control_flow.py 171.1 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

S
rename  
sneaxiy 已提交
15
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
16

17
from .layer_function_generator import templatedoc
18
from .tensor import assign, cast, fill_constant
19
from .. import core
20 21 22 23 24 25 26 27 28
from ..framework import (
    Program,
    Variable,
    Operator,
    _non_static_mode,
    static_only,
    _in_legacy_dygraph,
    in_dygraph_mode,
)
29
from ..layer_helper import LayerHelper, unique_name
2
201716010711 已提交
30
from .nn import logical_and, logical_or
31 32 33 34 35 36 37 38 39 40 41
from .utils import (
    assert_same_structure,
    map_structure,
    hold_mutable_vars,
    copy_mutable_vars,
    padding_to_same_structure,
    is_sequence,
    pack_sequence_as,
    flatten,
    to_sequence,
)
Y
yuyang18 已提交
42
import numpy
43
import warnings
L
liym27 已提交
44
from functools import reduce, partial
45 46 47 48 49 50
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
51
from ..backward import _infer_var_data_type_shape_
2
201716010711 已提交
52
import paddle
53
from paddle import _C_ops, _legacy_C_ops
D
dzhwinter 已提交
54

Q
QI JUN 已提交
55
__all__ = [
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    'While',
    'Switch',
    'increment',
    'array_write',
    'create_array',
    'less_than',
    'less_equal',
    'greater_than',
    'greater_equal',
    'equal',
    'not_equal',
    'array_read',
    'array_length',
    'cond',
    'IfElse',
    'DynamicRNN',
    'StaticRNN',
    'reorder_lod_tensor_by_rank',
    'Print',
    'Assert',
    'is_empty',
    'case',
    'switch_case',
    'while_loop',
D
dzhwinter 已提交
80 81
]

Y
Yu Yang 已提交
82

83 84
def select_output(input, outputs, mask):
    """
85
    **select_output**
86 87 88 89 90 91 92 93 94 95 96 97 98 99
    This API takes in one input and multiple outputs and an integer mask. It
    selects the output specified by the mask and copy the input to selected
    output. It is useful in control flow.

    Args:
        input(Variable): The input variable
        outputs(tuple|list): The output variables
        mask(Variable): A tensor containing 1 integer number selecting which
            output to be copied with input

    Returns:
        Variable: The outputs variables
    """
    helper = LayerHelper('select_output', **locals())
100 101 102 103
    check_type(input, 'input', (Variable), 'select_output')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_output')
    check_type(outputs, 'outputs', (list, tuple), 'select_output')

104 105 106 107 108
    helper.append_op(
        type='select_output',
        inputs={'X': input, 'Mask': mask},
        outputs={'Out': outputs},
    )
109 110 111
    return outputs


112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
def _select_input_infer_shape(first_shape, second_shape):
    """
    This function infer the output shape by following algorithm:
    1. if the dims is different, raise a error.
    2. compare axis one by one:
        if a == b: we set axis to a
        if a != b: we set axis to -1
    for compatibility,non declarative mode, we just return second_shape.
    """
    if len(first_shape) != len(second_shape):
        warnings.warn(
            f"the input shapes of select_input should have the same rank, but get {first_shape}, {second_shape}"
        )
        return second_shape
    out_shape = list(
127 128
        map(lambda a, b: a if a == b else -1, first_shape, second_shape)
    )
129 130 131
    return out_shape


132 133 134
def select_input(inputs, mask):
    """
    **select_input**
135

136 137 138 139 140 141 142 143 144 145 146 147
    This API takes in multiple inputs and uses an integer mask to select one
    input to output. It is useful in control flow.

    Args:
        inputs(tuple|list): The input variables
        mask(Variable): A tensor containing 1 integer number selecting which
            input to output

    Returns:
        Variable: The selected input variable
    """
    helper = LayerHelper('select_input', **locals())
148 149 150
    check_type(inputs, 'inputs', (list, tuple), 'select_input')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_input')

151
    # Select input should expand the shape. If it is - 1 and valid number, use - 1 first. If the dim is different, an error will be reported directly
152
    # assert inputs[0].dtype == inputs[1].dtype, f"Expect the inputs should have the same dtype, but get {inputs[0].dtype} and {inputs[1].dtype}"
153 154 155
    output_shape = _select_input_infer_shape(inputs[0].shape, inputs[1].shape)
    output_dtype = inputs[1].dtype
    output_type = inputs[1].type
156

157 158 159 160 161 162 163 164
    out = helper.create_variable(
        dtype=output_dtype, shape=output_shape, type=output_type
    )
    helper.append_op(
        type='select_input',
        inputs={'X': inputs, 'Mask': mask},
        outputs={'Out': out},
    )
165 166 167
    return out


168
def select_input_with_buildin_type(inputs, mask, name):
169 170 171
    from paddle.fluid.dygraph.dygraph_to_static.variable_trans_func import (
        to_static_variable,
    )
172
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar
173

174 175
    false_var, true_var = inputs

176
    if isinstance(false_var, UndefinedVar) and isinstance(
177 178 179
        true_var, UndefinedVar
    ):
        """None -> UndefinedVar, so the real value is a [None, UndefinedVar] or [None, None], we just return None."""
180 181
        return None

182
    if isinstance(false_var, Variable) and isinstance(true_var, Variable):
183 184 185 186
        try:
            return select_input(inputs, mask)
        except Exception as e:
            raise RuntimeError(
187 188
                f"Exceptions throwed while doing select_input on {name}:\n{e}"
            )
189

190 191 192
    elif isinstance(false_var, support_ret_buildin_type) and isinstance(
        false_var, type(true_var)
    ):
193 194 195 196
        if false_var == true_var:
            return false_var
        else:
            inputs = [
197
                to_static_variable(false_var),
198
                to_static_variable(true_var),
199 200
            ]
    # Deal with the situations like this: false_var is int and true_var is Variable
201 202 203 204 205 206 207
    elif (
        isinstance(false_var, support_ret_buildin_type)
        and isinstance(true_var, Variable)
    ) or (
        isinstance(true_var, support_ret_buildin_type)
        and isinstance(false_var, Variable)
    ):
208 209 210
        inputs = [to_static_variable(false_var), to_static_variable(true_var)]
        warnings.warn(
            "Return results from different branches in cond are not same type: "
211
            "false_var returned by false_fn is '{}' and true_var of true_fn is "
212 213 214 215 216 217 218 219 220
            "'{}'".format(type(false_var), type(true_var))
        )
    elif (
        isinstance(false_var, UndefinedVar)
        and isinstance(true_var, (Variable,) + support_ret_buildin_type)
    ) or (
        isinstance(true_var, UndefinedVar)
        and isinstance(false_var, (Variable,) + support_ret_buildin_type)
    ):
221 222

        def create_var_if_not_undefined_var(a):
223 224
            if isinstance(a, UndefinedVar):
                return a
225 226
            return to_static_variable(a)

227
        true_var, false_var = to_static_variable(true_var), to_static_variable(
228 229
            false_var
        )
230
        inputs = [false_var, true_var]
231 232 233
    else:
        raise TypeError(
            "Unsupported return type of true_fn and false_fn in cond: false_var "
234
            "returned by false_fn is '{}' and true_var of true_fn is '{}'".format(
235 236 237
                type(false_var), type(true_var)
            )
        )
238 239 240 241
    try:
        return select_input(inputs, mask)
    except Exception as e:
        raise RuntimeError(
242 243
            f"Exceptions throwed while doing select_input on {name}:\n{e}"
        )
244 245


246
def split_lod_tensor(input, mask, level=0):
247 248 249 250
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
251 252
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
253 254

    Args:
255
        input(Variable|tuple|list|None): The input tensor that contains complete
256
                                lod information needed to construct the output.
257
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
258
        level(int): The specific lod level to split.
259 260

    Returns:
Q
qiaolongfei 已提交
261 262 263 264
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
265 266 267 268

    Examples:
        .. code-block:: python

269
          import paddle.fluid as fluid
Q
qiaolongfei 已提交
270
          x = fluid.layers.data(name='x', shape=[1])
271 272
          x.persistable = True

Q
qiaolongfei 已提交
273
          y = fluid.layers.data(name='y', shape=[1])
274 275
          y.persistable = True

Q
qiaolongfei 已提交
276
          out_true, out_false = fluid.layers.split_lod_tensor(
277
                input=x, mask=y, level=level)
278

279
    """
280 281 282 283 284 285
    check_type(
        input,
        'input',
        (Variable, list, tuple, type(None)),
        'fluid.layers.split_lod_tensor',
    )
286 287
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.split_lod_tensor')
    check_type(level, 'level', int, 'fluid.layers.split_lod_tensor')
288
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
289 290
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
291 292 293 294 295 296 297 298 299
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true, 'OutFalse': out_false},
        attrs={'level': level},
    )
300 301 302
    return out_true, out_false


303
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
304 305 306 307 308
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
309 310 311
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
312 313

    Args:
314 315 316
        in_true(Variable|tuple|list|None): The True branch to be merged.
        in_false(Variable|tuple|list|None): The False branch to be merged.
        x(Variable|tuple|list|None): The input tensor that contains complete
317
                            lod information needed to construct the output.
318
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
319
        level(int): The specific lod level to merge.
320 321 322 323 324 325 326

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

327
          import paddle.fluid as fluid
328 329 330 331 332 333 334 335 336 337 338 339
          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
340
    helper = LayerHelper('merge_lod_tensor', **locals())
341 342 343 344 345 346
    check_type(
        x,
        'x',
        (Variable, list, tuple, type(None)),
        'fluid.layers.merge_lod_tensor',
    )
347
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.merge_lod_tensor')
348 349 350 351 352 353 354 355 356 357 358 359
    check_type(
        in_true,
        'in_true',
        (Variable, list, tuple, type(None)),
        'fluid.layers.merge_lod_tensor',
    )
    check_type(
        in_false,
        'in_false',
        (Variable, list, tuple, type(None)),
        'fluid.layers.merge_lod_tensor',
    )
X
Xin Pan 已提交
360
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
361 362 363 364 365 366
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x, 'Mask': mask, 'InTrue': in_true, 'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level},
    )
367 368 369
    return out


370
@static_only
371 372 373 374 375 376 377 378 379 380 381 382
def Print(
    input,
    first_n=-1,
    message=None,
    summarize=20,
    print_tensor_name=True,
    print_tensor_type=True,
    print_tensor_shape=True,
    print_tensor_layout=True,
    print_tensor_lod=True,
    print_phase='both',
):
Y
Yan Chunwei 已提交
383
    '''
384 385
    :api_attr: Static Graph

Y
Yan Chunwei 已提交
386 387 388 389 390 391 392 393 394
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
395
        input (Variable): A Tensor to print.
396
        summarize (int): Number of elements in the tensor to be print. If it's
T
tianshuo78520a 已提交
397
                value is -1, then all elements in the tensor will be print.
Y
yangyaming 已提交
398 399
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
400 401 402
        print_tensor_name (bool, optional): Print the tensor name. Default: True.
        print_tensor_type (bool, optional): Print the tensor type. Defaultt: True.
        print_tensor_shape (bool, optional): Print the tensor shape. Default: True.
403
        print_tensor_layout (bool, optional): Print the tensor layout. Default: True.
404
        print_tensor_lod (bool, optional): Print the tensor lod. Default: True.
405
        print_phase (str): Which phase to displace, including 'forward',
406
                'backward' and 'both'. Default: 'both'. If set to 'backward', will
407 408
                only print the gradients of input tensor; If set to 'both', will
                both print the input tensor itself and the gradients of input tensor.
Y
Yan Chunwei 已提交
409 410

    Returns:
411
        Variable: Output tensor.
Y
Yan Chunwei 已提交
412

413 414 415 416
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
417

Y
Yan Chunwei 已提交
418 419
    Examples:
        .. code-block:: python
420

421 422 423
           import paddle

           paddle.enable_static()
424

425 426 427 428 429 430 431 432 433 434 435 436 437 438
           x = paddle.full(shape=[2, 3], fill_value=3, dtype='int64')
           out = paddle.static.Print(x, message="The content of input layer:")

           main_program = paddle.static.default_main_program()
           exe = paddle.static.Executor(place=paddle.CPUPlace())
           res = exe.run(main_program, fetch_list=[out])
           # Variable: fill_constant_1.tmp_0
           #   - message: The content of input layer:
           #   - lod: {}
           #   - place: CPUPlace
           #   - shape: [2, 3]
           #   - layout: NCHW
           #   - dtype: long
           #   - data: [3 3 3 3 3 3]
Y
Yan Chunwei 已提交
439
    '''
440 441 442 443 444 445
    check_variable_and_dtype(
        input,
        'input',
        ['float32', 'float64', 'int32', 'int64', 'bool'],
        'fluid.layers.Print',
    )
446

447 448
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
    helper.append_op(
        type='print',
        inputs={'In': input},
        outputs={'Out': output},
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_layout': print_tensor_layout,
            'print_tensor_lod': print_tensor_lod,
            'print_phase': print_phase.upper(),
        },
    )
465
    return output
Y
Yan Chunwei 已提交
466 467


H
Huihuang Zheng 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
def Assert(cond, data=None, summarize=20, name=None):
    '''
    This API creates an op that asserts the given condition is true. If the
    condition is false, prints the tensors in data. ``summarize`` specifies the
    number of the elements in the tensors to print.

    Args:
        cond (Variable): The boolean condition tensor whose numel should be 1.
        data (list|tuple, optional): list or tuple of tensors to print when
            condition is not true. If it's ``None``, no tensor will be printed.
            The default value is ``None``.
        summarize (int, optional): Number of elements in the tensor to be
            printed. If its value is -1, then all elements in the tensor will
            be printed. The default value is 20.
        name (str, optional): The default value is ``None`` . Normally users
            don't have to set this parameter. For more information, please
            refer to :ref:`api_guide_Name` .

    Returns:
        Operator: the created operation.

    Raises:
        TypeError: If ``cond`` is not boolean Variable.
        TypeError: If ``data`` is not a list or tuple or ``None``.
        TypeError: If ``summarize`` is not int.
        TypeError: If ``name`` is not a string or ``None`` .
        fluid.core.EnforceNotMet: If the condition is False in running time.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            x = layers.fill_constant(shape=[2, 3], dtype='float32', value=2.0)
            condition = layers.reduce_max(x) < 1.0 # False
            layers.Assert(condition, [x], 10, "example_assert_layer")

            exe = fluid.Executor()
            try:
                exe.run(fluid.default_main_program())
                # Print x and throws paddle.fluid.core.EnforceNotMet exception
                # Example printed message for x:
                #
                # Variable: fill_constant_0.tmp_0
                #   - lod: {}
                #   - place: CPUPlace()
                #   - shape: [2, 3]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [2 2 2 2 2 2]
            except fluid.core.EnforceNotMet as e:
                print("Assert Exception Example")

    '''
    check_variable_and_dtype(cond, "cond", ["bool"], "fluid.layers.Assert")
    check_type(data, "data", (list, tuple, type(None)), "fluid.layers.Assert")
    check_type(summarize, "summarize", int, "fluid.layers.Assert")
    check_type(name, "name", (str, type(None)), "fluid.layers.Assert")

    layer_name = name if name else ('assert_' + cond.name)
    helper = LayerHelper(layer_name, **locals())

531 532 533 534 535
    op = helper.append_op(
        type="assert",
        inputs={"Cond": cond, "Data": [] if data is None else list(data)},
        attrs={"summarize": summarize},
    )
H
Huihuang Zheng 已提交
536 537 538 539

    return op


540
class BlockGuard:
Y
Yu Yang 已提交
541
    """
542 543 544 545
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
546 547
    """

548 549
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
550
            raise TypeError("BlockGuard takes a program")
551
        self.main_program = main_program
Y
Yu Yang 已提交
552 553

    def __enter__(self):
W
Wu Yi 已提交
554
        self.main_program._create_block()
Y
Yu Yang 已提交
555 556

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
557
        self.main_program._rollback()
Y
Yu Yang 已提交
558 559 560 561 562
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
563 564 565 566 567
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
568 569
    """

Y
Yu Yang 已提交
570
    def __init__(self, rnn):
X
Xin Pan 已提交
571
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
572
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
573
        super().__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
574 575 576 577
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
578
        return super().__enter__()
Y
Yu Yang 已提交
579 580

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
581 582
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
583
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
584
        self.rnn._complete_op()
585
        return super().__exit__(exc_type, exc_val, exc_tb)
Y
Yu Yang 已提交
586 587


588
class StaticRNNMemoryLink:
Y
Yu Yang 已提交
589
    """
590 591 592 593
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
594 595 596 597 598 599 600 601 602


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
603 604 605 606 607 608 609 610
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


611
class StaticRNN:
612
    """
613 614
    :api_attr: Static Graph

615 616
    StaticRNN class.

