """
    Get split indices of every dimension.

    Returns:
        split_indices_list(list): the split indices of every dimension of the parameter
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
    Examples:
        .. code-block:: python

            import numpy as np
            complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
            complete_shape = [1, 1, 6]
            dims_mapping = [-1, -1, 0]
            process_shape = [3]
            process_group = [0, 1, 2]

            index = _get_split_indices(complete_shape, dims_mapping, process_shape, process_group)
            # index: [[], [], [2, 4]]
    """
1164
    from .reshard import Resharder
1165 1166 1167

    split_indices_list = []
    for process in process_group:
1168
        partition_index = Resharder.compute_partition_index(
1169 1170
            process, complete_shape, dims_mapping, process_shape, process_group
        )
1171 1172 1173 1174 1175 1176
        if split_indices_list:
            for dim in range(len(partition_index)):
                split_indices_list[dim].extend(partition_index[dim])
        else:
            split_indices_list = partition_index
    split_indices_list = list(
1177 1178 1179 1180 1181 1182
        map(
            lambda x, y: list(set(x) - set([y]) - set([0])),
            split_indices_list,
            complete_shape,
        )
    )
1183 1184
    split_indices_list = [sorted(x) for x in split_indices_list]
    return split_indices_list
Z
zhaoyingli 已提交
1185 1186 1187 1188 1189 1190 1191


def set_grad_var_shape(program, dist_context):
    from .operators.common import infer_shape

    block = program.global_block()
    vars = block.vars
1192 1193 1194 1195 1196 1197 1198 1199
    appended_grad_times = 0
    grad_var_to_var = dist_context.dist_op_context.grad_var_to_var

    for idx, op in enumerate(block.ops):

        if int(op.attr('op_role')) != int(OpRole.Backward):
            continue

1200 1201 1202 1203
        if (
            int(block.ops[idx - 1].attr('op_role')) == int(OpRole.Forward)
            or int(block.ops[idx - 1].attr('op_role')) == 257
        ):
1204
            appended_grad_times += 1
J
JZ-LIANG 已提交
1205 1206 1207 1208

        if op.type in ["check_finite_and_unscale", "update_loss_scaling"]:
            break

1209
        if op.type in ["sum", "concat", "shape"]:
Z
zhaoyingli 已提交
1210 1211
            continue

1212 1213 1214 1215 1216 1217 1218 1219 1220
        op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
        assert op_dist_attr is not None

        for var_name in op.output_arg_names:

            if "@GRAD" not in var_name:
                continue
            if var_name in grad_var_to_var[appended_grad_times]:
                forward_var_name = grad_var_to_var[appended_grad_times][
1221 1222
                    var_name
                ]
1223
            else:
1224
                forward_var_name = var_name[: var_name.find("@GRAD")]
1225 1226

            if op.type in [
1227 1228 1229 1230 1231
                "c_allreduce_sum",
                "c_identity",
                "scale",
                "cast",
                "fill_any_like",
1232 1233
            ]:
                forward_var_name = op.input_arg_names[0]
1234 1235 1236 1237 1238
            elif (
                op.type == "matmul_v2_grad"
                or op.type == "matmul_grad"
                or op.type == "mul_grad"
            ):
1239 1240 1241 1242
                forward_var_name = None
                for output_name in op.output_names:
                    if var_name in op.output(output_name):
                        assert "@GRAD" in output_name
1243
                        input_name = output_name[: output_name.find("@GRAD")]
1244 1245 1246 1247 1248
                        assert len(op.input(input_name)) == 1
                        forward_var_name = op.input(input_name)[0]
                assert forward_var_name is not None

            need_set_shape_list = [
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
                "reshape2_grad",
                "softmax_with_cross_entropy_grad",
                "transpose2_grad",
                "softmax_grad",
                "cross_entropy_grad2",
                "dropout_grad",
                "tanh_grad",
                "slice",
                "assign",
                "matmul_v2_triple_grad",
                "elementwise_add_triple_grad",
                "fill_constant",
                "sqrt_grad",
Z
zhaoyingli 已提交
1262
                "fused_softmax_mask_upper_triangle_grad",
1263 1264
                "flatten_contiguous_range_grad",
                "relu_grad",
1265 1266
            ]
            forward_list = [
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
                "reshape2",
                "softmax_with_cross_entropy",
                "transpose2",
                "softmax",
                "cross_entropy2",
                "dropout",
                "tanh",
                ["slice_grad", "c_allgather"],
                "assign",
                "matmul_v2_grad_grad",
                "elementwise_add_grad_grad",
                "shape",
                "sqrt",
                "fused_softmax_mask_upper_triangle",
                "flatten_contiguous_range",
                "relu",
1283 1284 1285 1286 1287
            ]
            if op.type in need_set_shape_list:
                for forward_op in block.ops:
                    idx = need_set_shape_list.index(op.type)
                    forward_op_name = forward_list[idx]
1288 1289 1290 1291 1292 1293 1294 1295 1296
                    if (
                        forward_op.type in forward_op_name
                        and forward_var_name in forward_op.input_arg_names
                    ):
                        op_dist_attr = (
                            dist_context.get_op_dist_attr_for_program(
                                forward_op
                            )
                        )
1297 1298 1299
                        break

