Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1957192f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1957192f
编写于
11月 07, 2019
作者:
H
Huihuang Zheng
提交者:
GitHub
11月 07, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add select_input_op and select_output_op (#21016)
These ops are useful in control flow.
上级
fc02c299
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
585 addition
and
50 deletion
+585
-50
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+1
-0
paddle/fluid/operators/assign_op.cc
paddle/fluid/operators/assign_op.cc
+4
-50
paddle/fluid/operators/assign_op.h
paddle/fluid/operators/assign_op.h
+72
-0
paddle/fluid/operators/assign_op_test.cc
paddle/fluid/operators/assign_op_test.cc
+118
-0
paddle/fluid/operators/select_input_op.cc
paddle/fluid/operators/select_input_op.cc
+114
-0
paddle/fluid/operators/select_op_helper.h
paddle/fluid/operators/select_op_helper.h
+47
-0
paddle/fluid/operators/select_output_op.cc
paddle/fluid/operators/select_output_op.cc
+110
-0
python/paddle/fluid/layers/control_flow.py
python/paddle/fluid/layers/control_flow.py
+54
-0
python/paddle/fluid/tests/unittests/test_select_input_output_op.py
...ddle/fluid/tests/unittests/test_select_input_output_op.py
+65
-0
未找到文件。
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
1957192f
...
...
@@ -107,6 +107,7 @@ set(COMMON_OP_DEPS ${COMMON_OP_DEPS} layer)
set
(
OPERATOR_DEPS
${
OPERATOR_DEPS
}
${
COMMON_OP_DEPS
}
)
set
(
GLOB_OPERATOR_DEPS
${
OPERATOR_DEPS
}
CACHE INTERNAL
"Global Op dependencies"
)
cc_test
(
assign_op_test SRCS assign_op_test.cc DEPS assign_op
)
cc_test
(
gather_test SRCS gather_test.cc DEPS tensor
)
cc_test
(
scatter_test SRCS scatter_test.cc DEPS tensor math_function
)
cc_test
(
beam_search_decode_op_test SRCS beam_search_decode_op_test.cc DEPS lod_tensor
)
...
...
paddle/fluid/operators/assign_op.cc
浏览文件 @
1957192f
...
...
@@ -12,59 +12,13 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/
framework/data_type
.h"
#include "paddle/fluid/framework/op_registry.h"
#include
"paddle/fluid/framework/var_type.h"
#include
"paddle/fluid/platform/device_context.h"
#include "paddle/fluid/
operators/assign_op
.h"
#include
<memory>
#include
<string>
namespace
paddle
{
namespace
operators
{
class
AssignFunctor
{
public:
AssignFunctor
(
framework
::
Variable
*
out
,
const
platform
::
DeviceContext
&
dev_ctx
)
:
out_
(
out
),
dev_ctx_
(
dev_ctx
)
{}
void
operator
()(
const
framework
::
LoDTensor
&
lod_tensor
)
const
{
auto
&
out_tensor
=
*
out_
->
GetMutable
<
framework
::
LoDTensor
>
();
copy_tensor
(
lod_tensor
,
&
out_tensor
);
}
void
operator
()(
const
framework
::
LoDTensorArray
&
array
)
const
{
auto
&
out_array
=
*
out_
->
GetMutable
<
framework
::
LoDTensorArray
>
();
out_array
.
resize
(
array
.
size
());
for
(
size_t
i
=
0
;
i
<
array
.
size
();
++
i
)
{
copy_tensor
(
array
[
i
],
&
out_array
[
i
]);
}
}
void
operator
()(
const
framework
::
SelectedRows
&
rows
)
const
{
framework
::
SelectedRows
&
out_rows
=
*
out_
->
GetMutable
<
framework
::
SelectedRows
>
();
out_rows
.
set_rows
(
rows
.
rows
());
out_rows
.
set_height
(
rows
.
height
());
auto
&
t
=
rows
.
value
();
auto
*
m
=
out_rows
.
mutable_value
();
framework
::
TensorCopy
(
t
,
t
.
place
(),
dev_ctx_
,
m
);
}
template
<
typename
T
>
void
operator
()(
const
T
&
v
)
const
{
PADDLE_THROW
(
"Not support type for assign op %s"
,
typeid
(
T
).