617 618 619 620 621 622 623
    The StaticRNN can process a batch of sequence data. The first dimension of inputs
    represents sequence length, the length of each input sequence must be equal.
    StaticRNN will unfold sequence into time steps, user needs to define how to process
    each time step during the :code:`with` step.

    Args:
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
C
chengduo 已提交
624 625

    Examples:
626 627
        .. code-block:: python

628
            import paddle
629 630 631 632
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
633
            paddle.enable_static()
634 635
            x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            # create word sequence
636 637 638 639 640
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
641
            # transform batch size to dim 1
642
            x_emb = paddle.transpose(x_emb, perm=[1, 0, 2])
643 644 645

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
646
                # mark created x_emb as input, each step process a word
647
                word = rnn.step_input(x_emb)
648
                # create prev memory parameter, batch size comes from word
649 650
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
651 652
                # use hidden to update prev
                rnn.update_memory(prev, hidden)
653
                # mark hidden as output
654
                rnn.step_output(hidden)
655
            # get StaticrNN final output
656
            result = rnn()
C
chengduo 已提交
657

658
    """
659

Y
Yu Yang 已提交
660 661 662 663
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

664
    def __init__(self, name=None):
665
        check_type(name, "name", (str, type(None)), "fluid.layers.StaticRNN")
666
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
667 668 669 670 671 672 673 674
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
675
        """
676 677
        Define operators in each step. step is used in :code:`with` block, OP in :code:`with` block
        will be executed sequence_len times (sequence_len is the length of input)
C
chengduo 已提交
678
        """
Y
Yang Yang 已提交
679
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
680 681 682 683 684

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

685 686 687 688 689 690 691 692 693
    def memory(
        self,
        init=None,
        shape=None,
        batch_ref=None,
        init_value=0.0,
        init_batch_dim_idx=0,
        ref_batch_dim_idx=1,
    ):
694
        """
C
chengduo 已提交
695 696 697
        Create a memory variable for static rnn.
        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
698 699
        must be set, and this function will create a new variable with shape and batch_ref
        to initialize :code:`init` Variable.
C
chengduo 已提交
700

701
        Args:
702
            init(Variable, optional): Tensor used to init memory. If it is not set,
C
chengduo 已提交
703 704
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
705 706 707 708 709 710 711
            shape(list|tuple): When :code:`init` is None use this arg to initialize memory shape.
            NOTE the shape does not contain batch_size. Default: None.
            batch_ref(Variable, optional): When :code:`init` is None, memory's batch size will
            be set as batch_ref's ref_batch_dim_idx value. Default: None.
            init_value(float, optional): When :code:`init` is None, used to init memory's value. Default: 0.0.
            init_batch_dim_idx(int, optional): the batch_size axis of the :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int, optional): the batch_size axis of the :code:`batch_ref` Variable. Default: 1.
C
chengduo 已提交
712 713

        Returns:
714 715 716 717 718
            Variable: The memory variable.

        Examples 1:
            .. code-block:: python

719
                import paddle
720 721 722 723
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
724
                paddle.enable_static()
725 726 727 728 729 730 731 732
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
733
                x_emb = paddle.transpose(x_emb, perm=[1, 0, 2])
734 735 736 737 738 739 740 741 742 743

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
744 745 746


        Examples 2:
747 748
            .. code-block:: python

749
                import paddle
750 751 752
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers
                vocab_size, hidden_size=10000, 200
753
                paddle.enable_static()
754 755 756 757 758 759 760 761
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
762
                x_emb = paddle.transpose(x_emb, perm=[1, 0, 2])
763 764 765 766 767 768 769 770 771 772
                boot_memory = fluid.layers.data(name='boot', shape=[hidden_size], dtype='float32', lod_level=1)
                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # init memory
                        prev = rnn.memory(init=boot_memory)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # update hidden with prev
                        rnn.update_memory(prev, hidden)
773

774
        """
Y
Yu Yang 已提交
775
        self._assert_in_rnn_block_('memory')
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
        check_type(
            init,
            "init",
            (Variable, type(None)),
            "fluid.layers.StaticRNN.memory",
        )
        check_type(
            shape,
            "shape",
            (list, tuple, type(None)),
            "fluid.layers.StaticRNN.memory",
        )
        check_type(
            batch_ref,
            "batch_ref",
            (Variable, type(None)),
            "fluid.layers.StaticRNN.memory",
        )
Y
Yu Yang 已提交
794
        if init is None:
795
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
796
                raise ValueError(
797 798
                    "if init is None, memory at least need shape and batch_ref"
                )
799
            parent_block = self._parent_block()
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
            var_name = unique_name.generate_with_ignorable_key(
                "@".join([self.helper.name, "memory_boot"])
            )
            boot_var = parent_block.create_var(
                name=var_name,
                shape=shape,
                dtype=batch_ref.dtype,
                persistable=False,
            )

            parent_block.append_op(
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
                    'shape': boot_var.shape,
                    'dtype': boot_var.dtype,
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx,
                },
            )
Y
Yu Yang 已提交
822 823 824 825

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
826 827 828
                name=unique_name.generate_with_ignorable_key(
                    "@".join([self.helper.name, "mem"])
                ),
F
fengjiayi 已提交
829
                dtype=init.dtype,
830 831 832 833 834
                shape=init.shape,
            )
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem
            )
Y
Yu Yang 已提交
835 836 837
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
838 839 840 841 842 843 844 845
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
846 847 848 849 850
            Variable: The current time step data in the input sequence.

        Examples:
            .. code-block:: python

851
                import paddle
852 853 854 855
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
856
                paddle.enable_static()
857 858 859 860 861 862 863 864
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
865
                x_emb = paddle.transpose(x_emb, perm=[1, 0, 2])
866 867 868 869 870 871 872 873 874 875

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
876

C
chengduo 已提交
877
        """
Y
Yu Yang 已提交
878
        self._assert_in_rnn_block_('step_input')
879
        check_type(x, "x", Variable, "fluid.layers.StaticRNN.step_input")
Y
Yu Yang 已提交
880
        if self.seq_len is None:
Y
Yu Yang 已提交
881
            self.seq_len = x.shape[0]
882
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
883 884
            raise ValueError("Static RNN only take fix seq_len input")

885 886 887
        ipt = self.helper.create_variable(
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type
        )
Y
Yu Yang 已提交
888 889 890 891
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
892 893 894 895 896 897 898 899
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
900 901 902 903

        Examples:
            .. code-block:: python

904
                import paddle
905 906 907 908
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
909
                paddle.enable_static()
910 911 912 913 914 915 916 917
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
918
                x_emb = paddle.transpose(x_emb, perm=[1, 0, 2])
919 920 921 922 923 924 925 926 927 928 929 930 931

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
                        rnn.step_output(hidden)

                result = rnn()
932

C
chengduo 已提交
933
        """
Y
Yu Yang 已提交
934
        self._assert_in_rnn_block_('step_output')
935
        check_type(o, "o", Variable, "fluid.layers.StaticRNN.step_output")
Y
Yu Yang 已提交
936

X
Xin Pan 已提交
937
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
938 939 940 941 942 943
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
            attrs={'dtype': o.dtype},
        )
Y
Yu Yang 已提交
944

945 946 947 948 949
        out_var = self._parent_block().create_var(
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
            dtype=tmp_o.dtype,
        )
Y
Yu Yang 已提交
950 951 952 953

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
954 955 956 957
        """
        Mark the StaticRNN output variables.

        Args:
958
            outputs: The output Tensor, can mark multiple variables as output
C
chengduo 已提交
959 960 961

        Returns:
            None
962 963 964 965

        Examples:
            .. code-block:: python

966
                import paddle
967 968 969 970
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
971
                paddle.enable_static()
972 973 974 975 976 977 978 979
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
980
                x_emb = paddle.transpose(x_emb, perm=[1, 0, 2])
981 982 983 984 985 986 987 988 989 990 991 992 993 994

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
                        # mark each step's hidden and word as output
                        rnn.output(hidden, word)

                result = rnn()
C
chengduo 已提交
995
        """
Y
Yu Yang 已提交
996 997 998 999
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
1000
        """
1001
        Update the memory from :code:`mem` to :code:`var`.
C
chengduo 已提交
1002 1003 1004

        Args:
            mem(Variable): the memory variable.
1005
            var(Variable): the plain variable generated in RNN block, used to update memory.
T
tianshuo78520a 已提交
1006
                           var and mem should have same dims and data type.
C
chengduo 已提交
1007 1008 1009

        Returns:
            None
1010

C
chengduo 已提交
1011
        """
1012 1013
        check_type(mem, "mem", Variable, "fluid.layers.StaticRNN.update_memory")
        check_type(var, "var", Variable, "fluid.layers.StaticRNN.update_memory")
Y
Yu Yang 已提交
1014 1015
        self.memories[mem.name].mem = var

1016
    def _parent_block(self):
1017
        prog = self.helper.main_program
Y
Yu Yang 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1033
    def _complete_op(self):
1034 1035
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
1036
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
1051 1052 1053
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
1054 1055 1056 1057 1058 1059 1060 1061
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

1062 1063 1064
        parameters = [
            parent_block._find_var_recursive(name) for name in set(params)
        ]
Y
Yu Yang 已提交
1065 1066

        step_scope = parent_block.create_var(
1067 1068
            type=core.VarDesc.VarType.STEP_SCOPES
        )
Y
Yu Yang 已提交
1069 1070 1071 1072

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
1073
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
1074 1075 1076
        boot_memories = []
        pre_memories = []
        memories = []
1077
        for _, mem in self.memories.items():
Y
Yu Yang 已提交
1078 1079
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
1080 1081 1082
            assert (
                mem.mem is not None
            ), "%s should be updated in every step." % (mem.init.name)
Y
Yu Yang 已提交
1083 1084
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
1085
            new_mem = self.helper.create_variable_for_type_inference(
1086 1087 1088 1089 1090 1091 1092 1093
                dtype=mem_var.dtype
            )
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
                attrs={'dtype': mem_var.dtype},
            )
Y
Yu Yang 已提交
1094 1095 1096

            memories.append(new_mem.name)

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters,
            },
            outputs={'outputs': outlinks, 'step_scopes': [step_scope]},
            attrs={
                'has_states': len(pre_memories) > 0,
                'ex_states': pre_memories,
                'states': memories,
                'sub_block': rnn_block,
            },
        )
Y
Yu Yang 已提交
1112 1113


Y
Yang Yang(Tony) 已提交
1114 1115 1116 1117
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
1118
        super().__init__(while_op.helper.main_program)
Y
Yang Yang(Tony) 已提交
1119 1120 1121 1122
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
1123
        return super().__enter__()
Y
Yang Yang(Tony) 已提交
1124 1125 1126 1127 1128

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
1129
        self.while_op._complete()
1130
        return super().__exit__(exc_type, exc_val, exc_tb)
Y
Yang Yang(Tony) 已提交
1131 1132


1133 1134 1135
def get_inputs_outputs_in_block(
    current_block, inner_inputs, inner_outputs, helper
):
1136 1137 1138 1139 1140 1141 1142 1143
    """
    Find inputs and outputs in current control flow block.
    :param current_block: Current control flow block.
    :param inner_inputs: Input var name of ops in current block.
    :param inner_outputs: Output var name of ops in current block.
    :return: inner_inputs, inner_outputs
    """

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
    def is_ignore_vars(op, var_name):
        # NOTE(dev): There are some persistable var created in some non-standard API
        # such as "contrib.layers.shuffle_batch". It create a "Seed" used both in
        # Input and Output. This var shall not be considered as a loop_var in
        # control_flow.
        IGNORE_VAR_NAMES = {"shuffle_batch": ["shuffle_batch_seed"]}
        if op.type in IGNORE_VAR_NAMES:
            var_names = IGNORE_VAR_NAMES[op.type]
            for name in var_names:
                if name in var_name:
                    return True
        return False

1157 1158 1159 1160 1161 1162 1163 1164
    # Step1: update inner_inputs and inner_outputs
    # NOTE: Here assumes that all variables are input or output of Ops,
    # but some variables are created without appendding a real op.
    # For example, in `arr = create_array(dtype)`, `arr` is not a output of a op.
    for op in current_block.ops:
        assert isinstance(op, Operator)
        for iname in op.input_names:
            for in_var_name in op.input(iname):
1165
                if in_var_name not in inner_outputs and not is_ignore_vars(
1166 1167
                    op, in_var_name
                ):
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
                    inner_inputs.add(in_var_name)

        for oname in op.output_names:
            for out_var_name in op.output(oname):
                inner_outputs.add(out_var_name)

    # Step2: Remove LOD_TENSOR_ARRAY created in current control flow block.
    remove_inner_inputs = set()
    parent_block = helper.main_program.block(current_block.parent_idx)

    for in_var_name in inner_inputs:
        parent_block_var = parent_block._find_var_recursive(in_var_name)
        current_block_var = None
        if current_block.has_var(in_var_name):
            current_block_var = current_block.var(in_var_name)
1183 1184 1185 1186 1187
        if (
            not parent_block_var
            and current_block_var
            and current_block_var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        ):
1188 1189 1190 1191 1192 1193 1194
            remove_inner_inputs.add(in_var_name)

    inner_inputs = inner_inputs - remove_inner_inputs

    return inner_inputs, inner_outputs


1195
class While:
X
Xin Pan 已提交
1196
    """
1197
    :api_attr: Static Graph
1198

1199
    while loop control flow. Repeat while body until cond is False.
X
Xin Pan 已提交
1200

1201 1202 1203 1204
    Note:
        A new OP :ref:`api_fluid_layers_while_loop` is highly recommended instead of ``While`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_while_loop` is easier to use and is called with less code but does the same thing as ``While`` .

1205 1206 1207 1208 1209 1210
    Notice:
        Local variables created in ``While`` are similar to that created in while of C++, and cannot be referenced externally.
        As a result, they cannot be obtained through ``fetch_list`` of ``Executor``. If you would like to access the variable
        out of ``while`` , PaddlePaddle provides ``assign`` API to assign local variables to external. Please refer to example
        code 2 or refer to `issue#22724 <https://github.com/PaddlePaddle/Paddle/issues/22724>`_.