            forward_input_dist_attr = op_dist_attr.get_input_dist_attr(
1300 1301 1302 1303 1304
                forward_var_name
            )
            assert (
                forward_input_dist_attr is not None
            ), f"{forward_var_name, str(op)}"
1305
            forward_var = vars[forward_var_name]
1306 1307 1308
            forward_var_dist_attr = (
                dist_context.get_tensor_dist_attr_for_program(forward_var)
            )
1309 1310
            assert forward_var_dist_attr is not None
            grad_var = vars[var_name]
1311 1312 1313 1314 1315 1316
            ref_shape = infer_shape(
                block,
                forward_var,
                forward_var_dist_attr,
                forward_input_dist_attr,
            )
1317 1318 1319

            if list(grad_var.shape) != ref_shape:
                grad_var.desc.set_shape(ref_shape)
C
caozhou 已提交
1320 1321


1322 1323
def is_forward_op(op):
    op_role = int(op.attr('op_role'))
1324 1325 1326
    return OP_ROLE_KEY in op.attr_names and (
        op_role == int(OpRole.Forward) or op_role == int(OpRole.Loss)
    )
1327 1328 1329


def is_backward_op(op):
1330 1331 1332
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) & int(OpRole.Backward)
1333 1334


1335
def is_optimize_op(op):
1336 1337 1338
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) & int(OpRole.Optimize)
1339 1340


1341
def is_lr_sched_op(op):
1342 1343 1344
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) & int(OpRole.Optimize.LRSched)
1345 1346


J
JZ-LIANG 已提交
1347
def is_loss_op(op):
1348 1349 1350
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) == (int(OpRole.Forward) | int(OpRole.Loss))
J
JZ-LIANG 已提交
1351 1352


1353 1354 1355 1356 1357 1358 1359
def is_loss_grad_op(op):
    if OP_ROLE_KEY not in op.attr_names:
        return False
    op_role = int(op.all_attrs()[OP_ROLE_KEY])
    return op_role & int(OpRole.Backward) and op_role & int(OpRole.Loss)


1360
def is_gradient_clip_op(op):
1361 1362 1363
    return op.desc.has_attr("op_namescope") and op.desc.attr(
        "op_namescope"
    ).startswith("/gradient_clip")
1364 1365


1366 1367 1368 1369
def is_prim_op(op):
    return op.type.endswith("_p")


J
JZ-LIANG 已提交
1370 1371 1372 1373
def get_loss_op(block):
    loss_ops = []
    for op in block.ops:
        if is_loss_op(op):
1374 1375 1376
            assert (
                len(op.desc.output_arg_names()) == 1
            ), "loss op should only output loss var"
J
JZ-LIANG 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
            loss_ops.append(op)

    assert len(loss_ops) == 1, "num of loss op is not equal to one"
    return loss_ops[0]


def set_var_dist_attr(dist_context, var, dims_mapping, process_mesh, **kwargs):
    tensor_dist_attr = TensorDistributedAttribute()
    tensor_dist_attr.dims_mapping = dims_mapping
    # TODO get global mesh group
    tensor_dist_attr.process_mesh = process_mesh
1388 1389 1390
    if "mark_annotated" in kwargs and kwargs["mark_annotated"]:
        tensor_dist_attr.mark_annotated("dims_mapping")
        tensor_dist_attr.mark_annotated("process_mesh")
J
JZ-LIANG 已提交
1391 1392 1393 1394
    dist_context.set_tensor_dist_attr_for_program(var, tensor_dist_attr)
    return tensor_dist_attr


1395
def naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
1396 1397
    new_op, process_mesh, ref_mapping, ctx
):
J
JZ-LIANG 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
    assert process_mesh is not None
    assert ref_mapping is not None

    new_op_dist_attr = OperatorDistributedAttribute()

    for input_varname in new_op.desc.input_arg_names():
        new_op_dist_attr.set_input_dims_mapping(input_varname, ref_mapping)
    for output_varname in new_op.desc.output_arg_names():
        new_op_dist_attr.set_output_dims_mapping(output_varname, ref_mapping)

    new_op_dist_attr.process_mesh = process_mesh
    ctx.set_op_dist_attr_for_program(new_op, new_op_dist_attr)


1412 1413 1414
def naive_set_dist_op_attr_for_program_by_mesh(
    new_op, process_mesh, ctx, is_recompute=False
):
1415 1416 1417
    # hack to skip coalesce var for dist attr
    if not is_recompute:
        return
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
    assert process_mesh is not None

    new_op_dist_attr = OperatorDistributedAttribute()

    for input_varname in new_op.desc.input_arg_names():
        var = ctx.serial_main_program.global_block().var(input_varname)
        mapping = ctx.get_tensor_dist_attr_for_program(var).dims_mapping
        new_op_dist_attr.set_input_dims_mapping(input_varname, mapping)
    for output_varname in new_op.desc.output_arg_names():
        var = ctx.serial_main_program.global_block().var(output_varname)
        mapping = ctx.get_tensor_dist_attr_for_program(var).dims_mapping
        new_op_dist_attr.set_output_dims_mapping(output_varname, mapping)

    new_op_dist_attr.process_mesh = process_mesh
    new_op_dist_attr.is_recompute = is_recompute
    ctx.set_op_dist_attr_for_program(new_op, new_op_dist_attr)