name
());
}
private:
void
copy_tensor
(
const
framework
::
LoDTensor
&
lod_tensor
,
framework
::
LoDTensor
*
out
)
const
{
if
(
lod_tensor
.
numel
()
==
0
)
return
;
auto
&
out_tensor
=
*
out
;
TensorCopy
(
lod_tensor
,
lod_tensor
.
place
(),
dev_ctx_
,
&
out_tensor
);
out_tensor
.
set_lod
(
lod_tensor
.
lod
());
}
framework
::
Variable
*
out_
;
const
platform
::
DeviceContext
&
dev_ctx_
;
};
class
AssignOp
:
public
framework
::
OperatorWithKernel
{
public:
...
...
paddle/fluid/operators/assign_op.h
0 → 100644
浏览文件 @
1957192f
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/platform/device_context.h"
namespace
paddle
{
namespace
operators
{
class
AssignFunctor
{
public:
AssignFunctor
(
framework
::
Variable
*
out
,
const
platform
::
DeviceContext
&
dev_ctx
)
:
out_
(
out
),
dev_ctx_
(
dev_ctx
)
{}
void
operator
()(
const
framework
::
LoDTensor
&
lod_tensor
)
const
{
auto
&
out_tensor
=
*
out_
->
GetMutable
<
framework
::
LoDTensor
>
();
copy_tensor
(
lod_tensor
,
&
out_tensor
);
}
void
operator
()(
const
framework
::
LoDTensorArray
&
array
)
const
{
auto
&
out_array
=
*
out_
->
GetMutable
<
framework
::
LoDTensorArray
>
();
out_array
.
resize
(
array
.
size
());
for
(
size_t
i
=
0
;
i
<
array
.
size
();
++
i
)
{
copy_tensor
(
array
[
i
],
&
out_array
[
i
]);
}
}
void
operator
()(
const
framework
::
SelectedRows
&
rows
)
const
{
framework
::
SelectedRows
&
out_rows
=
*
out_
->
GetMutable
<
framework
::
SelectedRows
>
();
out_rows
.
set_rows
(
rows
.
rows
());
out_rows
.
set_height
(
rows
.
height
());
auto
&
t
=
rows
.
value
();
auto
*
m
=
out_rows
.
mutable_value
();
framework
::
TensorCopy
(
t
,
t
.
place
(),
dev_ctx_
,
m
);
}
template
<
typename
T
>
void
operator
()(
const
T
&
v
)
const
{
PADDLE_THROW
(
"Not support type for assign op %s"
,
typeid
(
T
).
name
());
}
private:
void
copy_tensor
(
const
framework
::
LoDTensor
&
lod_tensor
,
framework
::
LoDTensor
*
out
)
const
{
if
(
lod_tensor
.
numel
()
==
0
)
return
;
auto
&
out_tensor
=
*
out
;
TensorCopy
(
lod_tensor
,
lod_tensor
.
place
(),
dev_ctx_
,
&
out_tensor
);
out_tensor
.
set_lod
(
lod_tensor
.
lod
());
}
framework
::
Variable
*
out_
;
const
platform
::
DeviceContext
&
dev_ctx_
;
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/assign_op_test.cc
0 → 100644
浏览文件 @
1957192f
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/assign_op.h"
#include <gtest/gtest.h>
#include <iostream>
#include <string>
#include <vector>
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/platform/place.h"
TEST
(
AssignOp
,
AssignLoDTensor
)
{
paddle
::
platform
::
CPUPlace
cpu_place
;
paddle
::
platform
::
CPUDeviceContext
ctx
(
cpu_place
);
paddle
::
framework
::
Variable
output
;
paddle
::
operators
::
AssignFunctor
assign_functor
(
&
output
,
ctx
);
paddle
::
framework
::
LoDTensor
input
;
paddle
::
framework
::
DDim
in_dims
=
paddle
::
framework
::
make_ddim
({
3
,
4
});
int
*
in_data
=
input
.
mutable_data
<
int
>
(
in_dims
,
cpu_place
);
for
(
int
i
=
0
;
i
<
12
;
++
i
)
{
in_data
[
i
]
=
i
;
}
assign_functor
(
input
);
auto
&
out_tensor
=
output
.
