control_flow.py 170.7 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

S
rename  
sneaxiy 已提交
15
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
16

17
from .layer_function_generator import autodoc, templatedoc
18
from .tensor import assign, cast, fill_constant
19
from .. import core
20 21 22 23 24 25 26 27 28
from ..framework import (
    Program,
    Variable,
    Operator,
    _non_static_mode,
    static_only,
    _in_legacy_dygraph,
    in_dygraph_mode,
)
29
from ..layer_helper import LayerHelper, unique_name
M
minqiyang 已提交
30
from .nn import logical_and, logical_not, logical_or
31 32 33 34 35 36 37 38 39 40 41
from .utils import (
    assert_same_structure,
    map_structure,
    hold_mutable_vars,
    copy_mutable_vars,
    padding_to_same_structure,
    is_sequence,
    pack_sequence_as,
    flatten,
    to_sequence,
)
Y
yuyang18 已提交
42
import numpy
43
import warnings
L
liym27 已提交
44
from functools import reduce, partial
45 46 47 48 49 50
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
51
from ..backward import _infer_var_data_type_shape_
52
from paddle import _C_ops, _legacy_C_ops
D
dzhwinter 已提交
53

Q
QI JUN 已提交
54
__all__ = [
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    'While',
    'Switch',
    'increment',
    'array_write',
    'create_array',
    'less_than',
    'less_equal',
    'greater_than',
    'greater_equal',
    'equal',
    'not_equal',
    'array_read',
    'array_length',
    'cond',
    'IfElse',
    'DynamicRNN',
    'StaticRNN',
    'reorder_lod_tensor_by_rank',
    'Print',
    'Assert',
    'is_empty',
    'case',
    'switch_case',
    'while_loop',
D
dzhwinter 已提交
79 80
]

Y
Yu Yang 已提交
81

82 83
def select_output(input, outputs, mask):
    """
84
    **select_output**
85 86 87 88 89 90 91 92 93 94 95 96 97 98
    This API takes in one input and multiple outputs and an integer mask. It
    selects the output specified by the mask and copy the input to selected
    output. It is useful in control flow.

    Args:
        input(Variable): The input variable
        outputs(tuple|list): The output variables
        mask(Variable): A tensor containing 1 integer number selecting which
            output to be copied with input

    Returns:
        Variable: The outputs variables
    """
    helper = LayerHelper('select_output', **locals())
99 100 101 102
    check_type(input, 'input', (Variable), 'select_output')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_output')
    check_type(outputs, 'outputs', (list, tuple), 'select_output')

103 104 105 106 107
    helper.append_op(
        type='select_output',
        inputs={'X': input, 'Mask': mask},
        outputs={'Out': outputs},
    )
108 109 110
    return outputs


111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
def _select_input_infer_shape(first_shape, second_shape):
    """
    This function infer the output shape by following algorithm:
    1. if the dims is different, raise a error.
    2. compare axis one by one:
        if a == b: we set axis to a
        if a != b: we set axis to -1
    for compatibility,non declarative mode, we just return second_shape.
    """
    if len(first_shape) != len(second_shape):
        warnings.warn(
            f"the input shapes of select_input should have the same rank, but get {first_shape}, {second_shape}"
        )
        return second_shape
    out_shape = list(
126 127
        map(lambda a, b: a if a == b else -1, first_shape, second_shape)
    )
128 129 130
    return out_shape


131 132 133
def select_input(inputs, mask):
    """
    **select_input**
134

135 136 137 138 139 140 141 142 143 144 145 146
    This API takes in multiple inputs and uses an integer mask to select one
    input to output. It is useful in control flow.

    Args:
        inputs(tuple|list): The input variables
        mask(Variable): A tensor containing 1 integer number selecting which
            input to output

    Returns:
        Variable: The selected input variable
    """
    helper = LayerHelper('select_input', **locals())
147 148 149
    check_type(inputs, 'inputs', (list, tuple), 'select_input')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_input')

150
    # Select input should expand the shape. If it is - 1 and valid number, use - 1 first. If the dim is different, an error will be reported directly
151
    # assert inputs[0].dtype == inputs[1].dtype, f"Expect the inputs should have the same dtype, but get {inputs[0].dtype} and {inputs[1].dtype}"
152 153 154
    output_shape = _select_input_infer_shape(inputs[0].shape, inputs[1].shape)
    output_dtype = inputs[1].dtype
    output_type = inputs[1].type
155

156 157 158 159 160 161 162 163
    out = helper.create_variable(
        dtype=output_dtype, shape=output_shape, type=output_type
    )
    helper.append_op(
        type='select_input',
        inputs={'X': inputs, 'Mask': mask},
        outputs={'Out': out},
    )
164 165 166
    return out


167
def select_input_with_buildin_type(inputs, mask, name):
168 169 170
    from paddle.fluid.dygraph.dygraph_to_static.variable_trans_func import (
        to_static_variable,
    )
171
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar
172

173 174
    false_var, true_var = inputs

175
    if isinstance(false_var, UndefinedVar) and isinstance(
176 177 178
        true_var, UndefinedVar
    ):
        """None -> UndefinedVar, so the real value is a [None, UndefinedVar] or [None, None], we just return None."""
179 180
        return None

181
    if isinstance(false_var, Variable) and isinstance(true_var, Variable):
182 183 184 185
        try:
            return select_input(inputs, mask)
        except Exception as e:
            raise RuntimeError(
186 187
                f"Exceptions throwed while doing select_input on {name}:\n{e}"
            )
188

189 190 191
    elif isinstance(false_var, support_ret_buildin_type) and isinstance(
        false_var, type(true_var)
    ):
192 193 194 195
        if false_var == true_var:
            return false_var
        else:
            inputs = [
196
                to_static_variable(false_var),
197
                to_static_variable(true_var),
198 199
            ]
    # Deal with the situations like this: false_var is int and true_var is Variable
200 201 202 203 204 205 206
    elif (
        isinstance(false_var, support_ret_buildin_type)
        and isinstance(true_var, Variable)
    ) or (
        isinstance(true_var, support_ret_buildin_type)
        and isinstance(false_var, Variable)
    ):
207 208 209
        inputs = [to_static_variable(false_var), to_static_variable(true_var)]
        warnings.warn(
            "Return results from different branches in cond are not same type: "
210
            "false_var returned by false_fn is '{}' and true_var of true_fn is "
211 212 213 214 215 216 217 218 219
            "'{}'".format(type(false_var), type(true_var))
        )
    elif (
        isinstance(false_var, UndefinedVar)
        and isinstance(true_var, (Variable,) + support_ret_buildin_type)
    ) or (
        isinstance(true_var, UndefinedVar)
        and isinstance(false_var, (Variable,) + support_ret_buildin_type)
    ):
220 221

        def create_var_if_not_undefined_var(a):
222 223
            if isinstance(a, UndefinedVar):
                return a
224 225
            return to_static_variable(a)

226
        true_var, false_var = to_static_variable(true_var), to_static_variable(
227 228
            false_var
        )
229
        inputs = [false_var, true_var]
230 231 232
    else:
        raise TypeError(
            "Unsupported return type of true_fn and false_fn in cond: false_var "
233
            "returned by false_fn is '{}' and true_var of true_fn is '{}'".format(
234 235 236
                type(false_var), type(true_var)
            )
        )
237 238 239 240
    try:
        return select_input(inputs, mask)
    except Exception as e:
        raise RuntimeError(
241 242
            f"Exceptions throwed while doing select_input on {name}:\n{e}"
        )
243 244


245
def split_lod_tensor(input, mask, level=0):
246 247 248 249
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
250 251
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
252 253

    Args:
254
        input(Variable|tuple|list|None): The input tensor that contains complete
255
                                lod information needed to construct the output.
256
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
257
        level(int): The specific lod level to split.
258 259

    Returns:
Q
qiaolongfei 已提交
260 261 262 263
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
264 265 266 267

    Examples:
        .. code-block:: python

268
          import paddle.fluid as fluid
Q
qiaolongfei 已提交
269
          x = fluid.layers.data(name='x', shape=[1])
270 271
          x.persistable = True

Q
qiaolongfei 已提交
272
          y = fluid.layers.data(name='y', shape=[1])
273 274
          y.persistable = True

Q
qiaolongfei 已提交
275
          out_true, out_false = fluid.layers.split_lod_tensor(
276
                input=x, mask=y, level=level)
277

278
    """
279 280 281 282 283 284
    check_type(
        input,
        'input',
        (Variable, list, tuple, type(None)),
        'fluid.layers.split_lod_tensor',
    )
285 286
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.split_lod_tensor')
    check_type(level, 'level', int, 'fluid.layers.split_lod_tensor')
287
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
288 289
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
290 291 292 293 294 295 296 297 298
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true, 'OutFalse': out_false},
        attrs={'level': level},
    )
299 300 301
    return out_true, out_false


302
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
303 304 305 306 307
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
308 309 310
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
311 312

    Args:
313 314 315
        in_true(Variable|tuple|list|None): The True branch to be merged.
        in_false(Variable|tuple|list|None): The False branch to be merged.
        x(Variable|tuple|list|None): The input tensor that contains complete
316
                            lod information needed to construct the output.
317
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
318
        level(int): The specific lod level to merge.
319 320 321 322 323 324 325