C
caozhou 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
def update_op_dims_mapping_by_default_dist_impl(dist_op):
    changed = False
    op_dist_attr = dist_op.dist_attr
    op_desc = dist_op.serial_op.desc
    # The following statement will be replaced by a more elegent way
    if op_desc.type() == "shape" or op_desc.type() == "slice":
        return False
    output_names = op_desc.output_names()
    xshape_arg_names = []
    if "XShape" in output_names:
        xshape_arg_names = op_desc.output("XShape")
    batch_dim_mappings = []
    for arg_name in op_desc.input_arg_names():
        serial_tensor = dist_op.get_serial_input(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if len(dims_mapping) > 1:
            for idx, mapping in enumerate(dims_mapping[1:]):
1455 1456 1457 1458 1459
                assert (
                    mapping == -1
                ), "{} only the batch dimension (0-dim) can be sharded, but the dimension {} is sharded by {} part.".format(
                    op_desc.type(), idx, mapping
                )
C
caozhou 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468
        batch_dim_mappings.append(dims_mapping[0])
    for arg_name in op_desc.output_arg_names():
        serial_tensor = dist_op.get_serial_output(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if arg_name not in xshape_arg_names:
            if len(dims_mapping) > 1:
                for idx, mapping in enumerate(dims_mapping[1:]):
1469 1470 1471 1472 1473
                    assert (
                        mapping == -1
                    ), "{} only the batch dimension (0-dim) can be sharded, but the dimension {} is sharded by {} part.".format(
                        op_desc.type(), idx, mapping
                    )
C
caozhou 已提交
1474 1475
            batch_dim_mappings.append(dims_mapping[0])
        else:
1476 1477 1478 1479 1480
            assert (
                dims_mapping[0] == -1
            ), "{} only the batch dimension (1-dim) of XShape can be sharded, but the dimension 0 is sharded by {} part.".format(
                op_desc.type(), mapping
            )
C
caozhou 已提交
1481 1482
            if len(dims_mapping) > 2:
                for idx, mapping in enumerate(dims_mapping[2:]):
1483 1484 1485 1486 1487
                    assert (
                        mapping == -1
                    ), "{} only the batch dimension (1-dim) of XShape can be sharded, but the dimension {} is sharded by {} part.".format(
                        op_desc.type(), idx, mapping
                    )
C
caozhou 已提交
1488 1489 1490
            batch_dim_mappings.append(dims_mapping[1])

    compatible_dim_mapping = compute_compatible_dim_mapping(batch_dim_mappings)
1491 1492 1493
    assert (
        compatible_dim_mapping is not None
    ), "There is no compatible dim mapping."
C
caozhou 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
    for arg_name in op_desc.input_arg_names():
        serial_tensor = dist_op.get_serial_input(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if compatible_dim_mapping != dims_mapping[0]:
            dims_mapping[0] = compatible_dim_mapping
            changed = True
    for arg_name in op_desc.output_arg_names():
        serial_tensor = dist_op.get_serial_output(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if arg_name not in xshape_arg_names:
            if compatible_dim_mapping != dims_mapping[0]:
                dims_mapping[0] = compatible_dim_mapping
                changed = True
        else:
            if compatible_dim_mapping != dims_mapping[1]:
                dims_mapping[1] = compatible_dim_mapping
                changed = True

    return changed


def update_op_dims_mapping_by_elementwise_like_dist_impl(dist_op):
    changed = False
    op_dist_attr = dist_op.dist_attr
    op_desc = dist_op.serial_op.desc
    input_arg_names = op_desc.input_arg_names()
    input_dims_mapping_dict = {}
    input_dims_mapping_lens = {}
    max_dims_mapping_len = -1
    for arg_name in input_arg_names:
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if max_dims_mapping_len < len(dims_mapping):
            max_dims_mapping_len = len(dims_mapping)
        input_dims_mapping_dict[arg_name] = dims_mapping
        input_dims_mapping_lens[arg_name] = len(dims_mapping)

    dims_mapping_list = []
    for arg_name in input_arg_names:
        if input_dims_mapping_lens[arg_name] < max_dims_mapping_len:
            new_dims_mapping = [-1 for _ in range(max_dims_mapping_len)]
            for i in range(input_dims_mapping_lens[arg_name]):
1539 1540 1541
                new_idx = (
                    max_dims_mapping_len - input_dims_mapping_lens[arg_name]
                ) + i
C
caozhou 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
                new_dims_mapping[new_idx] = input_dims_mapping_dict[arg_name][i]
            dims_mapping_list.append(new_dims_mapping)
        else:
            dims_mapping_list.append(input_dims_mapping_dict[arg_name])
    output_arg_names = op_desc.output_arg_names()
    for arg_name in output_arg_names:
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        assert len(dims_mapping) == max_dims_mapping_len
        dims_mapping_list.append(dims_mapping)