X
Xin Pan 已提交
1211
    Args:
1212
        cond(Variable): A Tensor whose data type is bool controlling whether to continue looping.
G
guofei 已提交
1213
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
1214
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
1215

1216
    Examples 1:
X
Xin Pan 已提交
1217
          .. code-block:: python
1218

1219
            import paddle.fluid as fluid
1220 1221 1222 1223 1224
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)           # loop counter

            loop_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=10)    # loop length
1225

1226
            cond = fluid.layers.less_than(x=i, y=loop_len)
1227
            while_op = fluid.layers.While(cond=cond)
1228
            with while_op.block():
1229
                i = fluid.layers.increment(x=i, value=1, in_place=True)
1230
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)
1231 1232 1233 1234 1235

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[i])
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
            print(res) # [array([10])]


    Examples 2:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            loop_len = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            one = fluid.layers.fill_constant(shape=[1], dtype='float32', value=1)
            data = fluid.data(name='data', shape=[1], dtype='float32')
            sums = fluid.layers.fill_constant(shape=[1], dtype='float32', value=0)  # Define the variable to be obtained ouside of While, which name should be different from the variable inside the While to be obtained

            cond = fluid.layers.less_than(x=i, y=loop_len)
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                sums_tensor = fluid.layers.elementwise_add(x=data, y=data)
                fluid.layers.assign(sums_tensor, sums)  # Update the value of sums_tensor defined in While to the sums which defined outside of While through layers.assign
                i = fluid.layers.increment(x=i, value=1, in_place=True)
                data = fluid.layers.elementwise_add(x=data, y=one)
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)

            feed_data = np.ones(1).astype('float32')
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            res = exe.run(fluid.default_main_program(), feed={'data': feed_data}, fetch_list=sums)
            print(res[0])  # [2.]    # Because the data in While does not update the value outside the While, the value of sums is [2.] after the loop
X
Xin Pan 已提交
1265 1266
    """

Y
Yang Yang(Tony) 已提交
1267 1268 1269 1270
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
1271
    def __init__(self, cond, is_test=False, name=None):
1272
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
1273
        self.status = While.BEFORE_WHILE_BLOCK
1274
        check_variable_and_dtype(cond, 'cond', ['bool'], 'fluid.layers.While')
Y
Yang Yang(Tony) 已提交
1275
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
1276
            raise TypeError(
1277 1278 1279 1280
                "condition expected shape as [1], but given shape as {0}.".format(
                    list(cond.shape)
                )
            )
Y
Yang Yang(Tony) 已提交
1281
        self.cond_var = cond
C
chengduo 已提交
1282
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
1283 1284 1285 1286

    def block(self):
        return WhileGuard(self)

1287
    def _complete(self):
Y
Yang Yang(Tony) 已提交
1288 1289
        main_program = self.helper.main_program
        while_block = main_program.current_block()
1290
        parent_block = main_program.block(
1291 1292
            main_program.current_block().parent_idx
        )
Y
Yang Yang(Tony) 已提交
1293 1294 1295

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
1296
        x_name_list, inner_outputs = get_inputs_outputs_in_block(
1297 1298
            while_block, x_name_list, inner_outputs, self.helper
        )
Y
Yang Yang(Tony) 已提交
1299 1300 1301

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
1302 1303 1304
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
1305

1306
        x_name_list |= set(map(lambda x: x.name, out_vars))
1307 1308 1309
        # NOTE(dev): cond_var has been contained in Input('Condition'), so
        # we remove it from Input('X')
        x_name_list -= {self.cond_var.name}
1310

Y
Yang Yang(Tony) 已提交
1311
        step_scope = parent_block.create_var(
1312 1313
            type=core.VarDesc.VarType.STEP_SCOPES
        )
Y
Yang Yang(Tony) 已提交
1314 1315 1316 1317

        parent_block.append_op(
            type='while',
            inputs={
1318 1319 1320 1321 1322
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
                'Condition': [self.cond_var],
1323
            },
1324 1325 1326
            outputs={'Out': out_vars, 'StepScopes': [step_scope]},
            attrs={'sub_block': while_block, "is_test": self.is_test},
        )
Y
Yang Yang(Tony) 已提交
1327 1328


1329
support_ret_buildin_type = (bool, float, int)
1330 1331


1332
def assign_skip_lod_tensor_array(input, output):
1333
    """
1334
    Assign input to output, but skip the process of copying LoDTensorArray unless it's created in while_block.
1335
    """
1336 1337

    def has_shape_diff(x_var, y_var):
1338 1339
        if len(x_var.shape) != len(y_var.shape):
            return True
1340
        for x_dim, y_dim in zip(x_var.shape, y_var.shape):
1341 1342
            if x_dim != y_dim and -1 not in [x_dim, y_dim]:
                return True
1343 1344
        return False

1345
    if not isinstance(input, (Variable, core.VarBase)):
1346
        if isinstance(output, Variable) and isinstance(
1347 1348
            input, support_ret_buildin_type
        ):
1349 1350 1351
            assign(input, output)
        else:
            output = input
1352 1353
        return

1354 1355
    if input.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        main_program = input.block.program
1356
        parent_block = main_program.block(
1357 1358
            main_program.current_block().parent_idx
        )
1359 1360 1361
        if parent_block and not parent_block._find_var_recursive(input.name):
            assign(input, output)
    else:
1362 1363 1364 1365 1366
        if (
            isinstance(output, Variable)
            and isinstance(input, Variable)
            and has_shape_diff(input, output)
        ):
1367
            warnings.warn(
1368 1369 1370 1371
                "In dy2static mode, we attemp to assign a variable with shape {} into a variable with shape{}, which is not always right.".format(
                    input.shape, output.shape
                )
            )
1372
        assign(input, output)
1373 1374


G
guofei 已提交
1375
def while_loop(cond, body, loop_vars, is_test=False, name=None):
G
guofei 已提交
1376
    """
1377 1378
    :api_attr: Static Graph

G
guofei 已提交
1379 1380
    while_loop is one of the control flows. Repeats while_loop `body` until `cond` returns False.

1381 1382 1383 1384
    Notice:
        Local variables defined in ``body`` cannot be obtained through ``fetch_list`` of ``Executor`` , variables should
        be defined outside ``body`` and placed in ``loop_vars`` for looping, then these variables can be fetched by ``fetch_list`` .

G
guofei 已提交
1385
    Args:
1386
        cond(Callable): A callable returning a boolean tensor controlling whether to continue looping. And ``cond`` takes
1387
            as many arguments as ``loop_vars`` .
1388 1389 1390
        body(Callable): A callable returning a tuple or list of tensors or LoDTensorArrays of the same arity
            (length and structure) and types as ``loops_vars`` . And ``body`` takes as many arguments as ``loop_vars`` .
        loop_vars(list|tuple): A list or tuple of tensors or LoDTensorArrays that is passed to both ``cond`` and ``body`` .
G
guofei 已提交
1391
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
G
guofei 已提交
1392 1393
        name(str, optional): Normally there is no need for users to set this property. For more information, please
            refer to :ref:`api_guide_Name`. Default is None.
1394

G
guofei 已提交
1395
    Returns:
C
Chen Long 已提交
1396
        A list or tuple of Tensors or LoDTensorArrays which returned by ``body`` .
G
guofei 已提交
1397 1398 1399 1400

    Examples:
        .. code-block:: python

1401 1402 1403
            import paddle
            paddle.enable_static()

1404 1405
            def cond(i, ten):
                return i < ten
G
guofei 已提交
1406

1407 1408 1409
            def body(i, ten):
                i = i + 1
                return [i, ten]
G
guofei 已提交
1410

C
Chen Long 已提交
1411 1412 1413 1414 1415 1416
            main_program = paddle.static.default_main_program()
            startup_program = paddle.static.default_startup_program()
            with paddle.static.program_guard(main_program, startup_program):
                i = paddle.full(shape=[1], fill_value=0, dtype='int64')     # loop counter
                ten = paddle.full(shape=[1], fill_value=10, dtype='int64')  # loop length
                i, ten = paddle.static.nn.while_loop(cond, body, [i, ten])
1417

C
Chen Long 已提交
1418
                exe = paddle.static.Executor(paddle.CPUPlace())
1419
                res = exe.run(main_program, feed={}, fetch_list=[i])
G
guofei 已提交
1420 1421 1422 1423 1424 1425 1426 1427
                print(res) # [array([10])]
    """
    helper = LayerHelper('while_loop', **locals())

    if not callable(cond):
        raise TypeError("cond in while_loop should be callable")
    if not callable(body):
        raise TypeError("body in while_loop should be callable")
1428
    check_type(loop_vars, 'loop_vars', (list, tuple), 'fluid.layers.while_loop')
G
guofei 已提交
1429 1430 1431 1432
    if len(loop_vars) == 0:
        raise ValueError("loop_vars in while_loop should not be empty")

    pre_cond = cond(*loop_vars)
1433 1434 1435
    check_variable_and_dtype(
        pre_cond, 'var of cond returned', ['bool'], 'fluid.layers.while_loop'
    )
G
guofei 已提交
1436 1437
    if reduce(lambda a, b: a * b, pre_cond.shape, 1) != 1:
        raise TypeError(
1438
            "the shape of the variable returned by cond should be [1],"
1439 1440
            "but given shape as {0}.".format(list(pre_cond.shape))
        )
G
guofei 已提交
1441

J
Jiabin Yang 已提交
1442
    if _non_static_mode():
1443
        now_cond = pre_cond.numpy()[0]
1444
        while now_cond:
1445 1446 1447 1448 1449 1450
            output_vars = body(*loop_vars)
            if not isinstance(output_vars, (list, tuple)):
                output_vars = [output_vars]
            if len(output_vars) != len(loop_vars):
                raise ValueError(
                    "body in while_loop should return the same arity "
1451 1452
                    "(length and structure) and types as loop_vars"
                )
1453
            now_cond = cond(*output_vars).numpy()[0]
1454
            map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
1455 1456
        return loop_vars

G
guofei 已提交
1457
    while_loop_block = While(pre_cond, is_test, name)
1458
    has_mutable_vars_in_loop = hold_mutable_vars(loop_vars)
G
guofei 已提交
1459
    with while_loop_block.block():
1460 1461 1462 1463 1464 1465 1466 1467 1468
        # If a variable with mutable type is included in loop_vars, like `dict/list`,
        # modifying it in the body function will cause origin variable to be modified
        # synchronously. This will raise an assignment error out of while block.
        # Here we make a copy of the mutable vars to avoid this problem.
        if has_mutable_vars_in_loop:
            new_loop_vars = copy_mutable_vars(loop_vars)
            output_vars = body(*new_loop_vars)
        else:
            output_vars = body(*loop_vars)
1469 1470
        if not isinstance(output_vars, (list, tuple)):
            output_vars = [output_vars]
1471
        try:
1472
            loop_vars = _deal_with_undefined_var(output_vars, loop_vars)
1473 1474
            assert_same_structure(output_vars, loop_vars, check_types=False)
        except ValueError as e:
1475 1476
            raise ValueError(
                "body in while_loop should return the same arity "
1477 1478
                "(length and structure) as loop_vars: {0}".format(e)
            )
1479
        now_cond = cond(*output_vars)
1480
        map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
G
guofei 已提交
1481 1482 1483 1484
        assign(now_cond, pre_cond)
    return loop_vars


1485
def _deal_with_undefined_var(output_vars, loop_vars):
1486 1487 1488 1489 1490 1491 1492
    """Deal with undefined var cases, We create undefined variable based on the results of body().
    In Dy2Static, we use undefined var to represent the var created in control flow. This function
    expand the loop_vars and replace original loop_vars.
    1. UndefinedVar = Variable      # create a variable
    2. UndefinedVar = None          # create a undefined var with RETURN_NO_VALUE_MAGIC_NUM
    3. UndefinedVar = List(int)     # create a list of variable
    4. UndefinedVar = value         # create a variable
1493
    """
1494 1495 1496 1497
    from paddle.fluid.dygraph.dygraph_to_static.utils import (
        UndefinedVar,
        create_undefined_variable,
    )
1498 1499

    def create_var_like(o_var):
1500 1501 1502 1503
        if (
            isinstance(o_var, (Variable,) + support_ret_buildin_type)
            or o_var is None
        ):
1504
            return create_undefined_variable()
1505
        if is_sequence(o_var):
1506
            """
1507 1508 1509
            Create a complex container class inside the body of while, including Python list and python Dict
            """
            return map_structure(lambda x: create_undefined_variable(), o_var)
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522

    if len(output_vars) != len(loop_vars):
        raise ValueError("The length of loop_vars should be the same.")

    results = []
    for o_var, l_var in zip(output_vars, loop_vars):
        if isinstance(l_var, UndefinedVar) or l_var is None:
            results.append(create_var_like(o_var))
        else:
            results.append(l_var)
    return results


1523
def lod_rank_table(x, level=0):
1524 1525
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
1526 1527
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
1528
    a length, both of which are int type. Refering to specified level of LoD,
T
tianshuo78520a 已提交
1529
    the index is the sequence index number and the length represents the
Y
yangyaming 已提交
1530 1531
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
1532 1533 1534 1535

        .. code-block:: text

            x is a LoDTensor:
1536 1537
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
1538 1539
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
1540 1541 1542
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
1543

Y
yangyaming 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
1553 1554 1555 1556

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
1557 1558
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
1559 1560 1561 1562 1563 1564 1565

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

1566
            import paddle.fluid as fluid
Y
yangyaming 已提交
1567
            x = fluid.layers.data(name='x', shape=[10],
1568
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
1569
            out = layers.lod_rank_table(x=x, level=0)
1570
    """
1571 1572 1573
    check_type(x, 'x', (Variable, list), 'lod_rank_table')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
1574 1575 1576
            check_type(
                input_x, 'input[' + str(i) + ']', Variable, 'lod_rank_table'
            )
1577

Y
Yu Yang 已提交
1578
    helper = LayerHelper("lod_rank_table", **locals())
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
        name=unique_name.generate("lod_rank_table"),
    )
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level},
    )
Y
Yu Yang 已提交
1589
    return table
Y
Yu Yang 已提交
1590 1591


Y
yuyang18 已提交
1592
@templatedoc()
1593
def max_sequence_len(rank_table):
Y
yuyang18 已提交
1594 1595 1596 1597 1598 1599 1600 1601
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
1602 1603

    Args:
Y
yuyang18 已提交
1604
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
1605 1606

    Returns:
Y
yuyang18 已提交
1607
        ${out_comment}.
F
fengjiayi 已提交
1608 1609
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
1610
    res = helper.create_variable_for_type_inference(dtype="int64")
1611 1612 1613 1614 1615
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res},
    )
F
fengjiayi 已提交
1616 1617 1618
    return res


1619
def lod_tensor_to_array(x, table):
1620
    """
F
fengjiayi 已提交
1621 1622
    Convert a LoDTensor to a LoDTensorArray.

1623 1624 1625 1626 1627
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
1628
    Users should not use it directly.
1629 1630

    Args:
F
fengjiayi 已提交
1631
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
1632 1633
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
1634
                                descending order. It is generally generated
F
fengjiayi 已提交
1635
                                by `layers.lod_rank_table()` API.
1636 1637

    Returns:
F
fengjiayi 已提交
1638
        Variable: The LoDTensorArray that has been converted from the input tensor.
1639 1640 1641 1642

    Examples:
        .. code-block:: python

1643
          import paddle.fluid as fluid
1644 1645 1646
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
1647
    """
1648 1649 1650
    check_type(x, 'x', (Variable, list), 'lod_tensor_to_array')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
1651 1652 1653 1654 1655 1656
            check_type(
                input_x,
                'input[' + str(i) + ']',
                Variable,
                'lod_tensor_to_array',
            )
1657 1658 1659
    check_type(table, 'table', (Variable, list), 'lod_tensor_to_array')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
1660 1661 1662 1663 1664 1665
            check_type(
                table_x,
                'table[' + str(i) + ']',
                Variable,
                'lod_tensor_to_array',
            )
1666 1667
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
1668
        name=unique_name.generate("lod_tensor_to_array"),
1669
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
1670 1671 1672 1673 1674 1675 1676
        dtype=x.dtype,
    )
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x, 'RankTable': table},
        outputs={'Out': array},
    )
1677 1678 1679
    return array


1680
def array_to_lod_tensor(x, table):
1681
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
1682 1683

    Args:
1684
        x (Variable|list): The lod tensor array to be converted to a tensor.
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

1696
          import paddle.fluid as fluid
1697 1698 1699 1700
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
1701
    """
1702 1703 1704
    check_type(x, 'x', (Variable, list), 'array_to_lod_tensor')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
1705 1706 1707 1708 1709 1710
            check_type(
                input_x,
                'input[' + str(i) + ']',
                Variable,
                'array_to_lod_tensor',
            )
1711 1712 1713
    check_type(table, 'table', (Variable, list), 'array_to_lod_tensor')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
1714 1715 1716 1717 1718 1719
            check_type(
                table_x,
                'table[' + str(i) + ']',
                Variable,
                'array_to_lod_tensor',
            )
1720

1721
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
1722
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
1723 1724 1725 1726 1727
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x, 'RankTable': table},
        outputs={'Out': tmp},
    )
1728 1729 1730
    return tmp


1731
def increment(x, value=1.0, in_place=True):
1732
    """
1733 1734
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.
1735

1736
    Parameters:
T
tianshuo78520a 已提交
1737
        x (Variable): A tensor that must always contain only one element, its data type supports
1738 1739 1740
            float32, float64, int32 and int64.
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        in_place (bool, optional): Whether the OP should be performed in-place. Default: True.
1741 1742

    Returns:
1743
        Variable: The elementwise-incremented tensor with the same shape and data type as :attr:`x`.
1744 1745 1746 1747

    Examples:
        .. code-block:: python

1748
          import paddle.fluid as fluid
1749 1750
          counter = fluid.layers.zeros(shape=[1], dtype='float32') # [0.]
          fluid.layers.increment(counter) # [1.]
1751
    """
H
hong 已提交
1752
    if in_dygraph_mode():
1753
        return _C_ops.increment_(x, value)
H
hong 已提交
1754

1755 1756 1757
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment'
    )
Y
Yu Yang 已提交
1758
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1759
    if not in_place:
X
Xin Pan 已提交
1760
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1761 1762
    else:
        out = x
1763 1764 1765 1766 1767 1768
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'step': float(value)},
    )
Y
Yang Yu 已提交
1769
    return out
Y
Yu Yang 已提交
1770 1771


1772
def array_write(x, i, array=None):
1773
    """
1774 1775 1776 1777
    This OP writes the input ``x`` into the i-th position of the ``array``
    :ref:`api_fluid_LoDTensorArray` and returns the modified array.
    If ``array`` is none, a new LoDTensorArray will be created and returned.
    This OP is often used together with :ref:`api_fluid_layers_array_read` OP.
1778 1779

    Args:
1780 1781 1782 1783
        x (Variable): The input data to be written into array. It's multi-dimensional
            Tensor or LoDTensor. Data type: float32, float64, int32, int64.
        i (Variable): 1-D Tensor with shape [1], which represents the position into which
            ``x`` is written. Data type: int64.
1784 1785
        array (LoDTensorArray, optional): The LoDTensorArray into which ``x`` is written.
            The default value is None, when a new LoDTensorArray will be created and returned
1786
            as a result.
1787

1788
    Returns:
1789
        Variable: The input ``array`` after ``x`` is written into.
1790 1791

    Examples:
D
dzhwinter 已提交
1792
        .. code-block:: python
1793

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
            import paddle.fluid as fluid
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # Write tmp into the position of arr with subscript 10 and return arr.
            arr = fluid.layers.array_write(tmp, i=i)

            # Now, arr is a LoDTensorArray with length 11. We can use array_read OP to read
            # the data at subscript 10 and print it out.
            item = fluid.layers.array_read(arr, i=i)
            input = fluid.layers.Print(item, message="The content of i-th LoDTensor:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
            # 1570533133    The content of i-th LoDTensor:  The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2], which is tmp above.
            # dtype is the corresponding C++ data type, which may vary in different environments.
1817 1818
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
1819 1820
            #       and '__int64' on Windows. They both represent 64-bit integer variables.