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

326
          import paddle.fluid as fluid
327 328 329 330 331 332 333 334 335 336 337 338
          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
339
    helper = LayerHelper('merge_lod_tensor', **locals())
340 341 342 343 344 345
    check_type(
        x,
        'x',
        (Variable, list, tuple, type(None)),
        'fluid.layers.merge_lod_tensor',
    )
346
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.merge_lod_tensor')
347 348 349 350 351 352 353 354 355 356 357 358
    check_type(
        in_true,
        'in_true',
        (Variable, list, tuple, type(None)),
        'fluid.layers.merge_lod_tensor',
    )
    check_type(
        in_false,
        'in_false',
        (Variable, list, tuple, type(None)),
        'fluid.layers.merge_lod_tensor',
    )
X
Xin Pan 已提交
359
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
360 361 362 363 364 365
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x, 'Mask': mask, 'InTrue': in_true, 'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level},
    )
366 367 368
    return out


369
@static_only
370 371 372 373 374 375 376 377 378 379 380 381
def Print(
    input,
    first_n=-1,
    message=None,
    summarize=20,
    print_tensor_name=True,
    print_tensor_type=True,
    print_tensor_shape=True,
    print_tensor_layout=True,
    print_tensor_lod=True,
    print_phase='both',
):
Y
Yan Chunwei 已提交
382
    '''
383 384
    :api_attr: Static Graph

Y
Yan Chunwei 已提交
385 386 387 388 389 390 391 392 393
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
394
        input (Variable): A Tensor to print.
395
        summarize (int): Number of elements in the tensor to be print. If it's
T
tianshuo78520a 已提交
396
                value is -1, then all elements in the tensor will be print.
Y
yangyaming 已提交
397 398
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
399 400 401
        print_tensor_name (bool, optional): Print the tensor name. Default: True.
        print_tensor_type (bool, optional): Print the tensor type. Defaultt: True.
        print_tensor_shape (bool, optional): Print the tensor shape. Default: True.
402
        print_tensor_layout (bool, optional): Print the tensor layout. Default: True.
403
        print_tensor_lod (bool, optional): Print the tensor lod. Default: True.
404
        print_phase (str): Which phase to displace, including 'forward',
405
                'backward' and 'both'. Default: 'both'. If set to 'backward', will
406 407
                only print the gradients of input tensor; If set to 'both', will
                both print the input tensor itself and the gradients of input tensor.
Y
Yan Chunwei 已提交
408 409

    Returns:
410
        Variable: Output tensor.
Y
Yan Chunwei 已提交
411

412 413 414 415
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
416

Y
Yan Chunwei 已提交
417 418
    Examples:
        .. code-block:: python
419

420 421 422
           import paddle

           paddle.enable_static()
423

424 425 426 427 428 429 430 431 432 433 434 435 436 437
           x = paddle.full(shape=[2, 3], fill_value=3, dtype='int64')
           out = paddle.static.Print(x, message="The content of input layer:")

           main_program = paddle.static.default_main_program()
           exe = paddle.static.Executor(place=paddle.CPUPlace())
           res = exe.run(main_program, fetch_list=[out])
           # Variable: fill_constant_1.tmp_0
           #   - message: The content of input layer:
           #   - lod: {}
           #   - place: CPUPlace
           #   - shape: [2, 3]
           #   - layout: NCHW
           #   - dtype: long
           #   - data: [3 3 3 3 3 3]
Y
Yan Chunwei 已提交
438
    '''
439 440 441 442 443 444
    check_variable_and_dtype(
        input,
        'input',
        ['float32', 'float64', 'int32', 'int64', 'bool'],
        'fluid.layers.Print',
    )
445

446 447
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
    helper.append_op(
        type='print',
        inputs={'In': input},
        outputs={'Out': output},
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_layout': print_tensor_layout,
            'print_tensor_lod': print_tensor_lod,
            'print_phase': print_phase.upper(),
        },
    )
464
    return output
Y
Yan Chunwei 已提交
465 466


H
Huihuang Zheng 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
def Assert(cond, data=None, summarize=20, name=None):
    '''
    This API creates an op that asserts the given condition is true. If the
    condition is false, prints the tensors in data. ``summarize`` specifies the
    number of the elements in the tensors to print.

    Args:
        cond (Variable): The boolean condition tensor whose numel should be 1.
        data (list|tuple, optional): list or tuple of tensors to print when
            condition is not true. If it's ``None``, no tensor will be printed.
            The default value is ``None``.
        summarize (int, optional): Number of elements in the tensor to be
            printed. If its value is -1, then all elements in the tensor will
            be printed. The default value is 20.
        name (str, optional): The default value is ``None`` . Normally users
            don't have to set this parameter. For more information, please
            refer to :ref:`api_guide_Name` .

    Returns:
        Operator: the created operation.

    Raises:
        TypeError: If ``cond`` is not boolean Variable.
        TypeError: If ``data`` is not a list or tuple or ``None``.
        TypeError: If ``summarize`` is not int.
        TypeError: If ``name`` is not a string or ``None`` .
        fluid.core.EnforceNotMet: If the condition is False in running time.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            x = layers.fill_constant(shape=[2, 3], dtype='float32', value=2.0)
            condition = layers.reduce_max(x) < 1.0 # False
            layers.Assert(condition, [x], 10, "example_assert_layer")

            exe = fluid.Executor()
            try:
                exe.run(fluid.default_main_program())
                # Print x and throws paddle.fluid.core.EnforceNotMet exception
                # Example printed message for x:
                #
                # Variable: fill_constant_0.tmp_0
                #   - lod: {}
                #   - place: CPUPlace()
                #   - shape: [2, 3]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [2 2 2 2 2 2]
            except fluid.core.EnforceNotMet as e:
                print("Assert Exception Example")

    '''
    check_variable_and_dtype(cond, "cond", ["bool"], "fluid.layers.Assert")
    check_type(data, "data", (list, tuple, type(None)), "fluid.layers.Assert")
    check_type(summarize, "summarize", int, "fluid.layers.Assert")
    check_type(name, "name", (str, type(None)), "fluid.layers.Assert")

    layer_name = name if name else ('assert_' + cond.name)
    helper = LayerHelper(layer_name, **locals())

530 531 532 533 534
    op = helper.append_op(
        type="assert",
        inputs={"Cond": cond, "Data": [] if data is None else list(data)},
        attrs={"summarize": summarize},
    )
H
Huihuang Zheng 已提交
535 536 537 538

    return op


539
class BlockGuard:
Y
Yu Yang 已提交
540
    """
541 542 543 544
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
545 546
    """

547 548
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
549
            raise TypeError("BlockGuard takes a program")
550
        self.main_program = main_program
Y
Yu Yang 已提交
551 552

    def __enter__(self):
W
Wu Yi 已提交
553
        self.main_program._create_block()
Y
Yu Yang 已提交
554 555

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
556
        self.main_program._rollback()
Y
Yu Yang 已提交
557 558 559 560 561
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
562 563 564 565 566
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
567 568
    """

Y
Yu Yang 已提交
569
    def __init__(self, rnn):
X
Xin Pan 已提交
570
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
571
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
572
        super().__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
573 574 575 576
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
577
        return super().__enter__()
Y
Yu Yang 已提交
578 579

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
580 581
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
582
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
583
        self.rnn._complete_op()
584
        return super().__exit__(exc_type, exc_val, exc_tb)
Y
Yu Yang 已提交
585 586


587
class StaticRNNMemoryLink:
Y
Yu Yang 已提交
588
    """
589 590 591 592
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
593 594 595 596 597 598 599 600 601


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
602 603 604 605 606 607 608 609
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


610
class StaticRNN:
611
    """
612 613
    :api_attr: Static Graph

614 615
    StaticRNN class.

616 617 618 619 620 621 622
    The StaticRNN can process a batch of sequence data. The first dimension of inputs
    represents sequence length, the length of each input sequence must be equal.
    StaticRNN will unfold sequence into time steps, user needs to define how to process
    each time step during the :code:`with` step.

    Args:
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
C
chengduo 已提交
623 624

    Examples:
625 626 627 628 629 630
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
631 632
            x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            # create word sequence
633 634 635 636 637
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
638
            # transform batch size to dim 1
639 640 641 642
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
643
                # mark created x_emb as input, each step process a word
644
                word = rnn.step_input(x_emb)
645
                # create prev memory parameter, batch size comes from word
646 647
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
648 649
                # use hidden to update prev
                rnn.update_memory(prev, hidden)
650
                # mark hidden as output
651
                rnn.step_output(hidden)
652
            # get StaticrNN final output
653
            result = rnn()
C
chengduo 已提交
654

655
    """
656

Y
Yu Yang 已提交
657 658 659 660
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

661
    def __init__(self, name=None):
662
        check_type(name, "name", (str, type(None)), "fluid.layers.StaticRNN")
663
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
664 665 666 667 668 669 670 671
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
672
        """
673 674
        Define operators in each step. step is used in :code:`with` block, OP in :code:`with` block
        will be executed sequence_len times (sequence_len is the length of input)
C
chengduo 已提交
675
        """
Y
Yang Yang 已提交
676
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
677 678 679 680 681

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

682 683 684 685 686 687 688 689 690
    def memory(
        self,
        init=None,
        shape=None,
        batch_ref=None,
        init_value=0.0,
        init_batch_dim_idx=0,
        ref_batch_dim_idx=1,
    ):
691
        """
C
chengduo 已提交
692 693 694
        Create a memory variable for static rnn.
        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
695 696
        must be set, and this function will create a new variable with shape and batch_ref
        to initialize :code:`init` Variable.
C
chengduo 已提交
697

698
        Args:
699
            init(Variable, optional): Tensor used to init memory. If it is not set,
C
chengduo 已提交
700 701
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
702 703 704 705 706 707 708
            shape(list|tuple): When :code:`init` is None use this arg to initialize memory shape.
            NOTE the shape does not contain batch_size. Default: None.
            batch_ref(Variable, optional): When :code:`init` is None, memory's batch size will
            be set as batch_ref's ref_batch_dim_idx value. Default: None.
            init_value(float, optional): When :code:`init` is None, used to init memory's value. Default: 0.0.
            init_batch_dim_idx(int, optional): the batch_size axis of the :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int, optional): the batch_size axis of the :code:`batch_ref` Variable. Default: 1.
C
chengduo 已提交
709 710

        Returns:
711 712 713 714 715
            Variable: The memory variable.