Get
<
paddle
::
framework
::
LoDTensor
>
();
paddle
::
framework
::
DDim
out_dims
=
out_tensor
.
dims
();
EXPECT_EQ
(
in_dims
,
out_dims
);
auto
*
out_data
=
out_tensor
.
data
<
int
>
();
for
(
int
i
=
0
;
i
<
12
;
++
i
)
{
EXPECT_EQ
(
i
,
out_data
[
i
]);
}
}
TEST
(
AssignOp
,
AssignLoDTensorArray
)
{
paddle
::
platform
::
CPUPlace
cpu_place
;
paddle
::
platform
::
CPUDeviceContext
ctx
(
cpu_place
);
paddle
::
framework
::
Variable
output
;
paddle
::
operators
::
AssignFunctor
assign_functor
(
&
output
,
ctx
);
paddle
::
framework
::
LoDTensorArray
input
;
for
(
int
i
=
0
;
i
<
5
;
++
i
)
{
paddle
::
framework
::
DDim
in_dims
=
paddle
::
framework
::
make_ddim
({
i
+
1
,
i
+
2
});
paddle
::
framework
::
LoDTensor
lod_tensor
;
float
*
in_data
=
lod_tensor
.
mutable_data
<
float
>
(
in_dims
,
cpu_place
);
for
(
int
j
=
0
;
j
<
(
i
+
1
)
*
(
i
+
2
);
++
j
)
{
in_data
[
j
]
=
static_cast
<
float
>
(
j
);
}
input
.
push_back
(
lod_tensor
);
}
assign_functor
(
input
);
auto
&
out_array
=
output
.
Get
<
paddle
::
framework
::
LoDTensorArray
>
();
for
(
int
i
=
0
;
i
<
5
;
++
i
)
{
paddle
::
framework
::
DDim
out_dims
=
out_array
[
i
].
dims
();
EXPECT_EQ
(
paddle
::
framework
::
make_ddim
({
i
+
1
,
i
+
2
}),
out_dims
);
const
float
*
out_data
=
out_array
[
i
].
data
<
float
>
();
for
(
int
j
=
0
;
j
<
(
i
+
1
)
*
(
i
+
2
);
++
j
)
{
EXPECT_EQ
(
static_cast
<
float
>
(
j
),
out_data
[
j
]);
}
}
}
TEST
(
AssignOp
,
AssignSelectedRows
)
{
paddle
::
platform
::
CPUPlace
cpu_place
;
paddle
::
platform
::
CPUDeviceContext
ctx
(
cpu_place
);
paddle
::
framework
::
Variable
output
;
paddle
::
operators
::
AssignFunctor
assign_functor
(
&
output
,
ctx
);
std
::
vector
<
int64_t
>
rows
{
0
,
4
,
7
};
int64_t
height
=
10
;
paddle
::
framework
::
SelectedRows
input
(
rows
,
height
);
paddle
::
framework
::
Tensor
*
input_tensor
=
input
.
mutable_value
();
paddle
::
framework
::
DDim
in_dims
=
paddle
::
framework
::
make_ddim
({
3
,
4
});
int
*
in_data
=
input_tensor
->
mutable_data
<
int
>
(
in_dims
,
cpu_place
);
for
(
int
i
=
0
;
i
<
12
;
++
i
)
{
in_data
[
i
]
=
i
;
}
assign_functor
(
input
);
auto
&
out_selected_row
=
output
.
Get
<
paddle
::
framework
::
SelectedRows
>
();
const
paddle
::
framework
::
Vector
<
int64_t
>&
out_rows
=
out_selected_row
.
rows
();
EXPECT_EQ
(
rows
.
size
(),
out_rows
.
size
());
for
(
size_t
i
=
0
;
i
<
rows
.
size
();
++
i
)
{
EXPECT_EQ
(
rows
[
i
],
out_rows
[
i
]);
}
EXPECT_EQ
(
height
,
out_selected_row
.
height
());
const
paddle
::
framework
::
Tensor
&
out_tensor
=
out_selected_row
.
value
();
paddle
::
framework
::
DDim
out_dims
=
out_tensor
.