    compatible_dims_mapping = compute_compatible_dims_mapping(dims_mapping_list)
1553 1554 1555
    assert (
        compatible_dims_mapping is not None
    ), "There is no compatible dim mapping."
C
caozhou 已提交
1556 1557 1558 1559 1560 1561 1562

    for arg_name in input_arg_names:
        if input_dims_mapping_lens[arg_name] < max_dims_mapping_len:
            new_dims_mapping = [
                -1 for _ in range(input_dims_mapping_lens[arg_name])
            ]
            for i in range(input_dims_mapping_lens[arg_name]):
1563 1564 1565
                new_idx = (
                    max_dims_mapping_len - input_dims_mapping_lens[arg_name]
                ) + i
C
caozhou 已提交
1566 1567 1568 1569 1570 1571
                new_dims_mapping[i] = compatible_dims_mapping[new_idx]
            if new_dims_mapping != input_dims_mapping_dict[arg_name]:
                op_dist_attr.set_input_dims_mapping(arg_name, new_dims_mapping)
                changed = True
        else:
            if compatible_dims_mapping != input_dims_mapping_dict[arg_name]:
1572 1573 1574
                op_dist_attr.set_input_dims_mapping(
                    arg_name, compatible_dims_mapping
                )
C
caozhou 已提交
1575 1576 1577 1578 1579
                changed = True

    for arg_name in output_arg_names:
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if compatible_dims_mapping != dims_mapping:
1580 1581 1582
            op_dist_attr.set_output_dims_mapping(
                arg_name, compatible_dims_mapping
            )
C
caozhou 已提交
1583 1584 1585
            changed = True

    return changed
1586 1587


1588 1589 1590
def get_all_distributed_main_program(
    serial_program_info, dist_context, parallelizer
):
1591
    "Get all distributed main programs by dist_context."
1592
    from .dist_context import DistributedOperatorContext
1593

1594
    cluster = serial_program_info.cluster
1595
    copied_parallelizer = copy.deepcopy(parallelizer)
1596
    all_dist_main_program = []
1597 1598 1599 1600 1601
    ranks = (
        paddle.distributed.get_world_size()
        if cluster is None
        else len(cluster.get_all_devices("GPU"))
    )
1602 1603 1604
    for rank_id in range(ranks):
        used_dist_context = copy.deepcopy(dist_context)
        used_dist_context._dist_op_context = DistributedOperatorContext()
1605 1606 1607 1608 1609 1610 1611
        (
            _,
            _,
            dist_startup_program,
            dist_main_program,
            _,
        ) = copied_parallelizer._get_dist_program(rank_id, used_dist_context)
1612 1613 1614 1615 1616 1617
        all_dist_main_program.append(dist_main_program)

    return all_dist_main_program


class SerialProgramInfo:
1618 1619 1620
    def __init__(
        self, train_program, satrtup_program, loss, optimizer, cluster=None
    ):
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
        self._train_program = train_program
        self._startup_program = satrtup_program
        self._loss = loss
        self._optimizer = optimizer
        self._cluster = cluster

    @property
    def train_program(self):
        return self._train_program

    @property
    def startup_program(self):
        return self._startup_program

    @property
    def loss(self):
        return self._loss

    @property
    def optimizer(self):
        return self._optimizer

    @property
    def cluster(self):
        return self._cluster
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660


def get_standalone_cost_data(distributed_programs):
    def _compute_runtime(op_cost, op, vars):
        runtime = 0
        try:
            runtime = float(op_cost["op_time"])
        except:
            return runtime
        op_config = op_cost["config"]
        total_static_input_size = 0
        total_actual_input_size = 0
        parsed_info = op_config.split("\n")
        variable = "(Variable)"
        for info in parsed_info:
1661 1662 1663
            variable = (
                "(Variable)" if "(Variable)" in info else "(list<Variable>"
            )
1664
            if variable in info:
1665
                arg_name_lower = info[: info.find(variable) - 1]
1666 1667
                shape_left_boundary = info.find("[")
                shape_right_boundary = info.find("]")
1668 1669 1670 1671 1672 1673 1674 1675
                assert (
                    shape_left_boundary > 0
                    and shape_right_boundary > 0
                    and shape_right_boundary > shape_left_boundary
                ), "Get shape failed."
                shape = info[
                    shape_left_boundary + 1 : shape_right_boundary
                ].split(",")
1676 1677 1678 1679
                shape = list(map(lambda x: int(x.strip()), shape))
                dtype_factor = 1
                total_static_input_size += reduce(lambda x, y: x * y, shape)
                if op.type == "c_embedding":
1680 1681 1682
                    arg_name_lower = (
                        "w" if arg_name_lower == "weight" else "ids"
                    )
1683 1684 1685 1686 1687
                for arg_name in op.input_names:
                    if arg_name.lower() == arg_name_lower:
                        for var_name in op.input(arg_name):
                            var = vars[var_name]
                            total_actual_input_size += reduce(
1688 1689
                                lambda x, y: x * y, var.shape
                            )
1690
                        break
1691 1692 1693
        assert (
            total_static_input_size > 0 and total_actual_input_size > 0
        ), "Get input size failed."
1694