        Examples 1:
            .. code-block:: python

716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
739 740 741


        Examples 2:
742 743
            .. code-block:: python

744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers
                vocab_size, hidden_size=10000, 200
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])
                boot_memory = fluid.layers.data(name='boot', shape=[hidden_size], dtype='float32', lod_level=1)
                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # init memory
                        prev = rnn.memory(init=boot_memory)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # update hidden with prev
                        rnn.update_memory(prev, hidden)
766

767
        """
Y
Yu Yang 已提交
768
        self._assert_in_rnn_block_('memory')
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
        check_type(
            init,
            "init",
            (Variable, type(None)),
            "fluid.layers.StaticRNN.memory",
        )
        check_type(
            shape,
            "shape",
            (list, tuple, type(None)),
            "fluid.layers.StaticRNN.memory",
        )
        check_type(
            batch_ref,
            "batch_ref",
            (Variable, type(None)),
            "fluid.layers.StaticRNN.memory",
        )
Y
Yu Yang 已提交
787
        if init is None:
788
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
789
                raise ValueError(
790 791
                    "if init is None, memory at least need shape and batch_ref"
                )
792
            parent_block = self._parent_block()
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
            var_name = unique_name.generate_with_ignorable_key(
                "@".join([self.helper.name, "memory_boot"])
            )
            boot_var = parent_block.create_var(
                name=var_name,
                shape=shape,
                dtype=batch_ref.dtype,
                persistable=False,
            )

            parent_block.append_op(
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
                    'shape': boot_var.shape,
                    'dtype': boot_var.dtype,
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx,
                },
            )
Y
Yu Yang 已提交
815 816 817 818

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
819 820 821
                name=unique_name.generate_with_ignorable_key(
                    "@".join([self.helper.name, "mem"])
                ),
F
fengjiayi 已提交
822
                dtype=init.dtype,
823 824 825 826 827
                shape=init.shape,
            )
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem
            )
Y
Yu Yang 已提交
828 829 830
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
831 832 833 834 835 836 837 838
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
839 840 841 842 843
            Variable: The current time step data in the input sequence.

        Examples:
            .. code-block:: python

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
867

C
chengduo 已提交
868
        """
Y
Yu Yang 已提交
869
        self._assert_in_rnn_block_('step_input')
870
        check_type(x, "x", Variable, "fluid.layers.StaticRNN.step_input")
Y
Yu Yang 已提交
871
        if self.seq_len is None:
Y
Yu Yang 已提交
872
            self.seq_len = x.shape[0]
873
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
874 875
            raise ValueError("Static RNN only take fix seq_len input")

876 877 878
        ipt = self.helper.create_variable(
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type
        )
Y
Yu Yang 已提交
879 880 881 882
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
883 884 885 886 887 888 889 890
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
891 892 893 894

        Examples:
            .. code-block:: python

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
                        rnn.step_output(hidden)

                result = rnn()
921

C
chengduo 已提交
922
        """
Y
Yu Yang 已提交
923
        self._assert_in_rnn_block_('step_output')
924
        check_type(o, "o", Variable, "fluid.layers.StaticRNN.step_output")
Y
Yu Yang 已提交
925

X
Xin Pan 已提交
926
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
927 928 929 930 931 932
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
            attrs={'dtype': o.dtype},
        )
Y
Yu Yang 已提交
933

934 935 936 937 938
        out_var = self._parent_block().create_var(
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
            dtype=tmp_o.dtype,
        )
Y
Yu Yang 已提交
939 940 941 942

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
943 944 945 946
        """
        Mark the StaticRNN output variables.

        Args:
947
            outputs: The output Tensor, can mark multiple variables as output
C
chengduo 已提交
948 949 950

        Returns:
            None
951 952 953 954

        Examples:
            .. code-block:: python

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
                        # mark each step's hidden and word as output
                        rnn.output(hidden, word)

                result = rnn()
C
chengduo 已提交
982
        """
Y
Yu Yang 已提交
983 984 985 986
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
987
        """
988
        Update the memory from :code:`mem` to :code:`var`.
C
chengduo 已提交
989 990 991

        Args:
            mem(Variable): the memory variable.
992
            var(Variable): the plain variable generated in RNN block, used to update memory.
T
tianshuo78520a 已提交
993
                           var and mem should have same dims and data type.
C
chengduo 已提交
994 995 996

        Returns:
            None
997

C
chengduo 已提交
998
        """
999 1000
        check_type(mem, "mem", Variable, "fluid.layers.StaticRNN.update_memory")
        check_type(var, "var", Variable, "fluid.layers.StaticRNN.update_memory")
Y
Yu Yang 已提交
1001 1002
        self.memories[mem.name].mem = var

1003
    def _parent_block(self):
1004
        prog = self.helper.main_program
Y
Yu Yang 已提交
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1020
    def _complete_op(self):
1021 1022
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
1023
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
1038 1039 1040
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
1041 1042 1043 1044 1045 1046 1047 1048
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

1049 1050 1051
        parameters = [
            parent_block._find_var_recursive(name) for name in set(params)
        ]
Y
Yu Yang 已提交
1052 1053

        step_scope = parent_block.create_var(
1054 1055
            type=core.VarDesc.VarType.STEP_SCOPES
        )
Y
Yu Yang 已提交
1056 1057 1058 1059

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
1060
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
1061 1062 1063
        boot_memories = []
        pre_memories = []
        memories = []
1064
        for _, mem in self.memories.items():
Y
Yu Yang 已提交
1065 1066
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
1067 1068 1069
            assert (
                mem.mem is not None
            ), "%s should be updated in every step." % (mem.init.name)
Y
Yu Yang 已提交
1070 1071
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
1072
            new_mem = self.helper.create_variable_for_type_inference(
1073 1074 1075 1076 1077 1078 1079 1080
                dtype=mem_var.dtype
            )
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
                attrs={'dtype': mem_var.dtype},
            )
Y
Yu Yang 已提交
1081 1082 1083

            memories.append(new_mem.name)

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters,
            },
            outputs={'outputs': outlinks, 'step_scopes': [step_scope]},
            attrs={
                'has_states': len(pre_memories) > 0,
                'ex_states': pre_memories,
                'states': memories,
                'sub_block': rnn_block,
            },
        )
Y
Yu Yang 已提交
1099 1100


Y
Yang Yang(Tony) 已提交
1101 1102 1103 1104
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
1105
        super().__init__(while_op.helper.main_program)
Y
Yang Yang(Tony) 已提交
1106 1107 1108 1109
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
1110
        return super().__enter__()
Y
Yang Yang(Tony) 已提交
1111 1112 1113 1114 1115

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
1116
        self.while_op._complete()
1117
        return super().__exit__(exc_type, exc_val, exc_tb)
Y
Yang Yang(Tony) 已提交
1118 1119


1120 1121 1122
def get_inputs_outputs_in_block(
    current_block, inner_inputs, inner_outputs, helper
):
1123 1124 1125 1126 1127 1128 1129 1130
    """
    Find inputs and outputs in current control flow block.
    :param current_block: Current control flow block.
    :param inner_inputs: Input var name of ops in current block.
    :param inner_outputs: Output var name of ops in current block.
    :return: inner_inputs, inner_outputs
    """

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
    def is_ignore_vars(op, var_name):
        # NOTE(dev): There are some persistable var created in some non-standard API
        # such as "contrib.layers.shuffle_batch". It create a "Seed" used both in
        # Input and Output. This var shall not be considered as a loop_var in
        # control_flow.
        IGNORE_VAR_NAMES = {"shuffle_batch": ["shuffle_batch_seed"]}
        if op.type in IGNORE_VAR_NAMES:
            var_names = IGNORE_VAR_NAMES[op.type]
            for name in var_names:
                if name in var_name:
                    return True
        return False

1144 1145 1146 1147 1148 1149 1150 1151
    # Step1: update inner_inputs and inner_outputs
    # NOTE: Here assumes that all variables are input or output of Ops,
    # but some variables are created without appendding a real op.
    # For example, in `arr = create_array(dtype)`, `arr` is not a output of a op.
    for op in current_block.ops:
        assert isinstance(op, Operator)
        for iname in op.input_names:
            for in_var_name in op.input(iname):
1152
                if in_var_name not in inner_outputs and not is_ignore_vars(
1153 1154
                    op, in_var_name
                ):
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
                    inner_inputs.add(in_var_name)

        for oname in op.output_names:
            for out_var_name in op.output(oname):
                inner_outputs.add(out_var_name)

    # Step2: Remove LOD_TENSOR_ARRAY created in current control flow block.
    remove_inner_inputs = set()
    parent_block = helper.main_program.block(current_block.parent_idx)

    for in_var_name in inner_inputs:
        parent_block_var = parent_block._find_var_recursive(in_var_name)
        current_block_var = None
        if current_block.has_var(in_var_name):
            current_block_var = current_block.var(in_var_name)
1170 1171 1172 1173 1174
        if (
            not parent_block_var
            and current_block_var
            and current_block_var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        ):
1175 1176 1177 1178 1179 1180 1181
            remove_inner_inputs.add(in_var_name)

    inner_inputs = inner_inputs - remove_inner_inputs

    return inner_inputs, inner_outputs


1182
class While:
X
Xin Pan 已提交
1183
    """
1184
    :api_attr: Static Graph
1185

1186
    while loop control flow. Repeat while body until cond is False.
X
Xin Pan 已提交
1187

1188 1189 1190 1191
    Note:
        A new OP :ref:`api_fluid_layers_while_loop` is highly recommended instead of ``While`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_while_loop` is easier to use and is called with less code but does the same thing as ``While`` .

