未验证 提交 e64d55f0 编写于 作者: H Huihuang Zheng 提交者: GitHub

Add basic Python Cond Layer (#21050)

上级 e0285eae
......@@ -16,12 +16,13 @@ from __future__ import print_function
from ..wrapped_decorator import signature_safe_contextmanager
from .layer_function_generator import autodoc, templatedoc
from .tensor import assign, fill_constant
from .tensor import assign, cast, fill_constant
from .. import core
from ..framework import Program, Variable, Operator
from ..layer_helper import LayerHelper, unique_name
from ..initializer import force_init_on_cpu
from .nn import logical_and, logical_not, logical_or
from .utils import assert_same_structure, flatten, map_structure
import numpy
import warnings
import six
......@@ -30,7 +31,7 @@ from functools import reduce
__all__ = [
'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal',
'array_read', 'array_length', 'IfElse', 'DynamicRNN', 'StaticRNN',
'array_read', 'array_length', 'cond', 'IfElse', 'DynamicRNN', 'StaticRNN',
'reorder_lod_tensor_by_rank', 'Print', 'is_empty'
]
......@@ -1729,6 +1730,73 @@ class ConditionalBlock(object):
})
def copy_var_to_parent_block(var, layer_helper):
if var is None:
return None
prog = layer_helper.main_program
parent_idx = prog.current_block().parent_idx
assert parent_idx >= 0, "Got wrong parent block index when assigning var to parent scope in control_flow"
parent_block = prog.block(parent_idx)
parent_block_var = parent_block.create_var(dtype=var.dtype, type=var.type)
assign(var, parent_block_var)
return parent_block_var
def cond(pred, true_fn=None, false_fn=None, name=None):
"""
TODO:(huihuangzheng) developing
"""
helper = LayerHelper('cond', **locals())
true_output = None
false_output = None
copy_to_global_func = lambda var: copy_var_to_parent_block(var, helper)
if true_fn is not None:
if not callable(true_fn):
raise TypeError("The true_fn in cond must be callable")
true_cond_block = ConditionalBlock([pred], is_scalar_condition=True)
with true_cond_block.block():
origin_true_output = true_fn()
if origin_true_output is not None:
true_output = map_structure(copy_to_global_func,
origin_true_output)
if false_fn is not None:
if not callable(false_fn):
raise TypeError("The false_fn in cond must be callable")
false_cond_block = ConditionalBlock(
[logical_not(pred)], is_scalar_condition=True)
with false_cond_block.block():
origin_false_output = false_fn()
if origin_false_output is not None:
false_output = map_structure(copy_to_global_func,
origin_false_output)
if true_output is None and false_output is None:
return None
if true_output is None:
raise ValueError(
"Incompatible return values of true_fn and false_fn in cond: "
"true_fn returns None while false_fn returns non-None")
if false_output is None:
raise ValueError(
"Incompatible return values of true_fn and false_fn in cond: "
"true_fn returns non-None while false_fn returns None")
# Merge ture and false output if they are not None
try:
assert_same_structure(true_output, false_output, check_types=False)
except ValueError as e:
raise ValueError(
"Incompatible return values of true_fn and false_fn in cond: {}".
format(e))
mask = cast(pred, dtype='int32')
merge_func = lambda false_var, true_var : select_input([false_var, true_var], mask)
merged_output = map_structure(merge_func, false_output, true_output)
return merged_output
class Switch(object):
"""
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.layers as layers
import paddle.fluid.framework as framework
from paddle.fluid.executor import Executor
from paddle.fluid.framework import Program, program_guard
class TestCond(unittest.TestCase):
def test_return_single_var(self):
"""
pseudocode:
if 0.23 < 0.1:
return 2
else:
return -1
"""
def true_func():
return layers.fill_constant(shape=[2, 3], dtype='int32', value=2)
def false_func():
return layers.fill_constant(shape=[3, 2], dtype='int32', value=-1)
main_program = Program()
startup_program = Program()
with program_guard(main_program, startup_program):
x = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
y = layers.fill_constant(shape=[1], dtype='float32', value=0.23)
pred = layers.less_than(y, x)
out = layers.cond(pred, true_func, false_func)
# out is one tensor
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
) else fluid.CPUPlace()
exe = fluid.Executor(place)
ret = exe.run(main_program, fetch_list=[out.name])
self.assertTrue(