1821
    """
J
Jiabin Yang 已提交
1822
    if _non_static_mode():
1823 1824 1825 1826 1827 1828 1829 1830 1831
        assert isinstance(
            x, Variable
        ), "The input data 'x' in array_write must be Variable in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_write must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
1832
        i = i.numpy().item(0)
1833 1834 1835
        if array is None:
            array = create_array(x.dtype)
        assert isinstance(
1836 1837
            array, list
        ), "The 'array' in array_write must be a list in dygraph mode"
1838 1839 1840 1841 1842 1843 1844 1845 1846
        assert i <= len(
            array
        ), "The index 'i' should not be greater than the length of 'array' in dygraph mode"
        if i < len(array):
            array[i] = x
        else:
            array.append(x)
        return array

1847 1848
    check_variable_and_dtype(i, 'i', ['int64'], 'array_write')
    check_type(x, 'x', (Variable), 'array_write')
Y
Yu Yang 已提交
1849
    helper = LayerHelper('array_write', **locals())
1850
    if array is not None:
1851 1852 1853 1854
        if (
            not isinstance(array, Variable)
            or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY
        ):
1855
            raise TypeError(
1856 1857
                "array should be tensor array vairable in array_write Op"
            )
Y
Yu Yang 已提交
1858 1859 1860 1861
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
1862 1863 1864 1865 1866 1867 1868
            dtype=x.dtype,
        )
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x], 'I': [i]},
        outputs={'Out': [array]},
    )
Y
Yu Yang 已提交
1869 1870 1871
    return array


1872
def create_array(dtype, initialized_list=None):
1873
    """
1874
    This OP creates an LOD_TENSOR_ARRAY. It is used as
1875
    the input of :ref:`api_fluid_layers_array_read` and
1876 1877
    :ref:`api_fluid_layers_array_write`. Also it can be used
    with  :ref:`api_fluid_layers_While` to create RNN network.
1878 1879

    Args:
1880 1881
        dtype (str): The data type of the elements in the lod_tensor_array.
                     Support data type: float32, float64, int32, int64.
1882 1883
        initialized_list(list): Used to initialize as default value for created array.
                    All values in initialized list should be a Tensor.
1884 1885

    Returns:
1886
        Variable: The empty lod_tensor_array. The data type of elements in Tensor is ``dtype``.
1887 1888 1889 1890

    Examples:
        .. code-block:: python

1891
          import paddle.fluid as fluid
1892
          data = fluid.layers.create_array(dtype='float32') # Create a float32 LoDTensorArray.
1893 1894

    """
1895 1896 1897 1898
    array = []
    if initialized_list is not None:
        if not isinstance(initialized_list, (list, tuple)):
            raise TypeError(
1899 1900 1901 1902
                "Require type(initialized_list) should be list/tuple, but received {}".format(
                    type(initialized_list)
                )
            )
1903 1904 1905 1906 1907 1908
        array = list(initialized_list)

    # NOTE: Only support plain list like [x, y,...], not support nested list in static mode.
    for val in array:
        if not isinstance(val, Variable):
            raise TypeError(
1909 1910 1911 1912
                "All values in `initialized_list` should be Variable, but recevied {}.".format(
                    type(val)
                )
            )
1913

J
Jiabin Yang 已提交
1914
    if _non_static_mode():
1915
        return array
1916

Y
Yang Yang(Tony) 已提交
1917
    helper = LayerHelper("array", **locals())
1918
    tensor_array = helper.create_variable(
Y
Yang Yang(Tony) 已提交
1919 1920
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
1921 1922
        dtype=dtype,
    )
Y
Yang Yang(Tony) 已提交
1923

1924 1925 1926 1927 1928
    for val in array:
        array_write(x=val, i=array_length(tensor_array), array=tensor_array)

    return tensor_array

Y
Yang Yang(Tony) 已提交
1929

Y
yuyang18 已提交
1930
@templatedoc()
W
wawltor 已提交
1931
def less_than(x, y, force_cpu=None, cond=None, name=None):
1932
    """
1933

Y
yuyang18 已提交
1934
    ${comment}
1935 1936

    Args:
N
Noel 已提交
1937 1938
        x(Tensor): ${x_comment}.
        y(Tensor): ${y_comment}.
Y
yuyang18 已提交
1939
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
N
Noel 已提交
1940
        cond(Tensor, optional): Optional output which can be any created Tensor
1941
            that meets the requirements to store the result of *less_than*.
N
Noel 已提交
1942
            if cond is None, a new Tensor will be created to store the result.
W
wawltor 已提交
1943 1944
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1945
    Returns:
Y
yuyang18 已提交
1946
        ${out_comment}.
1947 1948 1949 1950

    Examples:
        .. code-block:: python

N
Noel 已提交
1951 1952 1953 1954 1955 1956 1957
            import paddle

            x = paddle.to_tensor([1, 2, 3, 4], dtype='float32')
            y = paddle.to_tensor([2, 2, 1, 3], dtype='float32')
            result = paddle.less_than(x, y)
            print(result) # [True, False, False, False]

1958
    """
1959 1960 1961 1962 1963 1964
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "less_than"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "less_than"
    )
1965 1966
    if cond is not None:
        check_type(cond, "cond", Variable, "less_than")
1967
    if force_cpu is not None:
1968 1969
        check_type(force_cpu, "force_cpu", bool, "less_than")

Y
Yang Yang(Tony) 已提交
1970 1971
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1972
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1973 1974
        cond.stop_gradient = True

Y
yuyang18 已提交
1975 1976 1977 1978
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu

1979 1980 1981 1982 1983 1984
    helper.append_op(
        type='less_than',
        inputs={'X': [x], 'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs,
    )
Y
Yang Yang(Tony) 已提交
1985 1986 1987
    return cond


Z
zhoukunsheng 已提交
1988
@templatedoc()
W
wawltor 已提交
1989
def less_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1990
    """
1991
    :alias_main: paddle.less_equal
1992 1993
        :alias: paddle.less_equal,paddle.tensor.less_equal,paddle.tensor.logic.less_equal
        :old_api: paddle.fluid.layers.less_equal
1994

1995
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
Z
zhoukunsheng 已提交
1996 1997

    Args:
1998
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1999
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2000 2001
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *less_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
2002 2003
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
2004 2005

    Returns:
2006
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
2007 2008 2009 2010

    Examples:
        .. code-block:: python

2011
          import paddle.fluid as fluid
2012 2013 2014 2015 2016 2017
          import numpy as np
          label = fluid.layers.assign(np.array([1, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([1, 2], dtype='int32'))
          out = fluid.layers.less_equal(x=label, y=limit) #out=[True, False]
          out1 = label<= limit #out1=[True, False]

Z
zhoukunsheng 已提交
2018
    """
2019 2020 2021 2022 2023 2024
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "less_equal"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "less_equal"
    )
2025
    if cond is not None:
2026
        check_type(cond, "cond", Variable, "less_equal")
2027

Z
zhoukunsheng 已提交
2028 2029 2030 2031 2032 2033 2034
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

2035 2036 2037 2038 2039 2040
    helper.append_op(
        type='less_equal',
        inputs={'X': [x], 'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs,
    )
Z
zhoukunsheng 已提交
2041 2042 2043 2044
    return cond


@templatedoc()
W
wawltor 已提交
2045
def greater_than(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
2046
    """
2047
    :alias_main: paddle.greater_than
2048 2049
        :alias: paddle.greater_than,paddle.tensor.greater_than,paddle.tensor.logic.greater_than
        :old_api: paddle.fluid.layers.greater_than
2050

2051
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
Z
zhoukunsheng 已提交
2052 2053

    Args:
2054
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2055
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2056 2057
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_than*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
2058 2059
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
2060 2061

    Returns:
2062
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x` .
Z
zhoukunsheng 已提交
2063 2064 2065 2066

    Examples:
        .. code-block:: python

2067
          import paddle.fluid as fluid
2068 2069 2070 2071 2072
          import numpy as np
          label = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([3, 2], dtype='int32'))
          out = fluid.layers.greater_than(x=label, y=limit) #out=[False, True]
          out1 = label > limit #out1=[False, True]
Z
zhoukunsheng 已提交
2073
    """
2074 2075 2076 2077 2078 2079
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "greater_than"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "greater_than"
    )
2080
    if cond is not None:
2081
        check_type(cond, "cond", Variable, "greater_than")
2082

Z
zhoukunsheng 已提交
2083 2084 2085 2086 2087 2088 2089
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

2090
    if in_dygraph_mode():
2091
        return _C_ops.greater_than(x, y)
2092
    else:
2093 2094 2095 2096 2097 2098
        helper.append_op(
            type='greater_than',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [cond]},
            attrs=attrs,
        )
2099
        return cond
Z
zhoukunsheng 已提交
2100 2101 2102


@templatedoc()
W
wawltor 已提交
2103
def greater_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
2104
    """
2105
    :alias_main: paddle.greater_equal
2106 2107
        :alias: paddle.greater_equal,paddle.tensor.greater_equal,paddle.tensor.logic.greater_equal
        :old_api: paddle.fluid.layers.greater_equal
2108

2109
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
Z
zhoukunsheng 已提交
2110 2111

    Args:
2112
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2113
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2114 2115
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
2116 2117
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
2118 2119

    Returns:
2120
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
2121 2122 2123 2124

    Examples:
        .. code-block:: python

2125
          import paddle.fluid as fluid
2126 2127 2128 2129 2130 2131
          import numpy as np

          label = fluid.layers.assign(np.array([2, 2], dtype='int32'))
          limit = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          out = fluid.layers.greater_equal(x=label, y=limit) #out=[True, False]
          out_1 = label >= limit #out1=[True, False]
2132

Z
zhoukunsheng 已提交
2133
    """
2134 2135 2136 2137 2138 2139
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "greater_equal"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "greater_equal"
    )
2140
    if cond is not None:
2141
        check_type(cond, "cond", Variable, "greater_equal")
2142

Z
zhoukunsheng 已提交
2143 2144 2145 2146 2147 2148 2149
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

2150 2151 2152 2153 2154 2155
    helper.append_op(
        type='greater_equal',
        inputs={'X': [x], 'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs,
    )
Z
zhoukunsheng 已提交
2156 2157 2158
    return cond


W
wawltor 已提交
2159
def equal(x, y, cond=None, name=None):
2160 2161 2162 2163
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
W
wangchaochaohu 已提交
2164 2165
        x(Variable): Tensor, data type is float32, float64, int32, int64.
        y(Variable): Tensor, data type is float32, float64, int32, int64.
2166
        cond(Variable, optional): Optional output which can be any created
W
wangchaochaohu 已提交
2167 2168
            Variable that meets the requirements to store the result of *equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
2169 2170
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
2171 2172

    Returns:
W
wangchaochaohu 已提交
2173 2174
        Variable: output Tensor, it's shape is the same as the input's Tensor,
        and the data type is bool.
2175 2176 2177 2178

    Examples:
        .. code-block:: python

2179
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
2180 2181 2182 2183 2184 2185 2186
          import numpy as np
          out_cond =fluid.data(name="input1", shape=[2], dtype='bool')
          label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
          limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
          label_cond = fluid.layers.assign(np.array([1, 2], dtype="int32"))
          out1 = fluid.layers.equal(x=label,y=limit) #out1=[True, False]
          out2 = fluid.layers.equal(x=label_cond,y=limit, cond=out_cond) #out2=[False, True] out_cond=[False, True]
2187
    """
H
hong 已提交
2188
    if in_dygraph_mode():
2189
        return _C_ops.equal(x, y)
H
hong 已提交
2190

2191 2192 2193 2194 2195 2196
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "equal"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "equal"
    )
2197
    if cond is not None:
2198
        check_type(cond, "cond", Variable, "equal")
2199

2200 2201
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
2202
        cond = helper.create_variable_for_type_inference(dtype='bool')
2203 2204
        cond.stop_gradient = True

2205 2206 2207
    helper.append_op(
        type='equal', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]}
    )
2208 2209 2210
    return cond


W
wawltor 已提交
2211
def not_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
2212
    """
2213
    :alias_main: paddle.not_equal
2214 2215
        :alias: paddle.not_equal,paddle.tensor.not_equal,paddle.tensor.logic.not_equal
        :old_api: paddle.fluid.layers.not_equal
2216

2217
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
Z
zhoukunsheng 已提交
2218 2219

    Args:
2220
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2221
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2222 2223
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *not_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
2224 2225
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
2226 2227

    Returns:
2228
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
2229 2230 2231 2232

    Examples:
        .. code-block:: python

2233
          import paddle.fluid as fluid
2234

2235 2236
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
2237 2238
          out = fluid.layers.not_equal(x=label, y=limit)
    """
2239 2240 2241 2242 2243 2244
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "not_equal"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "not_equal"
    )
2245
    if cond is not None:
2246
        check_type(cond, "cond", Variable, "not_equal")
2247

Z
zhoukunsheng 已提交
2248 2249 2250 2251 2252
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

2253 2254 2255
    helper.append_op(
        type='not_equal', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]}
    )
Z
zhoukunsheng 已提交
2256 2257 2258
    return cond


2259
def array_read(array, i):
2260
    """
2261
    This OP is used to read data at the specified position from the input array
2262
    :ref:`api_fluid_LoDTensorArray` . ``array`` is the input array and ``i``
2263
    is the specified read position. This OP is often used together with
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
    :ref:`api_fluid_layers_array_write` OP.