1192 1193 1194 1195 1196 1197
    Notice:
        Local variables created in ``While`` are similar to that created in while of C++, and cannot be referenced externally.
        As a result, they cannot be obtained through ``fetch_list`` of ``Executor``. If you would like to access the variable
        out of ``while`` , PaddlePaddle provides ``assign`` API to assign local variables to external. Please refer to example
        code 2 or refer to `issue#22724 <https://github.com/PaddlePaddle/Paddle/issues/22724>`_.

X
Xin Pan 已提交
1198
    Args:
1199
        cond(Variable): A Tensor whose data type is bool controlling whether to continue looping.
G
guofei 已提交
1200
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
1201
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
1202

1203
    Examples 1:
X
Xin Pan 已提交
1204
          .. code-block:: python
1205

1206
            import paddle.fluid as fluid
1207 1208 1209 1210 1211
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)           # loop counter

            loop_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=10)    # loop length
1212

1213
            cond = fluid.layers.less_than(x=i, y=loop_len)
1214
            while_op = fluid.layers.While(cond=cond)
1215
            with while_op.block():
1216
                i = fluid.layers.increment(x=i, value=1, in_place=True)
1217
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)
1218 1219 1220 1221 1222

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[i])
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
            print(res) # [array([10])]


    Examples 2:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            loop_len = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            one = fluid.layers.fill_constant(shape=[1], dtype='float32', value=1)
            data = fluid.data(name='data', shape=[1], dtype='float32')
            sums = fluid.layers.fill_constant(shape=[1], dtype='float32', value=0)  # Define the variable to be obtained ouside of While, which name should be different from the variable inside the While to be obtained

            cond = fluid.layers.less_than(x=i, y=loop_len)
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                sums_tensor = fluid.layers.elementwise_add(x=data, y=data)
                fluid.layers.assign(sums_tensor, sums)  # Update the value of sums_tensor defined in While to the sums which defined outside of While through layers.assign
                i = fluid.layers.increment(x=i, value=1, in_place=True)
                data = fluid.layers.elementwise_add(x=data, y=one)
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)

            feed_data = np.ones(1).astype('float32')
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            res = exe.run(fluid.default_main_program(), feed={'data': feed_data}, fetch_list=sums)
            print(res[0])  # [2.]    # Because the data in While does not update the value outside the While, the value of sums is [2.] after the loop
X
Xin Pan 已提交
1252 1253
    """

Y
Yang Yang(Tony) 已提交
1254 1255 1256 1257
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
1258
    def __init__(self, cond, is_test=False, name=None):
1259
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
1260
        self.status = While.BEFORE_WHILE_BLOCK
1261
        check_variable_and_dtype(cond, 'cond', ['bool'], 'fluid.layers.While')
Y
Yang Yang(Tony) 已提交
1262
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
1263
            raise TypeError(
1264 1265 1266 1267
                "condition expected shape as [1], but given shape as {0}.".format(
                    list(cond.shape)
                )
            )
Y
Yang Yang(Tony) 已提交
1268
        self.cond_var = cond
C
chengduo 已提交
1269
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
1270 1271 1272 1273

    def block(self):
        return WhileGuard(self)

1274
    def _complete(self):
Y
Yang Yang(Tony) 已提交
1275 1276
        main_program = self.helper.main_program
        while_block = main_program.current_block()
1277
        parent_block = main_program.block(
1278 1279
            main_program.current_block().parent_idx
        )
Y
Yang Yang(Tony) 已提交
1280 1281 1282

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
1283
        x_name_list, inner_outputs = get_inputs_outputs_in_block(
1284 1285
            while_block, x_name_list, inner_outputs, self.helper
        )
Y
Yang Yang(Tony) 已提交
1286 1287 1288

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
1289 1290 1291
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
1292

1293
        x_name_list |= set(map(lambda x: x.name, out_vars))
1294 1295 1296
        # NOTE(dev): cond_var has been contained in Input('Condition'), so
        # we remove it from Input('X')
        x_name_list -= {self.cond_var.name}
1297

Y
Yang Yang(Tony) 已提交
1298
        step_scope = parent_block.create_var(
1299 1300
            type=core.VarDesc.VarType.STEP_SCOPES
        )
Y
Yang Yang(Tony) 已提交
1301 1302 1303 1304

        parent_block.append_op(
            type='while',
            inputs={
1305 1306 1307 1308 1309
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
                'Condition': [self.cond_var],
1310
            },
1311 1312 1313
            outputs={'Out': out_vars, 'StepScopes': [step_scope]},
            attrs={'sub_block': while_block, "is_test": self.is_test},
        )
Y
Yang Yang(Tony) 已提交
1314 1315


1316
support_ret_buildin_type = (bool, float, int)
1317 1318


1319
def assign_skip_lod_tensor_array(input, output):
1320
    """
1321
    Assign input to output, but skip the process of copying LoDTensorArray unless it's created in while_block.
1322
    """
1323 1324

    def has_shape_diff(x_var, y_var):
1325 1326
        if len(x_var.shape) != len(y_var.shape):
            return True
1327
        for x_dim, y_dim in zip(x_var.shape, y_var.shape):
1328 1329
            if x_dim != y_dim and -1 not in [x_dim, y_dim]:
                return True
1330 1331
        return False

1332
    if not isinstance(input, (Variable, core.VarBase)):
1333
        if isinstance(output, Variable) and isinstance(
1334 1335
            input, support_ret_buildin_type
        ):
1336 1337 1338
            assign(input, output)
        else:
            output = input
1339 1340
        return

1341 1342
    if input.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        main_program = input.block.program
1343
        parent_block = main_program.block(
1344 1345
            main_program.current_block().parent_idx
        )
1346 1347 1348
        if parent_block and not parent_block._find_var_recursive(input.name):
            assign(input, output)
    else:
1349 1350 1351 1352 1353
        if (
            isinstance(output, Variable)
            and isinstance(input, Variable)
            and has_shape_diff(input, output)
        ):
1354
            warnings.warn(
1355 1356 1357 1358
                "In dy2static mode, we attemp to assign a variable with shape {} into a variable with shape{}, which is not always right.".format(
                    input.shape, output.shape
                )
            )
1359
        assign(input, output)
1360 1361


G
guofei 已提交
1362
def while_loop(cond, body, loop_vars, is_test=False, name=None):
G
guofei 已提交
1363
    """
1364 1365
    :api_attr: Static Graph

G
guofei 已提交
1366 1367
    while_loop is one of the control flows. Repeats while_loop `body` until `cond` returns False.

1368 1369 1370 1371
    Notice:
        Local variables defined in ``body`` cannot be obtained through ``fetch_list`` of ``Executor`` , variables should
        be defined outside ``body`` and placed in ``loop_vars`` for looping, then these variables can be fetched by ``fetch_list`` .

G
guofei 已提交
1372
    Args:
1373
        cond(Callable): A callable returning a boolean tensor controlling whether to continue looping. And ``cond`` takes
1374
            as many arguments as ``loop_vars`` .
1375 1376 1377
        body(Callable): A callable returning a tuple or list of tensors or LoDTensorArrays of the same arity
            (length and structure) and types as ``loops_vars`` . And ``body`` takes as many arguments as ``loop_vars`` .
        loop_vars(list|tuple): A list or tuple of tensors or LoDTensorArrays that is passed to both ``cond`` and ``body`` .
G
guofei 已提交
1378
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
G
guofei 已提交
1379 1380
        name(str, optional): Normally there is no need for users to set this property. For more information, please
            refer to :ref:`api_guide_Name`. Default is None.
1381

G
guofei 已提交
1382
    Returns:
C
Chen Long 已提交
1383
        A list or tuple of Tensors or LoDTensorArrays which returned by ``body`` .
G
guofei 已提交
1384 1385 1386 1387

    Examples:
        .. code-block:: python

1388 1389 1390
            import paddle
            paddle.enable_static()

1391 1392
            def cond(i, ten):
                return i < ten
G
guofei 已提交
1393

1394 1395 1396
            def body(i, ten):
                i = i + 1
                return [i, ten]
G
guofei 已提交
1397

C
Chen Long 已提交
1398 1399 1400 1401 1402 1403
            main_program = paddle.static.default_main_program()
            startup_program = paddle.static.default_startup_program()
            with paddle.static.program_guard(main_program, startup_program):
                i = paddle.full(shape=[1], fill_value=0, dtype='int64')     # loop counter
                ten = paddle.full(shape=[1], fill_value=10, dtype='int64')  # loop length
                i, ten = paddle.static.nn.while_loop(cond, body, [i, ten])
1404