1695 1696 1697
        actual_runtime = (
            total_actual_input_size / total_static_input_size * runtime
        )
1698 1699
        return actual_runtime

1700
    import paddle.cost_model as cm
1701

1702
    cost_model = cm.CostModel()
1703 1704 1705 1706 1707 1708 1709 1710 1711
    cost_model.static_cost_data()
    DEFAULT_MULTIPLE = 2
    OP_NAME_MAPPING = {
        "c_embedding": "embedding",
        "matmul_v2": "matmul",
        "transpose2": "transpose",
        "reshape2": "reshape",
        "unsqueeze2": "unsqueeze",
        "reduce_sum": "sum",
1712
        "elementwise_div": "divide",
1713 1714 1715
    }

    standalone_cost_data = []
1716 1717
    # skip ops
    not_enum_ops = [
1718 1719 1720 1721
        "create_py_reader",
        "create_double_buffer_reader",
        "read",
        "assign",
1722
    ]
1723 1724 1725 1726 1727 1728 1729 1730
    for distributed_program in distributed_programs:
        cost_data = {}
        vars = distributed_program.global_block().vars
        for op in distributed_program.global_block().ops:
            runtime = 0
            if op.type in not_enum_ops:
                cost_data[op.desc.id()] = runtime
                continue
1731 1732 1733 1734 1735
            dtype = (
                str(vars[op.input_arg_names[0]].dtype)
                if op.input_arg_names
                else "float32"
            )
1736 1737 1738 1739 1740
            if int(op.attr('op_role')) == int(OpRole.Backward):
                if "_grad" in op.type:
                    forward_op_name = op.type[:-5]
                    if forward_op_name in OP_NAME_MAPPING.keys():
                        forward_op_name = OP_NAME_MAPPING[forward_op_name]
1741 1742 1743
                    op_cost = cost_model.get_static_op_time(
                        forward_op_name, forward=False, dtype=dtype
                    )
1744 1745 1746
                    if op_cost:
                        runtime = _compute_runtime(op_cost, op, vars)
                    else:
1747 1748 1749
                        op_cost = cost_model.get_static_op_time(
                            forward_op_name, dtype=dtype
                        )
1750 1751 1752
                        if op_cost:
                            runtime = 2 * _compute_runtime(op_cost, op, vars)
            elif int(op.attr('op_role')) == int(OpRole.Forward):
1753 1754 1755 1756 1757
                op_name = (
                    OP_NAME_MAPPING[op.type]
                    if op.type in OP_NAME_MAPPING.keys()
                    else op.type
                )
1758 1759 1760 1761 1762 1763 1764 1765 1766
                op_cost = cost_model.get_static_op_time(op_name)
                if op_cost:
                    runtime = _compute_runtime(op_cost, op, vars)

            cost_data[op.desc.id()] = runtime

        standalone_cost_data.append(cost_data)

    return standalone_cost_data
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782


def set_dist_op_desc_original_id(dist_op_desc, op_desc, dist_context):
    op_id = op_desc.id()
    op_original_id = op_desc.original_id()
    # First, try to set the original id to the id of the op_desc
    if op_id in dist_context._dist_ops_for_program:
        dist_op_desc.set_original_id(op_id)
        return
    # Second, try to set the original id to the original_id of the op_desc
    elif op_original_id in dist_context._dist_ops_for_program:
        dist_op_desc.set_original_id(op_original_id)
        return
    # Third, print error infomation if we cannot find the original id
    else:
        assert False, "Cannot find the original id in the distributed context"
1783 1784 1785 1786 1787 1788 1789 1790


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]
1791 1792 1793 1794 1795


def debug_program(program, path, name):

    filename = os.path.join(
1796 1797
        path, name + '_program' + ".%d" % (paddle.distributed.get_rank())
    )
1798 1799
    with open(filename, 'w') as f:
        f.write(str(program))
1800 1801 1802 1803 1804 1805 1806


def ring_id_to_process_group(ring_id):
    for g in get_all_process_groups():
        if g.id == ring_id:
            return g
    return None
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818


def find_higher_order_backward_op(program):

    higher_order_op_suffix = ['_grad_grad', 'triple_grad']
    for block in program.blocks:
        for op in block.ops:
            for suffix in higher_order_op_suffix:
                if suffix in op.type:
                    return True

    return False
Z
zhaoyingli 已提交
1819 1820


1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
def get_var_numel(var):
    """
    input:
        - var: variable
    return:
        number of elemnet in var
    """
    assert isinstance(var, Variable)
    assert -1 not in var.shape
    return reduce(lambda x, y: x * y, var.shape)