    Case 1:
    ::
        Input:
            The shape of first three tensors are [1], and that of the last one is [1,2]:
                array = ([0.6], [0.1], [0.3], [0.4, 0.2])
            And:
                i = [3]

        Output:
            output = [0.4, 0.2]
2276

K
kavyasrinet 已提交
2277
    Args:
2278 2279 2280
        array (LoDTensorArray): The input LoDTensorArray.
        i (Variable): 1-D Tensor, whose shape is [1] and dtype is int64. It represents the
            specified read position of ``array``.
2281

K
kavyasrinet 已提交
2282
    Returns:
2283
        Variable: The LoDTensor or Tensor that is read at the specified position of ``array``.
2284

K
kavyasrinet 已提交
2285
    Examples:
2286 2287
        .. code-block:: python

2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
            # First we're going to create a LoDTensorArray, then we're going to write the Tensor into
            # the specified position, and finally we're going to read the Tensor at that position.
            import paddle.fluid as fluid
            arr = fluid.layers.create_array(dtype='float32')
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is the Tensor with shape [3,2], and if we write it into the position with subscript 10
            # of the empty-array: arr, then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i, array=arr)
            # Read the data of the position with subscript 10.
            item = fluid.layers.array_read(arr, i)

            # You can print out the data via executor.
            input = fluid.layers.Print(item, message="The LoDTensor of the i-th position:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:

            # 1569588169  The LoDTensor of the i-th position: The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2].
            # dtype is the corresponding C++ data type, which may vary in different environments.
2316 2317
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
2318
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
2319
    """
J
Jiabin Yang 已提交
2320
    if _non_static_mode():
2321
        assert isinstance(
2322 2323
            array, list
        ), "The 'array' in array_read must be list in dygraph mode"
2324 2325 2326 2327 2328 2329
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_read must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
2330
        i = i.numpy().item(0)
2331 2332
        return array[i]

2333
    check_variable_and_dtype(i, 'i', ['int64'], 'array_read')
Y
Yu Yang 已提交
2334
    helper = LayerHelper('array_read', **locals())
2335 2336 2337 2338
    if (
        not isinstance(array, Variable)
        or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY
    ):
Y
Yu Yang 已提交
2339
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
2340
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
2341 2342 2343 2344 2345
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array], 'I': [i]},
        outputs={'Out': [out]},
    )
Y
Yu Yang 已提交
2346
    return out
Y
Yang Yu 已提交
2347 2348


2349
def shrink_memory(x, i, table):
2350
    """
Y
yuyang18 已提交
2351
    This function creates an operator to shrink rnn memory using the RankTable
2352
    as mentioned in the input parameter.
Y
yuyang18 已提交
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
2373
    """
Y
Yang Yu 已提交
2374
    helper = LayerHelper('shrink_memory', **locals())
2375 2376 2377
    check_type(x, 'x', Variable, 'shrink_memory')
    check_type(i, 'i', Variable, 'shrink_memory')
    check_type(table, 'table', Variable, 'shrink_memory')
X
Xin Pan 已提交
2378
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2379 2380 2381 2382 2383 2384
    helper.append_op(
        type='shrink_rnn_memory',
        inputs={'X': [x], 'I': [i], 'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={},
    )
Y
Yang Yu 已提交
2385
    return out
Y
Yang Yu 已提交
2386 2387


2388
def array_length(array):
2389
    """
2390
    This OP is used to get the length of the input array :ref:`api_fluid_LoDTensorArray` .
2391
    It can be used together with :ref:`api_fluid_layers_array_read` , :ref:`api_fluid_layers_array_write` ,
T
tianshuo78520a 已提交
2392
    :ref:`api_fluid_layers_While` OP to traverse, read and write LoDTensorArray.
2393

K
kavyasrinet 已提交
2394
    Args:
2395
        array (LoDTensorArray): The input array that will be used to compute the length.
K
kavyasrinet 已提交
2396 2397

    Returns:
2398
        Variable: 1-D Tensor with shape [1], which is the length of array. Datatype: int64.
K
kavyasrinet 已提交
2399 2400

    Examples:
Q
qiaolongfei 已提交
2401
        .. code-block:: python
K
kavyasrinet 已提交
2402

2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
            import paddle.fluid as fluid
            tmp = fluid.layers.zeros(shape=[10], dtype='int32')
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is 1-D Tensor with shape [10]. We write tmp into arr on subscript 10,
            # then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i=i)
            # return the length of arr
            arr_len = fluid.layers.array_length(arr)

            # You can use executor to print out the length of LoDTensorArray.
            input = fluid.layers.Print(arr_len, message="The length of LoDTensorArray:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
Q
qiaolongfei 已提交
2419

2420 2421 2422 2423 2424
            # 1569576542  The length of LoDTensorArray:   The place is:CPUPlace
            # Tensor[array_length_0.tmp_0]
            #    shape: [1,]
            #    dtype: l
            #    data: 11,
2425

2426 2427 2428
            # 1-D Tensor with shape [1], whose value is 11. It means that the length of LoDTensorArray
            # is 11.
            # dtype is the corresponding C++ data type, which may vary in different environments.
2429 2430
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
2431
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
2432
    """
2433

J
Jiabin Yang 已提交
2434
    if _non_static_mode():
2435
        assert isinstance(
2436 2437
            array, list
        ), "The 'array' in array_write must be a list in dygraph mode"
2438 2439
        return len(array)

2440 2441 2442 2443
    if (
        not isinstance(array, Variable)
        or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY
    ):
2444
        raise TypeError(
2445 2446
            "array should be tensor array vairable in array_length Op"
        )
2447

Y
Yang Yu 已提交
2448
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
2449
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
2450
    tmp.stop_gradient = True
2451 2452 2453
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]}
    )
Y
Yang Yu 已提交
2454
    return tmp
Y
Yu Yang 已提交
2455 2456 2457


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
2458
    """
2459 2460 2461
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
2462 2463 2464
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
2465
    def __init__(self, block):
2466
        check_type(block, "block", ConditionalBlock, "ConditionalBlockGuard")
2467
        super().__init__(block.helper.main_program)
Y
Yu Yang 已提交
2468 2469 2470
        self.block = block

    def __enter__(self):
2471
        return super().__enter__()
Y
Yu Yang 已提交
2472 2473 2474

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
2475
        return super().__exit__(exc_type, exc_val, exc_tb)
Y
Yu Yang 已提交
2476 2477


2478
class ConditionalBlock:
Y
Yan Chunwei 已提交
2479 2480 2481 2482 2483 2484 2485 2486
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
T
tianshuo78520a 已提交
2487
        is_scalar_condition (bool): whether the branch is controlled by a scalar.
Y
Yan Chunwei 已提交
2488 2489 2490 2491 2492
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

2493
             import paddle.fluid as fluid
Y
Yan Chunwei 已提交
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

2505
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
2506
        for each_input in inputs:
2507
            check_type(each_input, "input", Variable, "ConditionalBlock")
Y
Yu Yang 已提交
2508
        self.inputs = inputs
2509
        self.is_scalar_condition = is_scalar_condition
2510
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()
2521 2522 2523
        params, intermediate = get_inputs_outputs_in_block(
            inside_block, params, intermediate, helper=self.helper
        )
Y
Yu Yang 已提交
2524

2525 2526 2527
        # Todo(liym27) Here assume that all params are in recursive parent block
        # but when minimize() called in control flow, some params may be in
        # conditional grad block
Y
Yu Yang 已提交
2528
        param_list = [
W
Wu Yi 已提交
2529
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
2530 2531
        ]

X
Xin Pan 已提交
2532 2533 2534 2535 2536
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
2537 2538

        step_scope = parent_block.create_var(
2539 2540
            type=core.VarDesc.VarType.STEP_SCOPES
        )
2541
        conditional_block_op = parent_block.append_op(
Y
Yu Yang 已提交
2542 2543
            type='conditional_block',
            inputs={
2544 2545
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
2546
            },
2547
            outputs={'Out': out_list, 'Scope': [step_scope]},
2548 2549
            attrs={
                'sub_block': inside_block,
2550 2551 2552
                'is_scalar_condition': self.is_scalar_condition,
            },
        )
2553

2554
        if self.need_append_conditional_block_grad(inside_block):
2555 2556 2557
            self.append_conditional_block_grad(
                parent_block, inside_block, conditional_block_op
            )
2558 2559 2560

    def need_append_conditional_block_grad(self, inside_block):
        grad_sub_block_idx = inside_block.backward_block_idx
2561
        inside_block_idx = inside_block.idx
2562

2563 2564
        # if inside_block have grad_block and grad_block is not itself,
        # we will append conditional block grad.
2565 2566 2567
        return (
            grad_sub_block_idx != -1 and grad_sub_block_idx != inside_block_idx
        )
2568

2569 2570 2571
    def append_conditional_block_grad(
        self, parent_block, inside_block, conditional_block_op
    ):
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
        '''
        Append op `conditional_block_grad` manually.
        When `optimizer.minimize/append_backward` is called in Paddle control flow,
        grad ops will be appended before appending op `conditional_block` so that
        op `conditional_block_grad` can't be appended when calling
        `optimizer.minimize/append_backward`. After appending op `conditional_block`,
        `conditional_block_grad` is appended manually.

        Args:
            parent_block (Block): The block that `conditional_block_op` blongs to.
            inside_block (Block): The sub block of `conditional_block_op`.
            conditional_block_op (Operator): The forward op conditional_block.
        '''

        grad_sub_block_idx = inside_block.backward_block_idx
        grad_sub_block = self.helper.main_program.block(grad_sub_block_idx)

        intermediate = set()
        params = set()

        for each_op in grad_sub_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)

        param_list = []
        for inner_input_name in params:
            inner_var = parent_block._find_var_recursive(inner_input_name)
            if inner_var:
2607
                param_list.append(inner_var.name)
2608 2609

        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
2610 2611
            conditional_block_op.desc, set(), [grad_sub_block.desc]
        )
2612 2613 2614 2615 2616 2617 2618 2619 2620

        # append op_desc in grad_op_descs to target_block
        op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        new_op_desc = parent_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc[0])
        new_op_desc._set_attr(op_role_attr_name, backward)
        # set input and output manually
        new_op_desc.set_input('Input', param_list)
2621 2622 2623
        new_op_desc.set_output(
            'Input@GRAD', [param + "@GRAD" for param in param_list]
        )
2624 2625 2626

        new_vars = set()
        for grad_var_name in new_op_desc.output_arg_names():
2627 2628 2629 2630
            if (
                grad_sub_block.desc.has_var_recursive(grad_var_name.encode())
                or grad_var_name == core.empty_var_name()
            ):
2631
                continue
2632
            grad_sub_block.desc.var(grad_var_name.encode())
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
            new_vars.add(grad_var_name)
            if grad_var_name not in op_grad_to_var:
                continue

        # infer_shape and infer_type
        new_op_desc.infer_var_type(grad_sub_block.desc)
        new_op_desc.infer_shape(grad_sub_block.desc)

        for arg in new_op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_shape_(arg, grad_sub_block)

        self.helper.main_program._sync_with_cpp()

2647

2648
def copy_var_to_parent_block(var, layer_helper):
2649 2650
    if not isinstance(var, Variable):
        return var
2651 2652
    prog = layer_helper.main_program
    parent_idx = prog.current_block().parent_idx
2653 2654 2655
    assert (
        parent_idx >= 0
    ), "Got wrong parent block index when assigning var to parent scope in control_flow"
2656 2657
    parent_block = prog.block(parent_idx)

2658 2659 2660 2661
    if (
        var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        and parent_block._find_var_recursive(var.name)
    ):
2662 2663
        parent_block_var = var
    else:
2664 2665 2666
        parent_block_var = parent_block.create_var(
            dtype=var.dtype, shape=var.shape, type=var.type
        )
2667
        assign(var, parent_block_var)
2668 2669 2670
    return parent_block_var


2671
def cond(pred, true_fn=None, false_fn=None, name=None, return_names=None):
2672
    """
2673 2674 2675 2676 2677 2678 2679 2680 2681
    This API returns ``true_fn()`` if the predicate ``pred`` is true else
    ``false_fn()`` . Users could also set ``true_fn`` or ``false_fn`` to
    ``None`` if do nothing and this API will treat the callable simply returns
    ``None`` in this case.

    ``true_fn`` and ``false_fn`` should return same nest structure of tensors
    or both return ``None`` if user doens't like to return anything. A nest
    structure of tensors in PaddlePaddle is tensor(s), or tuple of tensors, or
    list of tensors.
2682 2683

    Note:
2684 2685 2686 2687
        1. The tuples or lists returned by ``true_fn`` and ``false_fn`` must have
        the same shape because of dataflow model of PaddlePaddle while the
        tensors in the tuples or the lists can have different shapes.

2688 2689 2690
        2. This API could be used under both static mode or dygraph mode. If it
        is in dygraph mode, the API only runs one branch based on condition.

2691
        3. If it is in static mode, any tensors or operations created outside
2692 2693 2694
        or inside of ``true_fn`` and ``false_fn`` will be in net building
        regardless of which branch is selected at runtime. This has frequently
        surprised users who expected a lazy semantics. For example:
2695 2696

        .. code-block:: python
2697 2698 2699 2700 2701

            import paddle

            a = paddle.zeros((1, 1))
            b = paddle.zeros((1, 1))
2702
            c = a * b
2703
            out = paddle.static.nn.cond(a < b, lambda: a + c, lambda: b * b)
2704

2705 2706 2707
        No matter whether ``a < b`` , ``c = a * b`` will be in net building and
        run. ``a + c`` and ``b * b`` will be in net building, but only one
        branch will be executed during runtime.
2708 2709

    Args:
2710
        pred(Tensor): A boolean tensor whose numel should be 1. The boolean
2711
            value determines whether to return the result of ``true_fn`` or
2712 2713 2714 2715 2716 2717
            ``false_fn`` .
        true_fn(callable, optional): A callable to be performed if ``pred`` is
            true. The default value is ``None`` .
        false_fn(callable, optional): A callable to be performed if ``pred`` is
            false. The default value is ``None`` .
        name(str, optional): The default value is ``None`` . Normally users
2718
             don't have to set this parameter. For more information, please
2719
             refer to :ref:`api_guide_Name` .
2720 2721 2722
        return_names(sequence of string, optional): The default value is ``None`` .
             Normally users don't have to set this parameters.  A sequence of strings
             to represents the name of returned vars.  The structure of sequence must
2723
             be same with return values of true_fn and false_fn.
2724 2725

    Returns:
2726
        Tensor|list(Tensor)|tuple(Tensor): returns ``true_fn()`` if the
2727
        predicate ``pred`` is true else ``false_fn()`` .
2728 2729 2730

    Raises:
        TypeError: if ``true_fn`` or ``false_fn`` is not callable.
2731 2732
        ValueError: if ``true_fn`` and ``false_fn`` don't return the same nest
            structure of tensors.
2733 2734 2735 2736

    Examples:
        .. code-block:: python

2737
            import paddle
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747

            #
            # pseudocode:
            # if 0.1 < 0.23:
            #     return 1, True
            # else:
            #     return 3, 2
            #

            def true_func():
2748 2749 2750 2751
                return paddle.full(shape=[1, 2], dtype='int32',
                                   fill_value=1), paddle.full(shape=[2, 3],
                                                              dtype='bool',
                                                              fill_value=True)
2752

2753 2754

            def false_func():
2755 2756 2757 2758 2759
                return paddle.full(shape=[3, 4], dtype='float32',
                                   fill_value=3), paddle.full(shape=[4, 5],
                                                              dtype='int64',
                                                              fill_value=2)

2760

2761 2762
            x = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
            y = paddle.full(shape=[1], dtype='float32', fill_value=0.23)
2763
            pred = paddle.less_than(x=x, y=y, name=None)
2764
            ret = paddle.static.nn.cond(pred, true_func, false_func)
2765
            # ret is a tuple containing 2 tensors
2766 2767
            # ret[0] = [[1 1]]
            # ret[1] = [[ True  True  True]
2768
            #           [ True  True  True]]
2769

2770
    """
J
Jiabin Yang 已提交
2771
    if _non_static_mode():
2772
        assert isinstance(pred, Variable), "The pred in cond must be Variable"
C
crystal 已提交
2773
        assert pred.size == 1, "condition input's numel should be 1"
2774 2775 2776 2777 2778
        pred = pred.numpy()[0]
        if pred:
            if true_fn is not None:
                if not callable(true_fn):
                    raise TypeError(
2779 2780 2781 2782
                        "The true_fn in cond must be callable, but received {}".format(
                            type(true_fn).__name__
                        )
                    )
2783 2784 2785 2786 2787
                return true_fn()
        else:
            if false_fn is not None:
                if not callable(false_fn):
                    raise TypeError(
2788 2789 2790 2791
                        "The false_fn in cond must be callable, but received {}".format(
                            type(false_fn).__name__
                        )
                    )
2792 2793 2794
                return false_fn()
        return None