C
Chen Long 已提交
1405
                exe = paddle.static.Executor(paddle.CPUPlace())
1406
                res = exe.run(main_program, feed={}, fetch_list=[i])
G
guofei 已提交
1407 1408 1409 1410 1411 1412 1413 1414
                print(res) # [array([10])]
    """
    helper = LayerHelper('while_loop', **locals())

    if not callable(cond):
        raise TypeError("cond in while_loop should be callable")
    if not callable(body):
        raise TypeError("body in while_loop should be callable")
1415
    check_type(loop_vars, 'loop_vars', (list, tuple), 'fluid.layers.while_loop')
G
guofei 已提交
1416 1417 1418 1419
    if len(loop_vars) == 0:
        raise ValueError("loop_vars in while_loop should not be empty")

    pre_cond = cond(*loop_vars)
1420 1421 1422
    check_variable_and_dtype(
        pre_cond, 'var of cond returned', ['bool'], 'fluid.layers.while_loop'
    )
G
guofei 已提交
1423 1424
    if reduce(lambda a, b: a * b, pre_cond.shape, 1) != 1:
        raise TypeError(
1425
            "the shape of the variable returned by cond should be [1],"
1426 1427
            "but given shape as {0}.".format(list(pre_cond.shape))
        )
G
guofei 已提交
1428

J
Jiabin Yang 已提交
1429
    if _non_static_mode():
1430
        now_cond = pre_cond.numpy()[0]
1431
        while now_cond:
1432 1433 1434 1435 1436 1437
            output_vars = body(*loop_vars)
            if not isinstance(output_vars, (list, tuple)):
                output_vars = [output_vars]
            if len(output_vars) != len(loop_vars):
                raise ValueError(
                    "body in while_loop should return the same arity "
1438 1439
                    "(length and structure) and types as loop_vars"
                )
1440
            now_cond = cond(*output_vars).numpy()[0]
1441
            map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
1442 1443
        return loop_vars

G
guofei 已提交
1444
    while_loop_block = While(pre_cond, is_test, name)
1445
    has_mutable_vars_in_loop = hold_mutable_vars(loop_vars)
G
guofei 已提交
1446
    with while_loop_block.block():
1447 1448 1449 1450 1451 1452 1453 1454 1455
        # If a variable with mutable type is included in loop_vars, like `dict/list`,
        # modifying it in the body function will cause origin variable to be modified
        # synchronously. This will raise an assignment error out of while block.
        # Here we make a copy of the mutable vars to avoid this problem.
        if has_mutable_vars_in_loop:
            new_loop_vars = copy_mutable_vars(loop_vars)
            output_vars = body(*new_loop_vars)
        else:
            output_vars = body(*loop_vars)
1456 1457
        if not isinstance(output_vars, (list, tuple)):
            output_vars = [output_vars]
1458
        try:
1459
            loop_vars = _deal_with_undefined_var(output_vars, loop_vars)
1460 1461
            assert_same_structure(output_vars, loop_vars, check_types=False)
        except ValueError as e:
1462 1463
            raise ValueError(
                "body in while_loop should return the same arity "
1464 1465
                "(length and structure) as loop_vars: {0}".format(e)
            )
1466
        now_cond = cond(*output_vars)
1467
        map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
G
guofei 已提交
1468 1469 1470 1471
        assign(now_cond, pre_cond)
    return loop_vars


1472
def _deal_with_undefined_var(output_vars, loop_vars):
1473 1474 1475 1476 1477 1478 1479
    """Deal with undefined var cases, We create undefined variable based on the results of body().
    In Dy2Static, we use undefined var to represent the var created in control flow. This function
    expand the loop_vars and replace original loop_vars.
    1. UndefinedVar = Variable      # create a variable
    2. UndefinedVar = None          # create a undefined var with RETURN_NO_VALUE_MAGIC_NUM
    3. UndefinedVar = List(int)     # create a list of variable
    4. UndefinedVar = value         # create a variable
1480
    """
1481 1482 1483 1484
    from paddle.fluid.dygraph.dygraph_to_static.utils import (
        UndefinedVar,
        create_undefined_variable,
    )
1485 1486

    def create_var_like(o_var):
1487 1488 1489 1490
        if (
            isinstance(o_var, (Variable,) + support_ret_buildin_type)
            or o_var is None
        ):
1491
            return create_undefined_variable()
1492
        if is_sequence(o_var):
1493
            """
1494 1495 1496
            Create a complex container class inside the body of while, including Python list and python Dict
            """
            return map_structure(lambda x: create_undefined_variable(), o_var)
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509

    if len(output_vars) != len(loop_vars):
        raise ValueError("The length of loop_vars should be the same.")

    results = []
    for o_var, l_var in zip(output_vars, loop_vars):
        if isinstance(l_var, UndefinedVar) or l_var is None:
            results.append(create_var_like(o_var))
        else:
            results.append(l_var)
    return results


1510
def lod_rank_table(x, level=0):
1511 1512
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
1513 1514
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
1515
    a length, both of which are int type. Refering to specified level of LoD,
T
tianshuo78520a 已提交
1516
    the index is the sequence index number and the length represents the
Y
yangyaming 已提交
1517 1518
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
1519 1520 1521 1522

        .. code-block:: text

            x is a LoDTensor:
1523 1524
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
1525 1526
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
1527 1528 1529
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
1530

Y
yangyaming 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
1540 1541 1542 1543

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
1544 1545
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
1546 1547 1548 1549 1550 1551 1552

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

1553
            import paddle.fluid as fluid
Y
yangyaming 已提交
1554
            x = fluid.layers.data(name='x', shape=[10],
1555
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
1556
            out = layers.lod_rank_table(x=x, level=0)
1557
    """
1558 1559 1560
    check_type(x, 'x', (Variable, list), 'lod_rank_table')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
1561 1562 1563
            check_type(
                input_x, 'input[' + str(i) + ']', Variable, 'lod_rank_table'
            )
1564

Y
Yu Yang 已提交
1565
    helper = LayerHelper("lod_rank_table", **locals())
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
        name=unique_name.generate("lod_rank_table"),
    )
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level},
    )
Y
Yu Yang 已提交
1576
    return table
Y
Yu Yang 已提交
1577 1578


Y
yuyang18 已提交
1579
@templatedoc()
1580
def max_sequence_len(rank_table):
Y
yuyang18 已提交
1581 1582 1583 1584 1585 1586 1587 1588
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
1589 1590

    Args:
Y
yuyang18 已提交
1591
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
1592 1593

    Returns:
Y
yuyang18 已提交
1594
        ${out_comment}.
F
fengjiayi 已提交
1595 1596
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
1597
    res = helper.create_variable_for_type_inference(dtype="int64")
1598 1599 1600 1601 1602
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res},
    )
F
fengjiayi 已提交
1603 1604 1605
    return res


1606
def lod_tensor_to_array(x, table):
1607
    """
F
fengjiayi 已提交
1608 1609
    Convert a LoDTensor to a LoDTensorArray.

1610 1611 1612 1613 1614
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
1615
    Users should not use it directly.
1616 1617

    Args:
F
fengjiayi 已提交
1618
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
1619 1620
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
1621
                                descending order. It is generally generated
F
fengjiayi 已提交
1622
                                by `layers.lod_rank_table()` API.
1623 1624

    Returns:
F
fengjiayi 已提交
1625
        Variable: The LoDTensorArray that has been converted from the input tensor.
1626 1627 1628 1629

    Examples:
        .. code-block:: python

1630
          import paddle.fluid as fluid
1631 1632 1633
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
1634
    """
1635 1636 1637
    check_type(x, 'x', (Variable, list), 'lod_tensor_to_array')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
1638 1639 1640 1641 1642 1643
            check_type(
                input_x,
                'input[' + str(i) + ']',
                Variable,
                'lod_tensor_to_array',
            )
1644 1645 1646
    check_type(table, 'table', (Variable, list), 'lod_tensor_to_array')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
1647 1648 1649 1650 1651 1652
            check_type(
                table_x,
                'table[' + str(i) + ']',
                Variable,
                'lod_tensor_to_array',
            )
1653 1654
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
1655
        name=unique_name.generate("lod_tensor_to_array"),
1656
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
1657 1658 1659 1660 1661 1662 1663
        dtype=x.dtype,
    )
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x, 'RankTable': table},
        outputs={'Out': array},
    )
1664 1665 1666
    return array


1667
def array_to_lod_tensor(x, table):
1668
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
1669 1670

    Args:
1671
        x (Variable|list): The lod tensor array to be converted to a tensor.
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

1683
          import paddle.fluid as fluid
1684 1685 1686 1687
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
1688
    """
1689 1690 1691
    check_type(x, 'x', (Variable, list), 'array_to_lod_tensor')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
1692 1693 1694 1695 1696 1697
            check_type(
                input_x,
                'input[' + str(i) + ']',
                Variable,
                'array_to_lod_tensor',
            )
1698 1699 1700
    check_type(table, 'table', (Variable, list), 'array_to_lod_tensor')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
1701 1702 1703 1704 1705 1706
            check_type(
                table_x,
                'table[' + str(i) + ']',
                Variable,
                'array_to_lod_tensor',
            )
1707