Z
zhaoyingli 已提交
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
def get_lr(optimizer):
    if isinstance(optimizer, paddle.optimizer.Optimizer):
        return optimizer.get_lr()
    elif isinstance(optimizer, paddle.fluid.optimizer.Optimizer):
        if isinstance(optimizer._learning_rate, float):
            return optimizer._learning_rate
        else:
            return optimizer._learning_rate()
    else:
        raise TypeError(
1843 1844 1845
            "'optimizer' must be object of class `paddle.optimizer.Optimizer`"
            " or `paddle.fluid.optimizer.Optimizer`, but got {}.".format(
                type(optimizer)
Z
zhaoyingli 已提交
1846
            )
1847
        )
1848 1849 1850 1851


def initialize_pg_in_full_mode(all_process_groups, cur_rank):
    import socket
1852

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
    from ..collective import _get_global_env

    has_recv_by_socket = []
    # This is a magic number
    magic_num = 500
    genv = _get_global_env()
    cur_rank_ip, cur_rank_port = genv.current_endpoint.split(":")
    cur_rank_recv_port = int(cur_rank_port) + magic_num
    server_socket = None
    # Large enough for recv rank
    buff_size = 1024
    server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    server_socket.bind((cur_rank_ip, cur_rank_recv_port))
    # The 10 is an empirical value
    server_socket.listen(10)
    client_sockets = {}
    for process_group in all_process_groups:
        if cur_rank not in process_group.ranks:
            continue
        if len(process_group.ranks) == 2:
            index = process_group.ranks.index(cur_rank)
            is_send = True if index == 0 else False
            if is_send:
                recv_rank = process_group.ranks[1]
                recv_rank_ip, recv_rank_port = genv.trainer_endpoints[
1878 1879
                    recv_rank
                ].split(":")
1880
                connect_port = int(recv_rank_port) + magic_num
1881 1882 1883
                client_socket = socket.socket(
                    socket.AF_INET, socket.SOCK_STREAM
                )
1884 1885 1886 1887 1888 1889
                client_socket.connect((recv_rank_ip, connect_port))
                client_socket.send(str(cur_rank).encode('utf-8'))
                rank = client_socket.recv(buff_size).decode('utf-8')
                rank = int(rank)
                if rank != recv_rank:
                    raise ValueError(
1890 1891 1892 1893
                        "Please check comm pair, the recv rank should be {} but got {}.".format(
                            recv_rank, rank
                        )
                    )
1894
                else:
1895 1896 1897 1898 1899
                    print(
                        "It is able to instantiate {} as sender now.".format(
                            process_group.ranks
                        )
                    )
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
                client_socket.close()
            else:
                send_rank = process_group.ranks[0]
                while True:
                    if send_rank not in has_recv_by_socket:
                        client_socket, recv_addr = server_socket.accept()
                        rank = int(client_socket.recv(buff_size).decode())
                        client_sockets[rank] = client_socket
                        has_recv_by_socket.append(rank)
                    else:
                        client_sockets[send_rank].send(
1911 1912
                            str(cur_rank).encode("utf-8")
                        )
1913
                        client_sockets[send_rank].close()
1914 1915 1916 1917 1918
                        print(
                            "It is able to instantiate {} as recver now.".format(
                                process_group.ranks
                            )
                        )
1919 1920 1921
                        break
        process_group.instantiate()
    server_socket.close()
1922 1923


1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
def set_recompute_ckpts(model, strategy):
    from .interface import _g_recompute_idx

    if _g_recompute_idx > -1:
        return

    recompute = strategy.recompute
    if not recompute.enable:
        return

    # NOTE: hack to enable recompute in engine api for GPT-3
    # TODO support more PaddleNLP/CV models here
    # extract ckpts by specific model
    if isinstance(model, paddle.nn.Layer):
        if hasattr(model, "gpt") and model.__class__.__name__ in [
            'GPTForPretraining',
            'GPTForPretrainingAuto',
        ]:
            exact_ckpts = model.gpt.checkpoints
        else:
            exact_ckpts = recompute.checkpoints
    else:
        exact_ckpts = recompute.checkpoints

    # modify strategy
    recompute.checkpoints = exact_ckpts[:]
    logs = {
        'Model Class': model.__class__.__name__,
        'Applied Recompute ckpts': exact_ckpts,
    }
    logging.info(logs)


1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
def get_input_split_info(cur_rank, var, dist_context):
    # deduce how the input data is split among the cluster
    tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
    process_mesh = tensor_dist_attr.process_mesh
    dims_mapping = tensor_dist_attr.dims_mapping

    if cur_rank not in process_mesh.processes:
        rank_id = _get_corresponding_rank(dist_context, process_mesh, cur_rank)
    else:
        rank_id = cur_rank

    batch_size_axis = dims_mapping[0]
    if batch_size_axis > -1 and process_mesh.topology[batch_size_axis] > 1:
        group_ranks = _get_comm_group(
            process_mesh.processes,
            process_mesh.topology,
            batch_size_axis,
            rank_id,
        )
        return len(group_ranks), group_ranks.index(rank_id)

    return 1, 0


def validate_opt(optimizer):
    if optimizer is not None:
        optimizer._parameter_list = None
        optimizer._param_groups = None
    return optimizer
1986 1987