2795 2796
    check_variable_and_dtype(pred, "pred", ['bool'], "fluid.layers.cond")
    check_type(name, "name", (str, type(None)), "fluid.layers.cond")
2797 2798 2799
    helper = LayerHelper('cond', **locals())
    true_output = None
    false_output = None
2800
    copy_to_parent_func = lambda var: copy_var_to_parent_block(var, helper)
2801 2802
    if true_fn is not None:
        if not callable(true_fn):
2803 2804
            raise TypeError(
                "The true_fn in cond must be callable, but received {}".format(
2805 2806 2807
                    type(true_fn).__name__
                )
            )
2808 2809 2810 2811
        true_cond_block = ConditionalBlock([pred], is_scalar_condition=True)
        with true_cond_block.block():
            origin_true_output = true_fn()
            if origin_true_output is not None:
2812 2813 2814
                true_output = map_structure(
                    copy_to_parent_func, origin_true_output
                )
2815 2816
    if false_fn is not None:
        if not callable(false_fn):
2817 2818
            raise TypeError(
                "The false_fn in cond must be callable, but received {}".format(
2819 2820 2821 2822
                    type(false_fn).__name__
                )
            )
        false_cond_block = ConditionalBlock(
2
201716010711 已提交
2823
            [paddle.logical_not(pred)], is_scalar_condition=True
2824
        )
2825 2826 2827
        with false_cond_block.block():
            origin_false_output = false_fn()
            if origin_false_output is not None:
2828 2829 2830
                false_output = map_structure(
                    copy_to_parent_func, origin_false_output
                )
2831 2832 2833 2834 2835 2836 2837

    if true_output is None and false_output is None:
        return None

    if true_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
2838 2839
            "true_fn returns None while false_fn returns non-None"
        )
2840 2841 2842
    if false_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
2843 2844
            "true_fn returns non-None while false_fn returns None"
        )
2845

2846
    # Merge true and false output if they are not None
2847
    if return_names is None:
2848
        is_dy2staic = False
2849
        return_names = ["no name"] * len(_to_sequence_except_dict(true_output))
2850
    else:
2851
        """
2852 2853
        dy2static will set the return_names and expand the return values to UndefinedVar.
        """
2854 2855 2856 2857 2858 2859 2860
        is_dy2staic = True

        # TODO:  expand_undefined_var will replace None to Undefinedvar(), to fix cases like:
        #       a = None
        #       if condition:
        #           a = 1
        # Because we can not use variable to express 'None'
2861
        true_output, false_output = expand_undefined_var(
2862 2863
            true_output, false_output, return_names
        )
2864

2865 2866 2867
    if len(_to_sequence_except_dict(true_output)) != len(
        _to_sequence_except_dict(false_output)
    ):
2868
        raise ValueError(
2869
            "true fn returns {} vars, but false fn returns {} vars, which is not equals".format(
2870 2871
                len(_to_sequence_except_dict(true_output)),
                len(_to_sequence_except_dict(false_output)),
2872 2873 2874
            )
        )
    for true_out, false_out, return_name in zip(
2875 2876 2877
        _to_sequence_except_dict(true_output),
        _to_sequence_except_dict(false_output),
        _to_sequence_except_dict(return_names),
2878
    ):
2879 2880 2881 2882
        try:
            assert_same_structure(true_out, false_out, check_types=False)
        except ValueError as e:
            raise ValueError(
2883 2884 2885 2886
                "Incompatible return values of `{}` in true_fn and false_fn in cond: {}".format(
                    return_name, e
                )
            )
2887

2888
    def check_ret_none(seq_true, seq_false, seq_names):
2889 2890 2891
        for f_true, f_false, f_name in zip(seq_true, seq_false, seq_names):
            f_true = flatten(f_true)
            f_false = flatten(f_false)
2892
            for idx in range(len(f_true)):
2893 2894 2895 2896 2897 2898
                if (
                    f_true[idx] is None
                    and f_false[idx] is not None
                    or f_false[idx] is None
                    and f_true[idx] is not None
                ):
2899 2900 2901 2902
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
2903
                            f_name,
2904 2905 2906 2907 2908 2909 2910 2911
                            type(f_true[idx]),
                            f_true[idx],
                            type(f_false[idx]),
                            f_false[idx],
                        )
                    )

    check_ret_none(
2912 2913 2914
        _to_sequence_except_dict(true_output),
        _to_sequence_except_dict(false_output),
        _to_sequence_except_dict(return_names),
2915
    )
2916 2917 2918

    if is_dy2staic:
        true_output, false_output = change_none_to_undefinedvar(
2919 2920
            true_output, false_output
        )
2921

2922
    mask = cast(pred, dtype='int32')
2923 2924 2925 2926 2927
    merge_func = (
        lambda name, false_var, true_var: select_input_with_buildin_type(
            [false_var, true_var], mask, name
        )
    )
2928 2929 2930 2931 2932

    def merge_every_var_list(false_vars, true_vars, name):
        return map_structure(partial(merge_func, name), false_vars, true_vars)

    merged_output = list(
2933 2934
        map(
            merge_every_var_list,
2935 2936 2937
            _to_sequence_except_dict(false_output),
            _to_sequence_except_dict(true_output),
            _to_sequence_except_dict(return_names),
2938 2939
        )
    )
2940
    merged_output = pack_sequence_as(false_output, flatten(merged_output))
2941 2942 2943
    return merged_output


2944 2945 2946 2947
def change_none_to_undefinedvar(nest1, nest2):
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar

    def map_fn(x):
2948 2949
        if x is None:
            return UndefinedVar("padding")
2950 2951 2952 2953 2954 2955 2956
        return x

    nest1_out = pack_sequence_as(nest1, list(map(map_fn, flatten(nest1))))
    nest2_out = pack_sequence_as(nest2, list(map(map_fn, flatten(nest2))))
    return nest1_out, nest2_out


2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
def _to_sequence_except_dict(x):
    """
    In this function, dict is not viewed as sequence.
    """
    if isinstance(x, dict):
        return [x]
    return to_sequence(x)


def _is_sequence_except_dict(x):
    """
    In this function, dict is not viewed as sequence.
    """
    if isinstance(x, dict):
        return False
    return is_sequence(x)


2975
def expand_undefined_var(nest1, nest2, names):
2976 2977 2978 2979
    """TODO: make this function recursively.
    nest1: Var1, (UndefinedVar, [1,2,3])
    nest2: Var2, ([1,2,3,4], UndefinedVar)
    In this case, we should not expand recursively.
2980
    """
2981
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar
2982 2983 2984
    from paddle.fluid.dygraph.dygraph_to_static.return_transformer import (
        RETURN_VALUE_PREFIX,
    )
2985 2986

    def pack_undefined_var_as(seq):
2987 2988 2989
        return pack_sequence_as(
            seq, [UndefinedVar("padding") for i in flatten(seq)]
        )
2990

2991
    def map_fn(n1, n2, name, order):
2992 2993 2994
        if not name.startswith(RETURN_VALUE_PREFIX) and (
            isinstance(n1, UndefinedVar) or n1 is None
        ):
2995 2996 2997 2998 2999 3000
            if n1 is None and n2 is not None:
                if order == 0:
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
3001 3002 3003
                            name, type(n1), n1, type(n2), n2
                        )
                    )
3004 3005 3006 3007 3008
                else:
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
3009 3010 3011
                            name, type(n2), n2, type(n1), n1
                        )
                    )
3012 3013 3014 3015
            return pack_undefined_var_as(n2)
        return n1

    nest1_out = list(
3016 3017
        map(
            map_fn,
3018 3019 3020 3021
            _to_sequence_except_dict(nest1),
            _to_sequence_except_dict(nest2),
            _to_sequence_except_dict(names),
            [0 for i in _to_sequence_except_dict(names)],
3022 3023
        )
    )
3024
    nest2_out = list(
3025 3026
        map(
            map_fn,
3027 3028 3029 3030
            _to_sequence_except_dict(nest2),
            _to_sequence_except_dict(nest1),
            _to_sequence_except_dict(names),
            [1 for i in _to_sequence_except_dict(names)],
3031 3032
        )
    )
3033
    if not _is_sequence_except_dict(nest1):
3034
        nest1_out = nest1_out[0]
3035
    if not _is_sequence_except_dict(nest2):
3036
        nest2_out = nest2_out[0]
3037 3038 3039
    return nest1_out, nest2_out


L
liym27 已提交
3040
def _error_message(what, arg_name, op_name, right_value, error_value):
3041 3042
    error_message = (
        "{what} of '{arg_name}' in {op_name} must be "
L
liym27 已提交
3043
        "{right_value}, but received: {error_value}.".format(
3044 3045 3046 3047 3048 3049 3050
            what=what,
            arg_name=arg_name,
            op_name=op_name,
            right_value=right_value,
            error_value=error_value,
        )
    )
L
liym27 已提交
3051 3052 3053 3054 3055 3056

    return error_message


def case(pred_fn_pairs, default=None, name=None):
    '''
3057 3058
    :api_attr: Static Graph

L
liym27 已提交
3059 3060 3061 3062 3063 3064 3065 3066
    This operator works like an if-elif-elif-else chain.

    Args:
        pred_fn_pairs(list|tuple): A list or tuple of (pred, fn) pairs. ``pred`` is a boolean Tensor with shape [1], ``fn`` is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3067
        Tensor|list(Tensor): Tensors returned by the callable from the first pair whose pred is True,
L
liym27 已提交
3068 3069 3070 3071 3072 3073 3074
        or Tensors returned by ``default`` if no pred in ``pred_fn_pairs`` is True and ``default`` is not None,
        or Tensors returned by the last callable in ``pred_fn_pairs``  if no pred in ``pred_fn_pairs`` is True and ``default`` is None.

    Raises:
        TypeError: If the type of ``pred_fn_pairs`` is not list or tuple.
        TypeError: If the type of elements in ``pred_fn_pairs`` is not tuple.
        TypeError: If the size of tuples in ``pred_fn_pairs`` is not 2.
3075
        TypeError: If the first element of 2-tuple in ``pred_fn_pairs`` is not a Tensor.
L
liym27 已提交
3076 3077 3078 3079 3080 3081
        TypeError: If the second element of 2-tuple in ``pred_fn_pairs`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

3082 3083 3084
            import paddle

            paddle.enable_static()
L
liym27 已提交
3085 3086

            def fn_1():
3087
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
3088 3089

            def fn_2():
3090
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
3091 3092

            def fn_3():
3093
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
3094

3095 3096 3097 3098
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()

            with paddle.static.program_guard(main_program, startup_program):
3099 3100 3101
                x = paddle.full(shape=[1], dtype='float32', fill_value=0.3)
                y = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
                z = paddle.full(shape=[1], dtype='float32', fill_value=0.2)
L
liym27 已提交
3102

3103 3104 3105
                pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = paddle.equal(x, y)      # false: 0.3 == 0.1
L
liym27 已提交
3106 3107

                # Call fn_1 because pred_1 is True
3108
                out_1 = paddle.static.nn.case(
L
liym27 已提交
3109 3110 3111 3112
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3)

                # Argument default is None and no pred in pred_fn_pairs is True. fn_3 will be called.
                # because fn_3 is the last callable in pred_fn_pairs.
3113
                out_2 = paddle.static.nn.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
L
liym27 已提交
3114

3115
                exe = paddle.static.Executor(paddle.CPUPlace())
L
liym27 已提交
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
                res_1, res_2 = exe.run(main_program, fetch_list=[out_1, out_2])
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [3 3 3]
    '''
    helper = LayerHelper('case', **locals())

    def _case_check_args(pred_fn_pairs, default):
        '''
        Check arguments pred_fn_pairs and default. Return canonical pre_fn_pairs and default.
        '''
3126
        check_type(pred_fn_pairs, 'pred_fn_pairs', (list, tuple), 'case')
L
liym27 已提交
3127 3128 3129 3130

        for pred_fn in pred_fn_pairs:
            if not isinstance(pred_fn, tuple):
                raise TypeError(
3131 3132 3133 3134 3135 3136 3137 3138
                    _error_message(
                        "The elements' type",
                        "pred_fn_pairs",
                        "case",
                        tuple,
                        type(pred_fn),
                    )
                )
L
liym27 已提交
3139 3140
            if len(pred_fn) != 2:
                raise TypeError(
3141 3142 3143 3144 3145 3146 3147 3148
                    _error_message(
                        "The tuple's size",
                        "pred_fn_pairs",
                        "case",
                        "2",
                        str(len(pred_fn)) + "-tuple",
                    )
                )
L
liym27 已提交
3149 3150 3151 3152
            pred, fn = pred_fn

            if not isinstance(pred, Variable):
                raise TypeError(
3153 3154 3155 3156 3157 3158 3159 3160
                    _error_message(
                        "The pred's type",
                        "pred_fn_pairs",
                        "case",
                        "boolean Variable",
                        type(pred),
                    )
                )
L
liym27 已提交
3161 3162 3163 3164

            if not callable(fn):
                raise TypeError(
                    "The fn for {} of pred_fn_pairs in Op(case) must"
3165 3166
                    " be callable.".format(pred.name)
                )
L
liym27 已提交
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187

        if default is None:
            default_index = len(pred_fn_pairs) - 1  # pick the last one
            default = pred_fn_pairs[default_index][1]
            pred_fn_pairs = pred_fn_pairs[:default_index]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        return pred_fn_pairs, default

    pred_fn_pairs, default = _case_check_args(pred_fn_pairs, default)

    false_fn = default
    for pred, true_fn in reversed(pred_fn_pairs):
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn

    return final_fn()


3188
class Switch:
Q
qiaolongfei 已提交
3189
    """
3190
    :api_attr: Static Graph
Q
qiaolongfei 已提交
3191

3192 3193 3194 3195 3196
    This class is used to implement Switch branch control function.
    Switch branch contains several case branches and one default branch.
    Switch control flow checks whether the case branch conditions are satisfied in turn,
    and only executes the statement after the first case branch that satisfies the conditions.
    If there is no case branch that satisfies the condition,
3197 3198
    only the statement following the default branch is executed.

3199 3200 3201 3202
    Note:
        A new OP :ref:`api_fluid_layers_case` is highly recommended instead of ``Switch`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_case` is easier to use and is called with less code but does the same thing as ``Switch`` .

3203
    Member Functions:
3204
        case(condition): The case branch of Switch whose parameter cond is a scalar Variable of bool type. Only if the cond of the current case branch is True and the cond of the previous case branch is False, the statement after the case branch will be executed, and the statement after the case branch will not be executed.
3205

3206 3207 3208 3209 3210
        default(): The default branch of Switch. When cond of all case branches is False, the statement after default branch is executed.

    Case and default functions can only be used inside the scope of Switch, as shown below:

    .. code-block:: python
3211

3212 3213 3214 3215 3216 3217 3218 3219 3220
        '''
        with fluid.layers.Switch() as switch:
            with switch.case(cond1):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            with switch.case(cond2):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
            with switch.default():
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
        '''
Q
qiaolongfei 已提交
3221

3222 3223
    Args:
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
Q
qiaolongfei 已提交
3224 3225 3226

    Examples:
        .. code-block:: python
3227

3228
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
3229

3230
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
3231 3232 3233 3234 3235
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
3236
            zero_var = fluid.layers.fill_constant(
3237
                shape=[1], dtype='float32', value=0.0)
3238
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
3239
                shape=[1], dtype='float32', value=1.0)
3240
            two_var = fluid.layers.fill_constant(
3241
                shape=[1], dtype='float32', value=2.0)
3242

3243
            global_step = fluid.layers.autoincreased_step_counter(counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
3244 3245

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
3246
                with switch.case(global_step == zero_var):
3247
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
3248
                with switch.default():
3249
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
3250

3251 3252 3253 3254 3255
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[lr])
            print(res) # [array([1.], dtype=float32)]
Q
qiaolongfei 已提交
3256 3257
    """

3258 3259 3260 3261 3262 3263 3264 3265 3266
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

3267
        check_variable_and_dtype(
3268 3269 3270 3271 3272
            condition,
            'condition',
            ['bool'],
            'the member function case of fluid.layers.Switch',
        )
3273

3274 3275
        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
2
201716010711 已提交
3276
            not_cond = paddle.logical_not(x=condition)
3277 3278 3279 3280
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
3281
            new_not_cond = logical_and(
2
201716010711 已提交
3282
                x=pre_not_cond, y=paddle.logical_not(x=condition)
3283
            )
3284 3285
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
3286
                [logical_and(x=pre_not_cond, y=condition)],
3287 3288
                is_scalar_condition=True,
            )
3289 3290 3291 3292 3293 3294 3295 3296 3297

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
3298 3299
            is_scalar_condition=True,
        )
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
3316 3317


3318
class IfElseBlockGuard:
Y
Yu Yang 已提交
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
3339 3340 3341 3342 3343
        self.ie.status = (
            IfElse.IN_IF_ELSE_TRUE_BLOCKS
            if self.is_true
            else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        )
Y
Yu Yang 已提交
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


3355
class IfElse:
X
Xin Pan 已提交
3356
    """
3357 3358
    :api_attr: Static Graph

3359 3360 3361 3362
    This class is used to implement IfElse branch control function. IfElse contains two blocks, true_block and false_block. IfElse will put data satisfying True or False conditions into different blocks to run.

    Cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the execution conditions of the corresponding part of the input data.

3363 3364 3365 3366
    Note:
        A new OP :ref:`api_fluid_layers_cond` is highly recommended instead of ``IfElse``. if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_cond` is easier to use and is called with less code but does the same thing as ``IfElse`` .

3367 3368 3369
    IfElse OP is different from other OPs in usage, which may cause some users confusion. Here is a simple example to illustrate this OP.

    .. code-block:: python
3370

3371 3372 3373 3374 3375 3376 3377 3378 3379
        # The following code completes the function: subtract 10 from the data greater than 0 in x, add 10 to the data less than 0 in x, and sum all the data.
        import numpy as np
        import paddle.fluid as fluid

        x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32', append_batch_size=False)
        y = fluid.layers.data(name='y', shape=[4, 1], dtype='float32', append_batch_size=False)

        x_d = np.array([[3], [1], [-2], [-3]]).astype(np.float32)
        y_d = np.zeros((4, 1)).astype(np.float32)
3380

3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
        # Compare the size of x, y pairs of elements, output cond, cond is shape [4, 1], data type bool 2-D tensor.
        # Based on the input data x_d, y_d, it can be inferred that the data in cond are [[true], [true], [false], [false]].
        cond = fluid.layers.greater_than(x, y)
        # Unlike other common OPs, ie below returned by the OP is an IfElse OP object
        ie = fluid.layers.IfElse(cond)

        with ie.true_block():
            # In this block, according to cond condition, the data corresponding to true dimension in X is obtained and subtracted by 10.
            out_1 = ie.input(x)
            out_1 = out_1 - 10
            ie.output(out_1)
        with ie.false_block():
            # In this block, according to cond condition, get the data of the corresponding condition in X as false dimension, and add 10
            out_1 = ie.input(x)
            out_1 = out_1 + 10
            ie.output(out_1)

        # According to cond condition, the data processed in the two blocks are merged. The output here is output, the type is List, and the element type in List is Variable.
3399
        output = ie() #  [array([[-7.], [-9.], [ 8.], [ 7.]], dtype=float32)]
3400 3401 3402 3403 3404 3405 3406 3407

        # Get the first Variable in the output List and add all elements.
        out = fluid.layers.reduce_sum(output[0])

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        res = exe.run(fluid.default_main_program(), feed={"x":x_d, "y":y_d}, fetch_list=[out])
3408
        print(res)
3409
        # [array([-1.], dtype=float32)]
X
Xin Pan 已提交
3410 3411

    Args:
3412 3413
        cond (Variable): cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the corresponding execution conditions of N input data. The data type is bool.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
3414

3415 3416
    Returns:
        Unlike other common OPs, the OP call returns an IfElse OP object (e.g. ie in the example), which branches the input data by calling the internal functions of the object ``true_block ()``, ``false_block ()``, ``input ()``, ``output ()``, and integrates the data processed by different branches as the overall output by calling the internal ``call ()`` function. The output type is a list, and the type of each element in the list is Variable.
X
Xin Pan 已提交
3417

3418 3419
    Internal Functions:
        The block is constructed by calling the ``with ie. true_block()`` function in the object, and the computational logic under condition true is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.
3420

3421 3422 3423 3424 3425 3426 3427
        The block is constructed by calling the ``with ie. false_block()`` function in the object, and the computational logic under condition false is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.

        ``Out = ie. input (x)`` will take out the data of the corresponding conditional dimension in X and put it into out, supporting the internal processing of multiple inputs in block.

        ``ie. output (out)`` writes the result to the output of the corresponding condition.

        There is a ``call ()`` function inside the object, that is, by calling ``output = ie ()``, all the outputs inside the block of False are fused as the whole output, the output type is a list, and the type of each element in the list is Variable.
3428

X
Xin Pan 已提交
3429
    """
3430

Y
Yu Yang 已提交
3431 3432 3433 3434
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

3435
    def __init__(self, cond, name=None):
3436 3437
        check_type(cond, "cond", Variable, "fluid.layers.IfElse")
        check_type(name, "name", (str, type(None)), "fluid.layers.IfElse")
3438
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
3450
            parent_block = self._parent_block()
Y
Yu Yang 已提交
3451
            out_true = parent_block.create_var(
3452 3453 3454 3455 3456
                name=unique_name.generate_with_ignorable_key(
                    'ifelse_input' + self.helper.name
                ),
                dtype=x.dtype,
            )
Y
Yu Yang 已提交
3457 3458

            out_false = parent_block.create_var(
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
                name=unique_name.generate_with_ignorable_key(
                    'ifelse_input' + self.helper.name
                ),
                dtype=x.dtype,
            )
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true, 'OutFalse': out_false},
                attrs={'level': 0},
            )
Y
Yu Yang 已提交
3473 3474 3475 3476 3477 3478 3479 3480 3481
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

3482
    def _parent_block(self):
Y
Yu Yang 已提交
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

3496 3497 3498
        out_table = self.output_table[
            1 if self.status == self.IN_IF_ELSE_TRUE_BLOCKS else 0
        ]
3499
        parent_block = self._parent_block()
Y
Yu Yang 已提交
3500
        for each_out in outs:
3501 3502 3503
            check_type(
                each_out, "each output", Variable, "fluid.layers.IfElse.output"
            )
Y
Yu Yang 已提交
3504 3505
            # create outside tensor
            outside_out = parent_block.create_var(
3506 3507 3508 3509 3510
                name=unique_name.generate_with_ignorable_key(
                    "_".join([self.helper.name, 'output'])
                ),
                dtype=each_out.dtype,
            )
Y
Yu Yang 已提交
3511 3512 3513
            out_table.append(outside_out)

            # assign local var to outside
3514
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
3515 3516 3517 3518

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
3519
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
3520
        if false_len == 0 and true_len == 0:
3521 3522 3523
            raise ValueError(
                "Must invoke true_block/false_block before " "__call__"
            )
Y
Yu Yang 已提交
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
3534 3535 3536 3537 3538 3539 3540 3541
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
                    level=0,
                )
            )
Y
Yu Yang 已提交
3542
        return rlist
3543 3544


3545
class DynamicRNN:
Y
yuyang18 已提交
3546
    """
3547 3548
    :api_attr: Static Graph

3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
    **Note: the input of this class should be LoDTensor which holds the
    information of variable-length sequences. If the input is fixed-length Tensor,
    please use StaticRNN (fluid.layers.** :ref:`api_fluid_layers_StaticRNN` **) for
    better performance.**

    DynamicRNN can process a minibatch of variable-length sequences.
    The length of each sample can be different and is recorded in LoD.
    In DynamicRNN, an input sequence will be unfolded into time steps and users
    can define how to process each time step in :code:`block()` .
    The total number of time steps is determined by the longest sequence.
    DynamicRNN will not pad all sequences to the same length, instead it will
    sort the sequences internally by the sequence length in descending order.
T
tianshuo78520a 已提交
3561
    The input sequences will be shrank because only sequences of which the
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
    length is larger than the time step will participate the remaining calculation.

    If defined :code:`drnn = DynamicRNN()`, then users can call :code:`drnn()`
    to obtain the result sequences. It is a LoDTensor gained by merging all
    time steps's output. When RNN's input sequence x meets :code:`x.lod_level == 1`,
    the output LoDTensor will have the same LoD with x. The result of :code:`drnn()`
    includes RNN's outputs of all time steps, users can call
    :ref:`api_fluid_layers_sequence_last_step` to extract the data of the last time step.

    Warning:
        Currently it is not supported to set :code:`is_sparse = True` of any
        layers defined within DynamicRNN's :code:`block` function.
Y
yuyang18 已提交
3574

3575 3576 3577 3578
    Args:
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information,
            please refer to :ref:`api_guide_Name` .
3579 3580 3581 3582

    Examples:
        .. code-block:: python

3583
            import paddle.fluid as fluid
3584

3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
            sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
            encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
            decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

            drnn = fluid.layers.DynamicRNN()
            with drnn.block():
                # Set sentence as RNN's input, each time step processes a word from the sentence
                current_word = drnn.step_input(sentence)
                # Set encode_proj as RNN's static input
                encoder_word = drnn.static_input(encoder_proj)
                # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                memory = drnn.memory(init=decoder_boot, need_reorder=True)
                fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                fc_2 = fluid.layers.fc(input=current_word, size=30)
                decoder_inputs = fc_1 + fc_2
                hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                # Update memory with hidden
                drnn.update_memory(ex_mem=memory, new_mem=hidden)
                out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                # Set hidden and out as RNN's outputs
                drnn.output(hidden, out)

            # Get RNN's result
            hidden, out = drnn()
            # Get RNN's result of the last time step
            last = fluid.layers.sequence_last_step(out)
Y
yuyang18 已提交
3611
    """
3612

3613 3614 3615 3616
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

3617 3618
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
3619 3620 3621 3622
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
3623
        self.zero_idx = None
3624 3625 3626
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
3627
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
3628 3629 3630 3631 3632
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

3633
    def step_input(self, x, level=0):
3634
        r"""
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
        This function is used to set sequence x as DynamicRNN's input.
        The maximum sequence length in x determines the number of time steps
        the RNN unit will be executed. DynamicRNN can take multiple inputs.
        When all inputs' :code:`lod_level` are 1, all inputs should hold the
        same LoD. When :code:`x.lod_level >= 2` , the input sequence will be
        unfold along specified level, and the slice of each time step is a
        LoDTensor whose lod_level is :code:`x.lod_level - level - 1` .
        In this case, the specified LoD level of multiple inputs should be the same.

        - Case 1:

        .. code-block:: text

            # input, where Si is slice data of shape [1, N]
            level = 0
            x.lod = [[2, 1, 3]]
            x.shape = [6, N]
            x.data = [[S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2],
                      [S2]]

            # output
            # step 0, time step data of 3 sequences
            out.lod = [[]]
            out.shape = [3, N]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, time step data of 2 sequences
            out.lod = [[]]
            out.shape = [2, N]
            out.data = [[S2],
                        [S0]]

            # step 2, time step data of 1 sequences
            out.lod = [[]]
            out.shape = [1, N]
            out.data = [[S2]]

H
haowang101779990 已提交
3678

Y
yuyang18 已提交
3679
        Args:
3680 3681 3682 3683 3684 3685 3686
            x (Variable): The input LoDTensor which holds information of a
                minibatch of variable-length sequences and should meet :code:`x.lod_level >= 1` .
                When RNN has multiple inputs, the first dimension should match
                across all inputs, but other shape components may differ.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
            level (int, optional): The level of lod used to split steps.
                It should be in range :math:`[0, x.lod\_level)` . The default value is 0.
Y
yuyang18 已提交
3687 3688

        Returns:
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
            Variable: The current time step in the input sequence. If there are :code:`num_sequences` \
                sequences in x whose length is larger than :code:`step_idx` , the returned Variable \
                will only hold the :code:`step_idx` -th time step of those `num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod_level == 1` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`step_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.

        Examples:
            ..  code-block:: python

                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 1], dtype='int64', lod_level=1)
                embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set embedding as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(embedding)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 200],
                    # where batch_size is the number of sequences in embedding.
                    memory = drnn.memory(shape=[200])
                    hidden = fluid.layers.fc(input=[word, memory], size=200, act='relu')
                    # Update memory to hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3723
        """
3724
        self._assert_in_rnn_block_("step_input")
3725
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.step_input()')
3726 3727 3728
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
3729
                name=unique_name.generate('lod_rank_table'),
3730 3731
                type=core.VarDesc.VarType.LOD_RANK_TABLE,
            )
3732
            self.lod_rank_table.stop_gradient = True
3733 3734 3735 3736 3737 3738
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
                outputs={"Out": self.lod_rank_table},
                attrs={"level": level},
            )
3739
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
3740
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
3741 3742
                dtype='int64',
            )
3743
            self.max_seq_len.stop_gradient = False
3744 3745 3746 3747 3748
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len},
            )
3749
            self.cond.stop_gradient = True
3750 3751 3752 3753 3754 3755
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx, 'Y': self.max_seq_len},
                outputs={'Out': self.cond},
                attrs={'force_cpu': True},
            )
3756 3757

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
3758
            name=unique_name.generate('dynamic_rnn_input_array'),
3759
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
3760 3761
            dtype=x.dtype,
        )
3762
        self.input_array.append((input_array, x.dtype))
3763 3764 3765 3766 3767
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x, 'RankTable': self.lod_rank_table},
            outputs={'Out': input_array},
        )
3768
        return array_read(array=input_array, i=self.step_idx)
3769

Y
yangyaming 已提交
3770
    def static_input(self, x):
3771
        r"""
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
        This function is used to set x as DynamicRNN's static input. It is optional.

        - Case 1, set static input with LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[3, 1, 2]]
            x.shape = [6, M]
            x.data = [[S0],
                      [S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[2, 3, 1]]
            out.shape = [6, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[2, 3]]
            out.shape = [5, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[2]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S2]]


        - Case 2, set static input without LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[]]
            x.shape = [3, M]
            x.data = [[S0],
                      [S1],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[]]
            out.shape = [3, M]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[]]
            out.shape = [1, M]
            out.data = [[S2]]

H
haowang101779990 已提交
3845

Y
yuyang18 已提交
3846
        Args:
3847 3848 3849 3850
            x (Variable): The static input LoDTensor which should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` ). If the LoD is None,
                the input x will be treated as a minibatch with :code:`x.shape[0]` sequences of length 1.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
3851 3852

        Returns:
T
tianshuo78520a 已提交
3853
            Variable: The input LoDTensor after sorted and shrank. If there are :code:`num_sequences` \
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
                the static input Tensor will be sorted to the same order as RNN's input and \
                will only retain data corresponding to those :code:`num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod == None` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`static_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.
            RuntimeError: When :code:`static_input()` is called before :code:`step_input()` .
3865 3866 3867 3868

        Examples:
            .. code-block:: python

3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
                decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    current_word = drnn.step_input(sentence)
                    # Set encode_proj as RNN's static input
                    encoder_word = drnn.static_input(encoder_proj)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=decoder_boot, need_reorder=True)
                    fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                    fc_2 = fluid.layers.fc(input=current_word, size=30)
                    decoder_inputs = fc_1 + fc_2
                    hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                    # Set out as RNN's output
                    drnn.output(out)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3895
        """
Y
yangyaming 已提交
3896
        self._assert_in_rnn_block_("static_input")
3897
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.static_input()')
Y
yangyaming 已提交
3898 3899
        if self.lod_rank_table is None:
            raise RuntimeError(
3900 3901
                "static_input() must be called after step_input()."
            )
Y
yangyaming 已提交
3902 3903
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
3904
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
3905
            type=core.VarDesc.VarType.LOD_TENSOR,
3906 3907 3908 3909 3910 3911 3912
            dtype=x.dtype,
        )
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x], 'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]},
        )
Y
yangyaming 已提交
3913 3914
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
3915
    @signature_safe_contextmanager
3916
    def block(self):
Y
yuyang18 已提交
3917
        """
3918 3919 3920 3921 3922 3923
        The function is used to list the operations executed during
        each time step in RNN. The operation list will be executed :code:`max_sequence_len`
        times (where :code:`max_sequence_len` is the maximum length of RNN's input sequences).