1708
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
1709
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
1710 1711 1712 1713 1714
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x, 'RankTable': table},
        outputs={'Out': tmp},
    )
1715 1716 1717
    return tmp


1718
def increment(x, value=1.0, in_place=True):
1719
    """
1720 1721
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.
1722

1723
    Parameters:
T
tianshuo78520a 已提交
1724
        x (Variable): A tensor that must always contain only one element, its data type supports
1725 1726 1727
            float32, float64, int32 and int64.
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        in_place (bool, optional): Whether the OP should be performed in-place. Default: True.
1728 1729

    Returns:
1730
        Variable: The elementwise-incremented tensor with the same shape and data type as :attr:`x`.
1731 1732 1733 1734

    Examples:
        .. code-block:: python

1735
          import paddle.fluid as fluid
1736 1737
          counter = fluid.layers.zeros(shape=[1], dtype='float32') # [0.]
          fluid.layers.increment(counter) # [1.]
1738
    """
H
hong 已提交
1739
    if in_dygraph_mode():
1740
        return _C_ops.increment_(x, value)
H
hong 已提交
1741

1742 1743 1744
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment'
    )
Y
Yu Yang 已提交
1745
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1746
    if not in_place:
X
Xin Pan 已提交
1747
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1748 1749
    else:
        out = x
1750 1751 1752 1753 1754 1755
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'step': float(value)},
    )
Y
Yang Yu 已提交
1756
    return out
Y
Yu Yang 已提交
1757 1758


1759
def array_write(x, i, array=None):
1760
    """
1761 1762 1763 1764
    This OP writes the input ``x`` into the i-th position of the ``array``
    :ref:`api_fluid_LoDTensorArray` and returns the modified array.
    If ``array`` is none, a new LoDTensorArray will be created and returned.
    This OP is often used together with :ref:`api_fluid_layers_array_read` OP.
1765 1766

    Args:
1767 1768 1769 1770
        x (Variable): The input data to be written into array. It's multi-dimensional
            Tensor or LoDTensor. Data type: float32, float64, int32, int64.
        i (Variable): 1-D Tensor with shape [1], which represents the position into which
            ``x`` is written. Data type: int64.
1771 1772
        array (LoDTensorArray, optional): The LoDTensorArray into which ``x`` is written.
            The default value is None, when a new LoDTensorArray will be created and returned
1773
            as a result.
1774

1775
    Returns:
1776
        Variable: The input ``array`` after ``x`` is written into.
1777 1778

    Examples:
D
dzhwinter 已提交
1779
        .. code-block:: python
1780

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
            import paddle.fluid as fluid
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # Write tmp into the position of arr with subscript 10 and return arr.
            arr = fluid.layers.array_write(tmp, i=i)

            # Now, arr is a LoDTensorArray with length 11. We can use array_read OP to read
            # the data at subscript 10 and print it out.
            item = fluid.layers.array_read(arr, i=i)
            input = fluid.layers.Print(item, message="The content of i-th LoDTensor:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
            # 1570533133    The content of i-th LoDTensor:  The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2], which is tmp above.
            # dtype is the corresponding C++ data type, which may vary in different environments.
1804 1805
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
1806 1807
            #       and '__int64' on Windows. They both represent 64-bit integer variables.

1808
    """
J
Jiabin Yang 已提交
1809
    if _non_static_mode():
1810 1811 1812 1813 1814 1815 1816 1817 1818
        assert isinstance(
            x, Variable
        ), "The input data 'x' in array_write must be Variable in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_write must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
1819
        i = i.numpy().item(0)
1820 1821 1822
        if array is None:
            array = create_array(x.dtype)
        assert isinstance(
1823 1824
            array, list
        ), "The 'array' in array_write must be a list in dygraph mode"
1825 1826 1827 1828 1829 1830 1831 1832 1833
        assert i <= len(
            array
        ), "The index 'i' should not be greater than the length of 'array' in dygraph mode"
        if i < len(array):
            array[i] = x
        else:
            array.append(x)
        return array

1834 1835
    check_variable_and_dtype(i, 'i', ['int64'], 'array_write')
    check_type(x, 'x', (Variable), 'array_write')
Y
Yu Yang 已提交
1836
    helper = LayerHelper('array_write', **locals())
1837
    if array is not None:
1838 1839 1840 1841
        if (
            not isinstance(array, Variable)
            or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY
        ):
1842
            raise TypeError(
1843 1844
                "array should be tensor array vairable in array_write Op"
            )
Y
Yu Yang 已提交
1845 1846 1847 1848
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
1849 1850 1851 1852 1853 1854 1855
            dtype=x.dtype,
        )
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x], 'I': [i]},
        outputs={'Out': [array]},
    )
Y
Yu Yang 已提交
1856 1857 1858
    return array


1859
def create_array(dtype, initialized_list=None):
1860
    """
1861
    This OP creates an LOD_TENSOR_ARRAY. It is used as
1862
    the input of :ref:`api_fluid_layers_array_read` and
1863 1864
    :ref:`api_fluid_layers_array_write`. Also it can be used
    with  :ref:`api_fluid_layers_While` to create RNN network.
1865 1866

    Args:
1867 1868
        dtype (str): The data type of the elements in the lod_tensor_array.
                     Support data type: float32, float64, int32, int64.
1869 1870
        initialized_list(list): Used to initialize as default value for created array.
                    All values in initialized list should be a Tensor.
1871 1872

    Returns:
1873
        Variable: The empty lod_tensor_array. The data type of elements in Tensor is ``dtype``.
1874 1875 1876 1877

    Examples:
        .. code-block:: python

1878
          import paddle.fluid as fluid
1879
          data = fluid.layers.create_array(dtype='float32') # Create a float32 LoDTensorArray.
1880 1881

    """
1882 1883 1884 1885
    array = []
    if initialized_list is not None:
        if not isinstance(initialized_list, (list, tuple)):
            raise TypeError(
1886 1887 1888 1889
                "Require type(initialized_list) should be list/tuple, but received {}".format(
                    type(initialized_list)
                )
            )
1890 1891 1892 1893 1894 1895
        array = list(initialized_list)

    # NOTE: Only support plain list like [x, y,...], not support nested list in static mode.
    for val in array:
        if not isinstance(val, Variable):
            raise TypeError(
1896 1897 1898 1899
                "All values in `initialized_list` should be Variable, but recevied {}.".format(
                    type(val)
                )
            )
1900

J
Jiabin Yang 已提交
1901
    if _non_static_mode():
1902
        return array
1903

Y
Yang Yang(Tony) 已提交
1904
    helper = LayerHelper("array", **locals())
1905
    tensor_array = helper.create_variable(
Y
Yang Yang(Tony) 已提交
1906 1907
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
1908 1909
        dtype=dtype,
    )
Y
Yang Yang(Tony) 已提交
1910

1911 1912 1913 1914 1915
    for val in array:
        array_write(x=val, i=array_length(tensor_array), array=tensor_array)

    return tensor_array

Y
Yang Yang(Tony) 已提交
1916

Y
yuyang18 已提交
1917
@templatedoc()
W
wawltor 已提交
1918
def less_than(x, y, force_cpu=None, cond=None, name=None):
1919
    """
1920

Y
yuyang18 已提交
1921
    ${comment}
1922 1923

    Args:
N
Noel 已提交
1924 1925
        x(Tensor): ${x_comment}.
        y(Tensor): ${y_comment}.
Y
yuyang18 已提交
1926
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
N
Noel 已提交
1927
        cond(Tensor, optional): Optional output which can be any created Tensor
1928
            that meets the requirements to store the result of *less_than*.
N
Noel 已提交
1929
            if cond is None, a new Tensor will be created to store the result.
W
wawltor 已提交
1930 1931
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1932
    Returns:
Y
yuyang18 已提交
1933
        ${out_comment}.
1934 1935 1936 1937

    Examples:
        .. code-block:: python

N
Noel 已提交
1938 1939 1940 1941 1942 1943 1944
            import paddle

            x = paddle.to_tensor([1, 2, 3, 4], dtype='float32')
            y = paddle.to_tensor([2, 2, 1, 3], dtype='float32')
            result = paddle.less_than(x, y)
            print(result) # [True, False, False, False]

1945
    """
1946 1947 1948 1949 1950 1951
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "less_than"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "less_than"
    )
1952 1953
    if cond is not None:
        check_type(cond, "cond", Variable, "less_than")
1954
    if force_cpu is not None:
1955 1956
        check_type(force_cpu, "force_cpu", bool, "less_than")

Y
Yang Yang(Tony) 已提交
1957 1958
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1959
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1960 1961
        cond.stop_gradient = True

Y
yuyang18 已提交
1962 1963 1964 1965
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu

1966 1967 1968 1969 1970 1971
    helper.append_op(
        type='less_than',
        inputs={'X': [x], 'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs,
    )
Y
Yang Yang(Tony) 已提交
1972 1973 1974
    return cond


Z
zhoukunsheng 已提交
1975
@templatedoc()
W
wawltor 已提交
1976
def less_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1977
    """
1978
    :alias_main: paddle.less_equal
1979 1980
        :alias: paddle.less_equal,paddle.tensor.less_equal,paddle.tensor.logic.less_equal
        :old_api: paddle.fluid.layers.less_equal
1981

1982
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
Z
zhoukunsheng 已提交
1983 1984

    Args:
1985
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1986
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1987 1988
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *less_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1989 1990
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1991 1992

    Returns:
1993
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
1994 1995 1996 1997