1988
def set_data_parallel(x):
1989
    from .interface import ProcessMesh, shard_tensor
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
    from .process_group import get_world_process_group

    world_ranks = get_world_process_group().ranks
    process_mesh = ProcessMesh(world_ranks, ['dp'])
    shard_spec = ['dp' if len(world_ranks) > 1 else None] + [
        None for _ in range(len(x.shape) - 1)
    ]

    return shard_tensor(x, process_mesh, shard_spec)


def is_naive_data_parallel(dist_context):
    # Navie data parallel only completes dist_attr once from the front to back.
    if not dist_context.data_parallel:
        return False

    ops_type = [
        op.type
        for op in dist_context._original_serial_main_program.global_block().ops
    ]
    if (
        not set(ops_type) & set(__not_naive_data_parallel_op__)
    ) and dist_context.data_parallel:
        return True
    return False


2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
def _copy_tensor_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr):
    py_process_mesh = py_dist_attr.process_mesh
    if py_process_mesh is not None:
        cpp_dist_attr.process_mesh = core.ProcessMesh(
            py_process_mesh.shape,
            py_process_mesh.process_ids,
            ["d" + str(i) for i in range(len(py_process_mesh.shape))],
        )
    cpp_dist_attr.dims_mapping = py_dist_attr.dims_mapping
    cpp_dist_attr.annotated = py_dist_attr._is_annotated


def _copy_tensor_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr):
    from .process_mesh import ProcessMesh

    cpp_process_mesh = cpp_dist_attr.process_mesh
    if not cpp_process_mesh.empty():
        py_dist_attr.process_mesh = ProcessMesh(
            shape=cpp_process_mesh.shape,
            process_ids=cpp_process_mesh.process_ids,
        )
    py_dist_attr.dims_mapping = cpp_dist_attr.dims_mapping
    py_dist_attr._is_annotated = cpp_dist_attr.annotated


def _copy_op_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr):
    py_process_mesh = py_dist_attr.process_mesh
    if py_process_mesh is not None:
        cpp_dist_attr.process_mesh = core.ProcessMesh(
            py_process_mesh.shape,
            py_process_mesh.process_ids,
            ["d" + str(i) for i in range(len(py_process_mesh.shape))],
        )
    cpp_dist_attr.impl_type = py_dist_attr.impl_type
    cpp_dist_attr.impl_idx = py_dist_attr.impl_idx
    cpp_dist_attr.annotated = py_dist_attr._is_annotated
    for name, py_tensor_dist_attr in py_dist_attr.inputs_dist_attrs.items():
        cpp_tensor_dist_attr = cpp_dist_attr.get_input_dist_attr(name)
        _copy_tensor_dist_attr_to_cpp(cpp_tensor_dist_attr, py_tensor_dist_attr)
    for name, py_tensor_dist_attr in py_dist_attr.outputs_dist_attrs.items():
        cpp_tensor_dist_attr = cpp_dist_attr.get_output_dist_attr(name)
        _copy_tensor_dist_attr_to_cpp(cpp_tensor_dist_attr, py_tensor_dist_attr)


def _copy_op_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr):
    from .process_mesh import ProcessMesh

    cpp_process_mesh = cpp_dist_attr.process_mesh
    if not cpp_process_mesh.empty():
        py_dist_attr.process_mesh = ProcessMesh(
            shape=cpp_process_mesh.shape,
            process_ids=cpp_process_mesh.process_ids,
        )
    py_dist_attr.impl_type = cpp_dist_attr.impl_type
    py_dist_attr.impl_idx = cpp_dist_attr.impl_idx
    py_dist_attr._is_annotated = cpp_dist_attr.annotated
    py_dist_attr.op_type = cpp_dist_attr.op.type()
    for name, cpp_tensor_dist_attr in cpp_dist_attr.inputs_dist_attrs.items():
        py_tensor_dist_attr = py_dist_attr.get_input_dist_attr(name)
        _copy_tensor_dist_attr_from_cpp(
            cpp_tensor_dist_attr, py_tensor_dist_attr
        )
    for name, cpp_tensor_dist_attr in cpp_dist_attr.outputs_dist_attrs.items():
        py_tensor_dist_attr = py_dist_attr.get_output_dist_attr(name)
        _copy_tensor_dist_attr_from_cpp(
            cpp_tensor_dist_attr, py_tensor_dist_attr
        )


def _copy_dist_attr_to_cpp(dist_context):
    for dist_tensor in dist_context._dist_tensors_for_program.values():
        _copy_tensor_dist_attr_to_cpp(
            dist_tensor.serial_tensor.dist_attr, dist_tensor.dist_attr
        )

    for dist_op in dist_context._dist_ops_for_program.values():
        _copy_op_dist_attr_to_cpp(
            dist_op.serial_op.dist_attr, dist_op.dist_attr
        )


def _copy_dist_attr_from_cpp(dist_context):
    for dist_tensor in dist_context._dist_tensors_for_program.values():
        _copy_tensor_dist_attr_from_cpp(
            dist_tensor.serial_tensor.dist_attr, dist_tensor.dist_attr
        )