dims
();
EXPECT_EQ
(
in_dims
,
out_dims
);
auto
*
out_data
=
out_tensor
.
data
<
int
>
();
for
(
int
i
=
0
;
i
<
12
;
++
i
)
{
EXPECT_EQ
(
i
,
out_data
[
i
]);
}
}
paddle/fluid/operators/select_input_op.cc
0 → 100644
浏览文件 @
1957192f
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/assign_op.h"
#include "paddle/fluid/operators/select_op_helper.h"
namespace
paddle
{
namespace
operators
{
// SelectInputOp takes multiple inputs and uses an integer mask to select
// one input to output. It is used in control flow.
class
SelectInputOp
:
public
framework
::
OperatorBase
{
public:
SelectInputOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
dev_ctx
=
*
pool
.
Get
(
dev_place
);
auto
&
mask
=
scope
.
FindVar
(
Input
(
"Mask"
))
->
Get
<
framework
::
LoDTensor
>
();
size_t
output_branch
=
static_cast
<
size_t
>
(
GetBranchNumber
(
mask
));
const
std
::
vector
<
std
::
string
>
&
x_names
=
Inputs
(
"X"
);
PADDLE_ENFORCE_LT
(
output_branch
,
x_names
.
size
(),
"Selected branch number is greater than actual branch "
"num in SelectInputOp"
);
const
framework
::
Variable
*
selected_x
=
scope
.
FindVar
(
x_names
[
output_branch
]);
framework
::
Variable
*
out
=
scope
.
FindVar
(
Output
(
"Out"
));
framework
::
VisitVarType
(
*
selected_x
,
AssignFunctor
(
out
,
dev_ctx
));
}
};
class
SelectInputOpProtoMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"The input LoDTensors or LoDTensorArray or SelectedRows. All "
"inputs must have same variable type"
)
.
AsDuplicable
();
AddInput
(
"Mask"
,
"A integer tensor with numel 1 specifying which input to output"
);
AddOutput
(
"Out"
,
"The merged output. The variable type of output must be same as X"
);
// TODO(huihuangzheng): decide whether to add support for lod level
// Because this op is blocking whole control flow. I am implementing MVP
// (minimal viable product) here.
AddComment
(
R"DOC(
Merge branches of LoDTensor into a single Output with a mask interger
specifying the output branchi.
)DOC"
);
}
};
class
SelectInputInferShape
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
context
)
const
override
{
PADDLE_ENFORCE_EQ
(
context
->
HasInputs
(
"X"
),
true
,
"SelectInputOp must have input X."
);
PADDLE_ENFORCE_EQ
(
context
->
HasInput
(
"Mask"
),
true
,
"SelectInputOp must have input Mask."
);
PADDLE_ENFORCE_EQ
(
context
->
HasOutput
(
"Out"
),
true
,
"SelectInputOp must have output Out."
);
}
};
template
<
typename
T
>
class
SelectInputGradMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
protected:
std
::
unique_ptr
<
T
>
Apply
()
const
override
{
auto
*
grad_op
=
new
T
();
grad_op
->
SetType
(
"select_output"
);
grad_op
->
SetInput
(
"X"
,
this
->
OutputGrad
(
"Out"
));
grad_op
->
SetInput
(
"Mask"
,
this
->
Input
(
"Mask"
));
grad_op
->
SetOutput
(
"Out"
,
this
->
InputGrad
(
"X"
,
/* drop_empty_grad */
false
));
grad_op
->
SetAttrMap
(
this
->
Attrs
());
return
std
::
unique_ptr
<
T
>
(
grad_op
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
select_input
,
ops
::
SelectInputOp
,
ops
::
SelectInputOpProtoMaker
,
ops
::
SelectInputInferShape
,
ops
::
SelectInputGradMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
SelectInputGradMaker
<
paddle
::
imperative
::
OpBase
>
);
paddle/fluid/operators/select_op_helper.h
0 → 100644
浏览文件 @
1957192f
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device_context.h"
// Functions used in SelectInputOp and SelectOutputOp
namespace
paddle
{
namespace
operators
{
// Returns the integer in mask whose numel must be 1. The integer means the
// selected branch number.
inline
int
GetBranchNumber
(
const
framework
::
LoDTensor
&
mask
)
{
PADDLE_ENFORCE_EQ
(
mask
.
numel
(),
1
,
"Mask in SelectOutputOp must have numel 1."