    Examples:
        .. code-block:: python

1998
          import paddle.fluid as fluid
1999 2000 2001 2002 2003 2004
          import numpy as np
          label = fluid.layers.assign(np.array([1, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([1, 2], dtype='int32'))
          out = fluid.layers.less_equal(x=label, y=limit) #out=[True, False]
          out1 = label<= limit #out1=[True, False]

Z
zhoukunsheng 已提交
2005
    """
2006 2007 2008 2009 2010 2011
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "less_equal"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "less_equal"
    )
2012
    if cond is not None:
2013
        check_type(cond, "cond", Variable, "less_equal")
2014

Z
zhoukunsheng 已提交
2015 2016 2017 2018 2019 2020 2021
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

2022 2023 2024 2025 2026 2027
    helper.append_op(
        type='less_equal',
        inputs={'X': [x], 'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs,
    )
Z
zhoukunsheng 已提交
2028 2029 2030 2031
    return cond


@templatedoc()
W
wawltor 已提交
2032
def greater_than(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
2033
    """
2034
    :alias_main: paddle.greater_than
2035 2036
        :alias: paddle.greater_than,paddle.tensor.greater_than,paddle.tensor.logic.greater_than
        :old_api: paddle.fluid.layers.greater_than
2037

2038
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
Z
zhoukunsheng 已提交
2039 2040

    Args:
2041
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2042
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2043 2044
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_than*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
2045 2046
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
2047 2048

    Returns:
2049
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x` .
Z
zhoukunsheng 已提交
2050 2051 2052 2053

    Examples:
        .. code-block:: python

2054
          import paddle.fluid as fluid
2055 2056 2057 2058 2059
          import numpy as np
          label = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([3, 2], dtype='int32'))
          out = fluid.layers.greater_than(x=label, y=limit) #out=[False, True]
          out1 = label > limit #out1=[False, True]
Z
zhoukunsheng 已提交
2060
    """
2061 2062 2063 2064 2065 2066
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "greater_than"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "greater_than"
    )
2067
    if cond is not None:
2068
        check_type(cond, "cond", Variable, "greater_than")
2069

Z
zhoukunsheng 已提交
2070 2071 2072 2073 2074 2075 2076
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

2077
    if in_dygraph_mode():
2078
        return _C_ops.greater_than(x, y)
2079
    else:
2080 2081 2082 2083 2084 2085
        helper.append_op(
            type='greater_than',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [cond]},
            attrs=attrs,
        )
2086
        return cond
Z
zhoukunsheng 已提交
2087 2088 2089


@templatedoc()
W
wawltor 已提交
2090
def greater_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
2091
    """
2092
    :alias_main: paddle.greater_equal
2093 2094
        :alias: paddle.greater_equal,paddle.tensor.greater_equal,paddle.tensor.logic.greater_equal
        :old_api: paddle.fluid.layers.greater_equal
2095

2096
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
Z
zhoukunsheng 已提交
2097 2098

    Args:
2099
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2100
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2101 2102
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
2103 2104
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
2105 2106

    Returns:
2107
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
2108 2109 2110 2111

    Examples:
        .. code-block:: python

2112
          import paddle.fluid as fluid
2113 2114 2115 2116 2117 2118
          import numpy as np

          label = fluid.layers.assign(np.array([2, 2], dtype='int32'))
          limit = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          out = fluid.layers.greater_equal(x=label, y=limit) #out=[True, False]
          out_1 = label >= limit #out1=[True, False]
2119

Z
zhoukunsheng 已提交
2120
    """
2121 2122 2123 2124 2125 2126
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "greater_equal"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "greater_equal"
    )
2127
    if cond is not None:
2128
        check_type(cond, "cond", Variable, "greater_equal")
2129

Z
zhoukunsheng 已提交
2130 2131 2132 2133 2134 2135 2136
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

2137 2138 2139 2140 2141 2142
    helper.append_op(
        type='greater_equal',
        inputs={'X': [x], 'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs,
    )
Z
zhoukunsheng 已提交
2143 2144 2145
    return cond


W
wawltor 已提交
2146
def equal(x, y, cond=None, name=None):
2147 2148 2149 2150
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
W
wangchaochaohu 已提交
2151 2152
        x(Variable): Tensor, data type is float32, float64, int32, int64.
        y(Variable): Tensor, data type is float32, float64, int32, int64.
2153
        cond(Variable, optional): Optional output which can be any created
W
wangchaochaohu 已提交
2154 2155
            Variable that meets the requirements to store the result of *equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
2156 2157
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
2158 2159

    Returns:
W
wangchaochaohu 已提交
2160 2161
        Variable: output Tensor, it's shape is the same as the input's Tensor,
        and the data type is bool.
2162 2163 2164 2165

    Examples:
        .. code-block:: python

2166
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
2167 2168 2169 2170 2171 2172 2173
          import numpy as np
          out_cond =fluid.data(name="input1", shape=[2], dtype='bool')
          label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
          limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
          label_cond = fluid.layers.assign(np.array([1, 2], dtype="int32"))
          out1 = fluid.layers.equal(x=label,y=limit) #out1=[True, False]
          out2 = fluid.layers.equal(x=label_cond,y=limit, cond=out_cond) #out2=[False, True] out_cond=[False, True]
2174
    """
H
hong 已提交
2175
    if in_dygraph_mode():
2176
        return _C_ops.equal(x, y)
H
hong 已提交
2177

2178 2179 2180 2181 2182 2183
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "equal"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "equal"
    )
2184
    if cond is not None:
2185
        check_type(cond, "cond", Variable, "equal")
2186

2187 2188
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
2189
        cond = helper.create_variable_for_type_inference(dtype='bool')
2190 2191
        cond.stop_gradient = True

2192 2193 2194
    helper.append_op(
        type='equal', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]}
    )
2195 2196 2197
    return cond


W
wawltor 已提交
2198
def not_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
2199
    """
2200
    :alias_main: paddle.not_equal
2201 2202
        :alias: paddle.not_equal,paddle.tensor.not_equal,paddle.tensor.logic.not_equal
        :old_api: paddle.fluid.layers.not_equal
2203

2204
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
Z
zhoukunsheng 已提交
2205 2206

    Args:
2207
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2208
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2209 2210
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *not_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
2211 2212
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
2213 2214

    Returns:
2215
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
2216 2217 2218 2219

    Examples:
        .. code-block:: python

2220
          import paddle.fluid as fluid
2221

2222 2223
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
2224 2225
          out = fluid.layers.not_equal(x=label, y=limit)
    """
2226 2227 2228 2229 2230 2231
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "not_equal"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "not_equal"
    )
2232
    if cond is not None:
2233
        check_type(cond, "cond", Variable, "not_equal")
2234

Z
zhoukunsheng 已提交
2235 2236 2237 2238 2239
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

2240 2241 2242
    helper.append_op(
        type='not_equal', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]}
    )
Z
zhoukunsheng 已提交
2243 2244 2245
    return cond


2246
def array_read(array, i):
2247
    """
2248
    This OP is used to read data at the specified position from the input array
2249
    :ref:`api_fluid_LoDTensorArray` . ``array`` is the input array and ``i``
2250
    is the specified read position. This OP is often used together with
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
    :ref:`api_fluid_layers_array_write` OP.

    Case 1:
    ::
        Input:
            The shape of first three tensors are [1], and that of the last one is [1,2]:
                array = ([0.6], [0.1], [0.3], [0.4, 0.2])
            And:
                i = [3]

        Output:
            output = [0.4, 0.2]
2263

K
kavyasrinet 已提交
2264
    Args:
2265 2266 2267
        array (LoDTensorArray): The input LoDTensorArray.
        i (Variable): 1-D Tensor, whose shape is [1] and dtype is int64. It represents the
            specified read position of ``array``.
2268

K
kavyasrinet 已提交
2269
    Returns:
2270
        Variable: The LoDTensor or Tensor that is read at the specified position of ``array``.
2271

K
kavyasrinet 已提交
2272
    Examples:
2273 2274
        .. code-block:: python

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
            # First we're going to create a LoDTensorArray, then we're going to write the Tensor into
            # the specified position, and finally we're going to read the Tensor at that position.
            import paddle.fluid as fluid
            arr = fluid.layers.create_array(dtype='float32')
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is the Tensor with shape [3,2], and if we write it into the position with subscript 10
            # of the empty-array: arr, then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i, array=arr)
            # Read the data of the position with subscript 10.
            item = fluid.layers.array_read(arr, i)

            # You can print out the data via executor.
            input = fluid.layers.Print(item, message="The LoDTensor of the i-th position:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:

            # 1569588169  The LoDTensor of the i-th position: The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2].
            # dtype is the corresponding C++ data type, which may vary in different environments.
2303 2304
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
2305
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
2306
    """
J
Jiabin Yang 已提交
2307
    if _non_static_mode():
2308
        assert isinstance(
2309 2310
            array, list
        ), "The 'array' in array_read must be list in dygraph mode"
2311 2312 2313 2314 2315 2316
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_read must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
2317
        i = i.numpy().item(0)
2318 2319
        return array[i]

2320
    check_variable_and_dtype(i, 'i', ['int64'], 'array_read')
Y
Yu Yang 已提交
2321
    helper = LayerHelper('array_read', **locals())
2322 2323 2324 2325
    if (
        not isinstance(array, Variable)
        or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY
    ):
Y
Yu Yang 已提交
2326
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
2327
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
2328 2329 2330 2331 2332
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array], 'I': [i]},
        outputs={'Out': [out]},
    )
Y
Yu Yang 已提交
2333
    return out
Y
Yang Yu 已提交
2334 2335