    for dist_op in dist_context._dist_ops_for_program.values():
        _copy_op_dist_attr_from_cpp(
            dist_op.serial_op.dist_attr, dist_op.dist_attr
        )


def _copy_dist_attr_to_cpp_for_graph(dist_context):
    for node in dist_context.serial_ordered_nodes:
        if node.is_var() and node.var() is not None:
            py_dist_attr = dist_context.get_tensor_dist_attr_for_graph(node)
            cpp_dist_attr = node.var().dist_attr
            _copy_tensor_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr)
        if node.is_op() and node.op() is not None:
            py_dist_attr = dist_context.get_op_dist_attr_for_graph(node)
            cpp_dist_attr = node.op().dist_attr
            _copy_op_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr)


def _copy_dist_attr_from_cpp_for_graph(dist_context):
    for node in dist_context.serial_ordered_nodes:
        if node.is_var() and node.var() is not None:
            py_dist_attr = dist_context.get_tensor_dist_attr_for_graph(node)
            cpp_dist_attr = node.var().dist_attr
            _copy_tensor_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr)
        if node.is_op() and node.op() is not None:
            py_dist_attr = dist_context.get_op_dist_attr_for_graph(node)
            cpp_dist_attr = node.op().dist_attr
            _copy_op_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr)
2132 2133 2134 2135 2136 2137


def insert_dependencies_for_two_ops(
    block,
    idx,
    prior_op,
2138
    posterior_op,
2139 2140 2141 2142 2143
    dist_context,
    is_recompute=False,
    sync=False,
):
    """
2144
    dependency: prior_op should be run before posterior_op
2145 2146 2147 2148 2149 2150 2151 2152
    """

    assert (
        len(prior_op.output_arg_names) >= 1
    ), "first op of dependency should at least have one output. [{}]".format(
        str(prior_op)
    )
    assert (
2153
        len(posterior_op.input_arg_names) >= 1
2154
    ), "second op of dependency should at least have one input. [{}]".format(
2155
        str(posterior_op)
2156 2157 2158 2159 2160
    )
    prior_op_mesh = dist_context.get_op_dist_attr_for_program(
        prior_op
    ).process_mesh
    posterior_mesh = dist_context.get_op_dist_attr_for_program(
2161
        posterior_op
2162 2163 2164 2165 2166 2167 2168 2169 2170
    ).process_mesh
    assert (
        prior_op_mesh == posterior_mesh
    ), "two ops of dependency should have same mesh but got [{}] and [{}]".format(
        str(prior_op_mesh), str(posterior_mesh)
    )

    def _select_best_depend_var(vars):

2171 2172 2173
        # parameter should not be dep var since it maybe partition in sharding pass
        vars = [var for var in vars if not var.is_parameter]
        assert len(vars) > 0
2174 2175 2176 2177 2178 2179 2180 2181 2182
        vars_with_numels = [(var, get_var_numel(var)) for var in vars]
        vars_with_numels.sort(key=lambda x: x[1])

        return vars_with_numels[-1][0]

    first_var = _select_best_depend_var(
        [block.var(name) for name in prior_op.output_arg_names]
    )
    second_var = _select_best_depend_var(
2183
        [block.var(name) for name in posterior_op.input_arg_names]
2184 2185
    )

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
    return insert_dependencies_for_two_vars(
        block,
        idx,
        first_var,
        second_var,
        dist_context,
        OpRole.Backward,
        prior_op_mesh,
        is_recompute,
        sync,
    )


def insert_dependencies_for_two_vars(
    block,
    idx,
    prior_var,
    post_var,
    dist_context,
    oprole,
    process_mesh=None,
    is_recompute=False,
    sync=False,
):
    """
    dependency: op that generates prior_var should be run before op that generates post_var
    """
    assert block.has_var(prior_var.name)
    assert block.has_var(post_var.name)
    if process_mesh is None:
        process_mesh = dist_context.get_tensor_dist_attr_for_program(
            post_var
        ).process_mesh
    assert process_mesh is not None

2221 2222 2223 2224
    depend_op = block._insert_op_without_sync(
        idx,
        type='nop',
        inputs={
2225
            "X": prior_var,
2226
        },
2227
        outputs={"Out": post_var},
2228 2229
    )
    # depend_op.desc.set_type("depend")
2230
    depend_op._set_attr(OP_ROLE_KEY, oprole)
2231 2232 2233 2234
    # depend_op.desc.set_input("Dep", [first_var.name])
    # self.desc.set_output(out_proto.name, out_arg_names)

    naive_set_dist_op_attr_for_program_by_mesh(
2235
        depend_op, process_mesh, dist_context, is_recompute
2236 2237 2238 2239
    )

    if sync:
        block._sync_with_cpp()
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251

    return depend_op


def use_standalone_executor():
    return os.environ.get('FLAGS_CONVERT_GRAPH_TO_PROGRAM', None) in [
        1,
        '1',
        True,
        'True',
        'true',
    ]