np.allclose(np.asarray(ret), np.full((3, 2), -1, np.int32)))
def test_return_var_tuple(self):
"""
pseudocode:
if True:
return 1, True
else:
return 3, 2
"""
def true_func():
return layers.fill_constant(
shape=[1, 2], dtype='int32', value=1), layers.fill_constant(
shape=[2, 3], dtype='bool', value=True)
def false_func():
return layers.fill_constant(
shape=[3, 4], dtype='float32', value=3), layers.fill_constant(
shape=[4, 5], dtype='int64', value=2)
main_program = Program()
startup_program = Program()
with program_guard(main_program, startup_program):
pred = layers.fill_constant(shape=[1], dtype='bool', value=True)
out = layers.cond(pred, true_func, false_func)
# out is a tuple containing 2 tensors
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
) else fluid.CPUPlace()
exe = fluid.Executor(place)
ret = exe.run(main_program, fetch_list=out)
self.assertTrue(
np.allclose(np.asarray(ret[0]), np.full((1, 2), 1, np.int32)))
self.assertTrue(
np.allclose(np.asarray(ret[1]), np.full((2, 3), True, np.bool)))
def test_pass_and_modify_var(self):
"""
pseudocode:
for i in range(5):
a = 7
if i % 2 == 0:
a = a * (i + 1)
else:
a = a - (i - 1)
"""
def true_func(a, i):
a = a * (i + 1)
return a
def false_func(a, i):
a = a - (i - 1)
return a
main_program = Program()
startup_program = Program()
with program_guard(main_program, startup_program):
a = layers.fill_constant(shape=[3, 2, 1], dtype='int32', value=7)
i = fluid.data(name="i", shape=[1], dtype='int32')
pred = ((i % 2) == 0)
a = layers.cond(pred, lambda: true_func(a, i),
lambda: false_func(a, i))
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
) else fluid.CPUPlace()
exe = fluid.Executor(place)
for feed_i in range(5):
expected_a = 7 * (feed_i + 1) if feed_i % 2 == 0 else 8 - feed_i
ret = exe.run(main_program,
feed={'i': np.full((1), feed_i, np.int32)},
fetch_list=[a])
self.assertTrue(
np.allclose(
np.asarray(ret), np.full((3, 2, 1), expected_a, np.int32)))
def test_return_none(self):
"""
pseudocode: test doing nothing in branches
for i in range(5):
if i % 2 == 0:
pass
else:
pass
"""
def true_func():
pass
def false_func():
return None
main_program = Program()
startup_program = Program()
with program_guard(main_program, startup_program):
i = fluid.data(name="i", shape=[1], dtype='int32')
pred = ((i % 2) == 0)
out1 = layers.cond(pred, true_func, false_func)
out2 = layers.cond(pred, None, false_func)
out3 = layers.cond(pred, true_func, None)
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
) else fluid.CPUPlace()
exe = fluid.Executor(place)
for feed_i in range(5):
# Test that output is None is runnable
exe.run(main_program, feed={'i': np.full((1), feed_i, np.int32)})
self.assertIsNone(out1)
self.assertIsNone(out2)
self.assertIsNone(out3)
def test_wrong_structure_exception(self):
"""
test returning different number of tensors cannot merge into output
"""
def func_return_none():
return None
def func_return_one_tensor():
return layers.fill_constant(shape=[2, 7], dtype='int32', value=3)
def func_return_two_tensors():
return layers.fill_constant(
shape=[3, 1], dtype='int32', value=7), layers.fill_constant(
shape=[3, 1], dtype='int32', value=8)
main_program = Program()
startup_program = Program()
with program_guard(main_program, startup_program):
i = fluid.data(name="i", shape=[1], dtype='int32')
pred = ((i % 2) == 0)
with self.assertRaises(Exception) as e:
out = layers.cond(pred, i, func_return_one_tensor)
self.assertEqual("The true_fn in cond must be callable",
str(e.exception))
with self.assertRaises(Exception) as e:
out = layers.cond(pred, func_return_one_tensor, np.asarray([3]))
self.assertEqual("The false_fn in cond must be callable",
str(e.exception))
with self.assertRaises(Exception) as e:
out = layers.cond(pred, func_return_none,
func_return_one_tensor)
self.assertTrue(
"Incompatible return values of true_fn and false_fn in cond" in
str(e.exception))
with self.assertRaises(Exception) as e:
out = layers.cond(pred, func_return_two_tensors,
func_return_none)
self.assertTrue(
"Incompatible return values of true_fn and false_fn in cond" in
str(e.exception))
with self.assertRaises(Exception) as e:
out = layers.cond(pred, func_return_one_tensor,
func_return_two_tensors)
self.assertTrue(
"Incompatible return values of true_fn and false_fn in cond" in
str(e.exception))
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册