);
if
(
platform
::
is_cpu_place
(
mask
.
place
()))
{
return
mask
.
data
<
int
>
()[
0
];
}
// when platform::is_gpu_place(mask.place()) is ture
std
::
unique_ptr
<
framework
::
LoDTensor
>
cpu_mask
{
new
framework
::
LoDTensor
()};
#ifdef PADDLE_WITH_CUDA
framework
::
TensorCopySync
(
mask
,
platform
::
CPUPlace
(),
cpu_mask
.
get
());
#else
PADDLE_THROW
(
"This version of PaddlePaddle doen NOT support GPU but got GPU tensor "
"Mask in SelectOutputOp. Please compile WITH_GPU option"
);
#endif
return
cpu_mask
->
data
<
int
>
()[
0
];
}
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/select_output_op.cc
0 → 100644
浏览文件 @
1957192f
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/assign_op.h"
#include "paddle/fluid/operators/select_op_helper.h"
#include "paddle/fluid/platform/device_context.h"
namespace
paddle
{
namespace
operators
{
// SelectOutputOp has one input, one integer mask and multiple outputs. It
// selects one output specified by the mask and copy the input to it.
class
SelectOutputOp
:
public
framework
::
OperatorBase
{
public:
SelectOutputOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
dev_ctx
=
*
pool
.
Get
(
dev_place
);
auto
&
mask
=
scope
.
FindVar
(
Input
(
"Mask"
))
->
Get
<
framework
::
LoDTensor
>
();
size_t
output_branch
=
static_cast
<
size_t
>
(
GetBranchNumber
(
mask
));
const
std
::
vector
<
std
::
string
>
&
out_names
=
Outputs
(
"Out"
);
PADDLE_ENFORCE_LT
(
output_branch
,
out_names
.
size
(),
"Selected branch number is greater than actual branch "
"num in SelectOutputOp"
);
const
framework
::
Variable
*
x
=
scope
.
FindVar
(
Input
(
"X"
));
framework
::
Variable
*
selected_out
=
scope
.
FindVar
(
out_names
[
output_branch
]);
framework
::
VisitVarType
(
*
x
,
AssignFunctor
(
selected_out
,
dev_ctx
));
}
};
class
SelectOutputOpProtoMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"The input LoDTensor or LoDTensorArray or SelectedRows."
);
AddInput
(
"Mask"
,
"Tensor with numel 1 specifying which branch to output"
);
AddOutput
(
"Out"
,
"The output can contains multiple variables. The output of "
"selected branch will be same as input. We do nothing for "
"variables in other branch"
)
.
AsDuplicable
();
// TODO(huihuangzheng): decide whether to add support for lod level
// Because this op is blocking whole control flow. I am implementing MVP
// (minimal viable product) here.
AddComment
(
R"DOC(
Split input variable into one output branch. The mask is an integer tensor to
specify which output branch should copy the input.
)DOC"
);
}
};
class
SelectOutputInferShape
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
context
)
const
override
{
PADDLE_ENFORCE_EQ
(
context
->
HasInput
(
"X"
),
true
,
"SelectOutputOp must have input X."
);
PADDLE_ENFORCE_EQ
(
context
->
HasInput
(
"Mask"
),
true
,
"SelectOutputOp must have input Mask."
);
PADDLE_ENFORCE_EQ
(
context
->
HasOutputs
(
"Out"
),
true
,
"SelectOutputOp must have output Out."
);
}
};
template
<
typename
T
>
class
SelectOutputGradMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
protected:
std
::
unique_ptr
<
T
>
Apply
()
const
override
{
auto
*
grad_op
=
new
T
();
grad_op
->
SetType
(
"select_input"
);
grad_op
->
SetInput
(
"Mask"
,
this
->
Input
(
"Mask"
));
grad_op
->
SetInput
(
"X"
,
this
->
OutputGrad
(
"Out"
));
grad_op
->
SetOutput
(
"Out"
,
this
->
InputGrad
(
"X"
));
grad_op
->
SetAttrMap
(
this
->
Attrs
());
return
std
::
unique_ptr
<
T
>
(
grad_op
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
select_output
,
ops
::
SelectOutputOp
,
ops
::
SelectOutputOpProtoMaker
,
ops
::
SelectOutputInferShape
,
ops
::
SelectOutputGradMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
SelectOutputGradMaker
<
paddle
::
imperative
::
OpBase
>
);
python/paddle/fluid/layers/control_flow.py
浏览文件 @
1957192f
...