        Raises:
            ValueError: When :code:`block()` is called multi-times.
Y
yuyang18 已提交
3924
        """
3925 3926
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
3927 3928 3929
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True
        )
3930 3931 3932 3933
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
3934
            increment(x=self.step_idx, value=1.0, in_place=True)
3935 3936

            for new_mem, mem_array in self.mem_link:
3937 3938
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

3939 3940 3941 3942 3943 3944
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond,
            )
3945 3946 3947 3948

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
3949 3950
                array_to_lod_tensor(x=each_array, table=self.lod_rank_table)
            )
3951 3952

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
3953
        """
T
tianshuo78520a 已提交
3954
        This function is used to get the output  sequences of DynamicRNN.
3955 3956 3957 3958 3959 3960 3961 3962 3963

        Args:
            None

        Returns:
            Variable or Variable list: RNN's output sequences.

        Raises:
            ValueError: When :code:`__call__()` is called before :code:`block()` .
Y
yuyang18 已提交
3964
        """
3965
        if self.status != DynamicRNN.AFTER_RNN:
3966 3967 3968 3969 3970 3971
            raise ValueError(
                (
                    "Output of the dynamic RNN can only be visited "
                    "outside the rnn block."
                )
            )
3972 3973 3974 3975 3976
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

3977 3978 3979 3980 3981 3982 3983 3984
    def memory(
        self,
        init=None,
        shape=None,
        value=0.0,
        need_reorder=False,
        dtype='float32',
    ):
3985
        r"""
3986 3987 3988
        Create a memory Variable for DynamicRNN to deliver data cross time steps.
        It can be initialized by an existing Tensor or a constant Tensor of given
        dtype and shape.
Y
yuyang18 已提交
3989

3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
        Args:
            init (Variable, optional): LoDTensor used to initialize the memory.
                If init is not None, it should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` )
                and the memory will be initialized to it. If init's LoD is None,
                it will be treated as a minibatch with :code:`init.shape[0]` sequences
                of length 1. The default value is None.
            shape (list|tuple, optional): When init is None, it is used to specify
                the memory's shape. Note that the shape does not include the batch_size.
                If setting shape to :math:`\{D_1, D_2, ...\}` , the shape of memory Tensor
                will be :math:`\{batch\_size, D_1, D_2, ...\}` , where batch_size is
                determined by RNN's input sequences. The default value is None.
T
tianshuo78520a 已提交
4002
            value (float, optional): When init is None, it is used as initialized value
4003 4004
                of memory. The default value is 0.0.
            need_reorder (bool, optional): When init is not None, it determines whether
T
tianshuo78520a 已提交
4005
                the memory needs to reorder like the RNN's input sequences. It should be
4006 4007 4008 4009 4010 4011 4012
                set to True when the initialized memory depends on the order of input samples.
                The default value is False.
            dtype (str|numpy.dtype, optional): When init is None, it is used to set the
                data type of memory. The default value is "float32". Optional data types
                are: "float32", "float64", "int32", "int64".

        Returns:
T
tianshuo78520a 已提交
4013
            Variable: The memory LoDTensor after shrank.  If there are :code:`num_sequences` \
4014
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
T
tianshuo78520a 已提交
4015
                the memory Tensor also need to be shrank and will only retain data \
4016 4017 4018 4019 4020 4021
                corresponding to those :code:`num_sequences` sequences.

        Raises:
            ValueError: When :code:`memory()` is called outside :code:`block()` .
            TypeError: When init is set and is not a Variable.
            ValueError: When :code:`memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
4022

4023 4024 4025
        Examples:
            .. code-block:: python

4026
                import paddle.fluid as fluid
4027

4028 4029
                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                boot_memory = fluid.data(name='boot', shape=[None, 10], dtype='float32')
4030

4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=boot_memory, need_reorder=True)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)
Y
yuyang18 已提交
4042

4043 4044
                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
4045 4046


4047 4048
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
4049

4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 10],
                    # where batch_size is the number of sequences in sentence.
                    memory = drnn.memory(shape=[10], dtype='float32', value=0)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
4069
        """
4070
        self._assert_in_rnn_block_('memory')
4071
        self._init_zero_idx_()
4072
        if shape is not None:
4073 4074 4075 4076 4077 4078
            check_type(
                shape,
                'shape',
                (list, tuple),
                'fluid.layers.DynamicRNN.memory()',
            )
4079
        if init is not None:
4080 4081 4082
            check_type(
                init, 'init', Variable, 'fluid.layers.DynamicRNN.memory()'
            )
4083
            parent_block = self._parent_block_()
4084 4085 4086 4087 4088 4089
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
4090 4091
                        'memory(init=init, need_reordered=True, ...).'
                    )
4092
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
4093
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
4094
                    type=core.VarDesc.VarType.LOD_TENSOR,
4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
                    dtype=init.dtype,
                )
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table],
                    },
                    outputs={'Out': [init_reordered]},
                )
4105
                init_tensor = init_reordered
4106
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
4107
                name=unique_name.generate('dynamic_rnn_mem_array'),
4108
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
4109 4110 4111 4112 4113 4114 4115
                dtype=init.dtype,
            )
            parent_block.append_op(
                type='write_to_array',
                inputs={'X': init_tensor, 'I': self.zero_idx},
                outputs={'Out': mem_array},
            )
4116
            retv = array_read(array=mem_array, i=self.step_idx)
4117 4118 4119
            retv = shrink_memory(
                x=retv, i=self.step_idx, table=self.lod_rank_table
            )
4120 4121 4122 4123 4124 4125 4126 4127 4128
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
4129 4130
                name=unique_name.generate('mem_init'), dtype=dtype
            )
4131
            arr, dtype = self.input_array[0]
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype
            )
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr], 'I': [self.zero_idx]},
                outputs={'Out': [in0]},
            )
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype,
                },
            )
4150 4151 4152
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
4153
        """
4154 4155
        Update the memory which need to be delivered across time steps.

Y
yuyang18 已提交
4156
        Args:
4157 4158 4159
            ex_mem (Variable): The memory data of previous time step.
            new_mem (Variable): The new memory data produced in current time step.
                The shape and data type of ex_mem and new_mem should be the same.
Y
yuyang18 已提交
4160 4161 4162

        Returns:
            None
4163

4164 4165 4166 4167 4168
        Raises:
            ValueError: When :code:`update_memory()` is called outside :code:`block()` .
            TypeError: When :code:`ex_mem` or :code:`new_mem` is not a Variable.
            ValueError: When :code:`ex_mem` is defined by :code:`memory()` .
            ValueError: When :code:`update_memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
4169
        """
4170
        self._assert_in_rnn_block_('update_memory')
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
        check_type(
            ex_mem,
            'ex_mem',
            Variable,
            'fluid.layers.DynamicRNN.update_memory()',
        )
        check_type(
            new_mem,
            'new_mem',
            Variable,
            'fluid.layers.DynamicRNN.update_memory()',
        )
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
4193
        """
4194
        This function is used to set :code:`outputs` as RNN's output.
Y
yuyang18 已提交
4195 4196

        Args:
4197 4198
            *outputs (Variable ...): The output Tensor. DynamicRNN can mark multiple
                Variables as its output.
Y
yuyang18 已提交
4199 4200 4201

        Returns:
            None
4202 4203 4204

        Raises:
            ValueError: When :code:`output()` is called outside :code:`block()` .
Y
yuyang18 已提交
4205
        """
4206 4207 4208
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
4209 4210 4211
            check_type(
                each, "outputs", Variable, "fluid.layers.DynamicRNN.output"
            )
4212
            outside_array = parent_block.create_var(
4213 4214 4215
                name=unique_name.generate_with_ignorable_key(
                    "_".join([self.helper.name, "output_array", each.name])
                ),
4216
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
4217 4218
                dtype=each.dtype,
            )
4219 4220 4221
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

4222 4223 4224 4225
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
                name=unique_name.generate('zero_idx'), dtype='int64'
            )
            parent_block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [self.zero_idx]},
                attrs={
                    'shape': [1],
                    'dtype': self.zero_idx.dtype,
                    'value': float(0),
                    'force_cpu': True,
                },
            )
4239

4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
4250
            raise ValueError(
4251 4252
                "{0} can only be invoked inside rnn block.".format(method)
            )
Y
Yang Yu 已提交
4253 4254


L
liym27 已提交
4255 4256
def switch_case(branch_index, branch_fns, default=None, name=None):
    '''
4257 4258
    :api_attr: Static Graph

L
liym27 已提交
4259 4260 4261
    This operator is like a C++ switch/case statement.

    Args:
4262
        branch_index(Tensor): A Tensor with shape [1] to specify which branch to execute. The data type is ``int32``, ``int64`` or ``uint8``.
L
liym27 已提交
4263 4264 4265 4266 4267
        branch_fns(dict|list|tuple): If it's a list or tuple, the elements in it could be pairs of (int, callable) or simple callables whose actual index will be used as the index of callable. If it's a dict, its key is a python integer and the value is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4268
        Tensor|list(Tensor): Tensors returned by the callable specified by ``branch_index`` in ``branch_fns``,
L
liym27 已提交
4269 4270 4271 4272
        or Tensors returned by ``default`` if ``default`` is not None and no index matches in ``branch_fns``,
        or Tensors returned by the callable with the max index in ``branch_fns`` if ``default`` is None and no index matches in ``branch_fns``.

    Raises:
4273
        TypeError: If the type of ``branch_index`` is not Tensor.
L
liym27 已提交
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
        TypeError: If the data type of ``branch_index`` is not ``int32``, ``int64`` or ``uint8``.
        TypeError: If the type of ``branch_fns`` is not dict, list or tuple.
        TypeError: If the elements of ``branch_fns`` is not 2-tuple.
        TypeError: If the first element of 2-tuple in ``branch_fns`` is not integer.
        ValueError: If the first element of 2-tuple in ``branch_fns`` is not unique.
        TypeError: If the second element of 2-tuple in ``branch_fns`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

4285 4286 4287
            import paddle

            paddle.enable_static()
4288

L
liym27 已提交
4289
            def fn_1():
4290
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
4291 4292

            def fn_2():
4293
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
4294 4295

            def fn_3():
4296
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
4297

4298 4299 4300
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()
            with paddle.static.program_guard(main_program, startup_program):
4301 4302
                index_1 = paddle.full(shape=[1], dtype='int32', fill_value=1)
                index_2 = paddle.full(shape=[1], dtype='int32', fill_value=2)
L
liym27 已提交
4303

4304
                out_1 = paddle.static.nn.switch_case(
L
liym27 已提交
4305 4306 4307 4308
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3)

4309
                out_2 = paddle.static.nn.switch_case(
L
liym27 已提交
4310 4311 4312 4313 4314
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3)

                # Argument default is None and no index matches. fn_3 will be called because of the max index 7.
4315
                out_3 = paddle.static.nn.switch_case(
L
liym27 已提交
4316 4317 4318
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)])

4319
                exe = paddle.static.Executor(paddle.CPUPlace())
4320
                res_1, res_2, res_3 = exe.run(main_program, fetch_list=[out_1, out_2, out_3])
L
liym27 已提交
4321 4322 4323 4324 4325 4326 4327 4328
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [[2 2] [2 2]]
                print(res_3)  # [3 3 3]
    '''
    helper = LayerHelper('switch_case', **locals())

    def _check_args(branch_index, branch_fns, default):

4329 4330 4331 4332 4333 4334
        check_variable_and_dtype(
            branch_index,
            'branch_index',
            ['uint8', 'int32', 'int64'],
            'switch_case',
        )
L
liym27 已提交
4335 4336 4337 4338

        if convert_dtype(branch_index.dtype) != "int64":
            branch_index = cast(branch_index, "int64")

4339
        check_type(branch_fns, 'branch_fns', (list, tuple, dict), 'switch_case')
L
liym27 已提交
4340

4341 4342 4343
        branch_fns = (
            branch_fns.items() if isinstance(branch_fns, dict) else branch_fns
        )
L
liym27 已提交
4344

4345 4346 4347 4348 4349
        branch_fns = (
            list(enumerate(branch_fns))
            if all(callable(fn) for fn in branch_fns)
            else branch_fns
        )
L
liym27 已提交
4350 4351 4352 4353 4354

        keys_of_fns = []
        for index_fn_pair in branch_fns:
            if not isinstance(index_fn_pair, tuple):
                raise TypeError(
4355 4356 4357 4358 4359 4360 4361 4362
                    _error_message(
                        "The elements' type",
                        "branch_fns",
                        "switch_case",
                        tuple,
                        type(branch_fns),
                    )
                )
L
liym27 已提交
4363 4364 4365

            if len(index_fn_pair) != 2:
                raise TypeError(
4366 4367 4368 4369 4370 4371 4372 4373
                    _error_message(
                        "The tuple's size",
                        "branch_fns",
                        "switch_case",
                        "2",
                        str(len(index_fn_pair)) + "-tuple",
                    )
                )
L
liym27 已提交
4374 4375 4376 4377 4378

            key, fn = index_fn_pair

            if not isinstance(key, int):
                raise TypeError(
4379 4380 4381 4382 4383 4384 4385 4386
                    _error_message(
                        "The key's type",
                        "branch_fns",
                        "switch_case",
                        int,
                        type(key),
                    )
                )
L
liym27 已提交
4387 4388 4389

            if key in keys_of_fns:
                raise ValueError(
4390 4391 4392 4393
                    "The key in 'branch_fns' must be unique, but '{}' appears more than once.".format(
                        key
                    )
                )
L
liym27 已提交
4394 4395 4396 4397 4398
            else:
                keys_of_fns.append(key)

            if not callable(fn):
                raise TypeError(
4399 4400
                    _error_message(
                        "The type of function for key {}".format(key),
4401 4402 4403 4404 4405 4406
                        "branch_fns",
                        "switch_case",
                        "callable",
                        type(fn),
                    )
                )
L
liym27 已提交
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430

        if default is None:
            default = sorted(branch_fns)[-1][1]
            branch_fns = sorted(branch_fns)[:-1]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        pred_fn_pairs = []
        for index, fn in branch_fns:
            new_index = fill_constant(shape=[1], dtype="int64", value=index)
            pred = equal(branch_index, new_index)
            pred_fn_pairs.append((pred, fn))

        return pred_fn_pairs, default

    pred_fn_pairs, default = _check_args(branch_index, branch_fns, default)
    false_fn = default
    for pred, true_fn in pred_fn_pairs:
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn
    return final_fn()


4431
@templatedoc()
Y
Yang Yu 已提交
4432
def reorder_lod_tensor_by_rank(x, rank_table):
4433 4434 4435 4436
    """
    ${comment}

    Args:
4437 4438
        x(${x_type}): ${x_comment}.
        rank_table(${rank_table_type}): ${rank_table_comment}.
4439

4440
    Returns:
4441
        out(${out_type}): ${out_comment}.
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
4455 4456

    check_type(x, 'x', (Variable), 'reorder_lod_tensor_by_rank')
4457 4458 4459
    check_type(
        rank_table, 'rank_table', (Variable), 'reorder_lod_tensor_by_rank'
    )
4460 4461 4462
    if rank_table.type != core.VarDesc.VarType.LOD_RANK_TABLE:
        raise TypeError("The type of rank_table should be LOD_RANK_TABLE.")

Y
Yang Yu 已提交
4463 4464
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())

X
Xin Pan 已提交
4465
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
4466 4467 4468 4469 4470
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x], 'RankTable': [rank_table]},
        outputs={'Out': [out]},
    )
Y
Yang Yu 已提交
4471
    return out
4472 4473


4474
def is_empty(x, name=None):
4475
    """
4476

4477
    Test whether a Tensor is empty.
4478 4479

    Args:
4480 4481 4482 4483
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .
4484 4485

    Returns:
4486
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.
4487 4488 4489 4490

    Examples:
        .. code-block:: python

4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
            print("res:", res)
            # ('res:', Tensor: eager_tmp_1
            #    - place: CPUPlace
            #    - shape: [1]
            #    - layout: NCHW
            #    - dtype: bool
            #    - data: [0])
4502

4503
    """
H
hong 已提交
4504
    if in_dygraph_mode():
W
wanghuancoder 已提交
4505
        return _C_ops.is_empty(x)
4506 4507
    if _in_legacy_dygraph():
        return _legacy_C_ops.is_empty(x)
4508

4509 4510 4511
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'is_empty'
    )
4512 4513
    check_type(name, "name", (str, type(None)), "is_empty")

4514
    helper = LayerHelper("is_empty", **locals())
4515 4516
    cond = helper.create_variable_for_type_inference(dtype='bool')
    cond.stop_gradient = True
4517 4518 4519
    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]}
    )
4520
    return cond