...
@@ -35,6 +35,60 @@ __all__ = [
]
def
select_output
(
input
,
outputs
,
mask
):
"""
**select_output**
This API takes in one input and multiple outputs and an integer mask. It
selects the output specified by the mask and copy the input to selected
output. It is useful in control flow.
Args:
input(Variable): The input variable
outputs(tuple|list): The output variables
mask(Variable): A tensor containing 1 integer number selecting which
output to be copied with input
Returns:
Variable: The outputs variables
"""
helper
=
LayerHelper
(
'select_output'
,
**
locals
())
helper
.
append_op
(
type
=
'select_output'
,
inputs
=
{
'X'
:
input
,
'Mask'
:
mask
},
outputs
=
{
'Out'
:
outputs
})
return
outputs
def
select_input
(
inputs
,
mask
):
"""
**select_input**
This API takes in multiple inputs and uses an integer mask to select one
input to output. It is useful in control flow.
Args:
inputs(tuple|list): The input variables
mask(Variable): A tensor containing 1 integer number selecting which
input to output
Returns:
Variable: The selected input variable
"""
helper
=
LayerHelper
(
'select_input'
,
**
locals
())
if
isinstance
(
inputs
,
list
)
or
isinstance
(
inputs
,
tuple
):
input_dtype
=
inputs
[
0
].
dtype
else
:
input_dtype
=
inputs
.
dtype
out
=
helper
.
create_variable
(
dtype
=
input_dtype
)
helper
.
append_op
(
type
=
'select_input'
,
inputs
=
{
'X'
:
inputs
,
'Mask'
:
mask
},
outputs
=
{
'Out'
:
out
})
return
out
def
split_lod_tensor
(
input
,
mask
,
level
=
0
):
"""
This function takes in an input that contains the complete lod information,
...
...
python/paddle/fluid/tests/unittests/test_select_input_output_op.py
0 → 100644
浏览文件 @
1957192f
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle.fluid.layers
as
layers
from
paddle.fluid.backward
import
append_backward
from
paddle.fluid.executor
import
Executor
from
paddle.fluid.framework
import
Program
,
program_guard
from
paddle.fluid.layers.control_flow
import
select_input
,
select_output
class
TestSplitMergeSelectedVarOps
(
unittest
.
TestCase
):
def
test_forward_backward
(
self
):
branch_num
=
9
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
2
],
dtype
=
'float32'
)
x
.
stop_gradient
=
False
# For test gradient
mask
=
layers
.
data
(
name
=
'mask'
,
shape
=
[
1
],
dtype
=
'int32'
)
outputs
=
[]
for
i
in
range
(
branch_num
):
out
=
program
.
current_block
().
create_var
(
dtype
=
'float32'
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
outputs
.
append
(
out
)
select_output
(
x
,
outputs
,
mask
)
y
=
select_input
(
outputs
,
mask
)
mean
=
layers
.
mean
(
y
)
append_backward
(
mean
)
place
=
fluid
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
exe
=
Executor
(
place
)
feed_x
=
np
.
asarray
([
1.3
,
-
1.4
]).
astype
(
np
.
float32
)
for
i
in
range
(
branch_num
):
feed_mask
=
np
.
asarray
([
i
]).
astype
(
np
.
int32
)
ret
=
exe
.
run
(
program
,
feed
=
{
'x'
:
feed_x
,
'mask'
:
feed_mask
},
fetch_list
=
[
y
.
name
,
x
.
grad_name
])
x_grad
=
np
.
asarray
([
0.5
,
0.5
]).
astype
(
np
.
float32
)
self
.
assertTrue
(
np
.
allclose
(
np
.
asarray
(
ret
[
0
]),
feed_x
))
self
.
assertTrue
(
np
.
allclose
(
np
.
asarray
(
ret
[
1
]),
x_grad
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录