2336
def shrink_memory(x, i, table):
2337
    """
Y
yuyang18 已提交
2338
    This function creates an operator to shrink rnn memory using the RankTable
2339
    as mentioned in the input parameter.
Y
yuyang18 已提交
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
2360
    """
Y
Yang Yu 已提交
2361
    helper = LayerHelper('shrink_memory', **locals())
2362 2363 2364
    check_type(x, 'x', Variable, 'shrink_memory')
    check_type(i, 'i', Variable, 'shrink_memory')
    check_type(table, 'table', Variable, 'shrink_memory')
X
Xin Pan 已提交
2365
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2366 2367 2368 2369 2370 2371
    helper.append_op(
        type='shrink_rnn_memory',
        inputs={'X': [x], 'I': [i], 'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={},
    )
Y
Yang Yu 已提交
2372
    return out
Y
Yang Yu 已提交
2373 2374


2375
def array_length(array):
2376
    """
2377
    This OP is used to get the length of the input array :ref:`api_fluid_LoDTensorArray` .
2378
    It can be used together with :ref:`api_fluid_layers_array_read` , :ref:`api_fluid_layers_array_write` ,
T
tianshuo78520a 已提交
2379
    :ref:`api_fluid_layers_While` OP to traverse, read and write LoDTensorArray.
2380

K
kavyasrinet 已提交
2381
    Args:
2382
        array (LoDTensorArray): The input array that will be used to compute the length.
K
kavyasrinet 已提交
2383 2384

    Returns:
2385
        Variable: 1-D Tensor with shape [1], which is the length of array. Datatype: int64.
K
kavyasrinet 已提交
2386 2387

    Examples:
Q
qiaolongfei 已提交
2388
        .. code-block:: python
K
kavyasrinet 已提交
2389

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
            import paddle.fluid as fluid
            tmp = fluid.layers.zeros(shape=[10], dtype='int32')
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is 1-D Tensor with shape [10]. We write tmp into arr on subscript 10,
            # then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i=i)
            # return the length of arr
            arr_len = fluid.layers.array_length(arr)

            # You can use executor to print out the length of LoDTensorArray.
            input = fluid.layers.Print(arr_len, message="The length of LoDTensorArray:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
Q
qiaolongfei 已提交
2406

2407 2408 2409 2410 2411
            # 1569576542  The length of LoDTensorArray:   The place is:CPUPlace
            # Tensor[array_length_0.tmp_0]
            #    shape: [1,]
            #    dtype: l
            #    data: 11,
2412

2413 2414 2415
            # 1-D Tensor with shape [1], whose value is 11. It means that the length of LoDTensorArray
            # is 11.
            # dtype is the corresponding C++ data type, which may vary in different environments.
2416 2417
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
2418
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
2419
    """
2420

J
Jiabin Yang 已提交
2421
    if _non_static_mode():
2422
        assert isinstance(
2423 2424
            array, list
        ), "The 'array' in array_write must be a list in dygraph mode"
2425 2426
        return len(array)

2427 2428 2429 2430
    if (
        not isinstance(array, Variable)
        or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY
    ):
2431
        raise TypeError(
2432 2433
            "array should be tensor array vairable in array_length Op"
        )
2434

Y
Yang Yu 已提交
2435
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
2436
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
2437
    tmp.stop_gradient = True
2438 2439 2440
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]}
    )
Y
Yang Yu 已提交
2441
    return tmp
Y
Yu Yang 已提交
2442 2443 2444


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
2445
    """
2446 2447 2448
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
2449 2450 2451
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
2452
    def __init__(self, block):
2453
        check_type(block, "block", ConditionalBlock, "ConditionalBlockGuard")
2454
        super().__init__(block.helper.main_program)
Y
Yu Yang 已提交
2455 2456 2457
        self.block = block

    def __enter__(self):
2458
        return super().__enter__()
Y
Yu Yang 已提交
2459 2460 2461

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
2462
        return super().__exit__(exc_type, exc_val, exc_tb)
Y
Yu Yang 已提交
2463 2464


2465
class ConditionalBlock:
Y
Yan Chunwei 已提交
2466 2467 2468 2469 2470 2471 2472 2473
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
T
tianshuo78520a 已提交
2474
        is_scalar_condition (bool): whether the branch is controlled by a scalar.
Y
Yan Chunwei 已提交
2475 2476 2477 2478 2479
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

2480
             import paddle.fluid as fluid
Y
Yan Chunwei 已提交
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

2492
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
2493
        for each_input in inputs:
2494
            check_type(each_input, "input", Variable, "ConditionalBlock")
Y
Yu Yang 已提交
2495
        self.inputs = inputs
2496
        self.is_scalar_condition = is_scalar_condition
2497
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()
2508 2509 2510
        params, intermediate = get_inputs_outputs_in_block(
            inside_block, params, intermediate, helper=self.helper
        )
Y
Yu Yang 已提交
2511

2512 2513 2514
        # Todo(liym27) Here assume that all params are in recursive parent block
        # but when minimize() called in control flow, some params may be in
        # conditional grad block
Y
Yu Yang 已提交
2515
        param_list = [
W
Wu Yi 已提交
2516
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
2517 2518
        ]

X
Xin Pan 已提交
2519 2520 2521 2522 2523
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
2524 2525

        step_scope = parent_block.create_var(
2526 2527
            type=core.VarDesc.VarType.STEP_SCOPES
        )
2528
        conditional_block_op = parent_block.append_op(
Y
Yu Yang 已提交
2529 2530
            type='conditional_block',
            inputs={
2531 2532
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
2533
            },
2534
            outputs={'Out': out_list, 'Scope': [step_scope]},
2535 2536
            attrs={
                'sub_block': inside_block,
2537 2538 2539
                'is_scalar_condition': self.is_scalar_condition,
            },
        )
2540

2541
        if self.need_append_conditional_block_grad(inside_block):
2542 2543 2544
            self.append_conditional_block_grad(
                parent_block, inside_block, conditional_block_op
            )
2545 2546 2547

    def need_append_conditional_block_grad(self, inside_block):
        grad_sub_block_idx = inside_block.backward_block_idx
2548
        inside_block_idx = inside_block.idx
2549

2550 2551
        # if inside_block have grad_block and grad_block is not itself,
        # we will append conditional block grad.
2552 2553 2554
        return (
            grad_sub_block_idx != -1 and grad_sub_block_idx != inside_block_idx
        )
2555

2556 2557 2558
    def append_conditional_block_grad(
        self, parent_block, inside_block, conditional_block_op
    ):
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
        '''
        Append op `conditional_block_grad` manually.
        When `optimizer.minimize/append_backward` is called in Paddle control flow,
        grad ops will be appended before appending op `conditional_block` so that
        op `conditional_block_grad` can't be appended when calling
        `optimizer.minimize/append_backward`. After appending op `conditional_block`,
        `conditional_block_grad` is appended manually.

        Args:
            parent_block (Block): The block that `conditional_block_op` blongs to.
            inside_block (Block): The sub block of `conditional_block_op`.
            conditional_block_op (Operator): The forward op conditional_block.
        '''

        grad_sub_block_idx = inside_block.backward_block_idx
        grad_sub_block = self.helper.main_program.block(grad_sub_block_idx)

        intermediate = set()
        params = set()

        for each_op in grad_sub_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)

        param_list = []
        for inner_input_name in params:
            inner_var = parent_block._find_var_recursive(inner_input_name)
            if inner_var:
2594
                param_list.append(inner_var.name)
2595 2596

        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
2597 2598
            conditional_block_op.desc, set(), [grad_sub_block.desc]
        )
2599 2600 2601 2602 2603 2604 2605 2606 2607

        # append op_desc in grad_op_descs to target_block
        op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        new_op_desc = parent_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc[0])
        new_op_desc._set_attr(op_role_attr_name, backward)
        # set input and output manually
        new_op_desc.set_input('Input', param_list)
2608 2609 2610
        new_op_desc.set_output(
            'Input@GRAD', [param + "@GRAD" for param in param_list]
        )
2611 2612 2613

        new_vars = set()
        for grad_var_name in new_op_desc.output_arg_names():
2614 2615 2616 2617
            if (
                grad_sub_block.desc.has_var_recursive(grad_var_name.encode())
                or grad_var_name == core.empty_var_name()
            ):
2618
                continue
2619
            grad_sub_block.desc.var(grad_var_name.encode())
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
            new_vars.add(grad_var_name)
            if grad_var_name not in op_grad_to_var:
                continue

        # infer_shape and infer_type
        new_op_desc.infer_var_type(grad_sub_block.desc)
        new_op_desc.infer_shape(grad_sub_block.desc)

        for arg in new_op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_shape_(arg, grad_sub_block)

        self.helper.main_program._sync_with_cpp()

2634

2635
def copy_var_to_parent_block(var, layer_helper):
2636 2637
    if not isinstance(var, Variable):
        return var
2638 2639
    prog = layer_helper.main_program
    parent_idx = prog.current_block().parent_idx
2640 2641 2642
    assert (
        parent_idx >= 0
    ), "Got wrong parent block index when assigning var to parent scope in control_flow"
2643 2644
    parent_block = prog.block(parent_idx)

2645 2646 2647 2648
    if (
        var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        and parent_block._find_var_recursive(var.name)
    ):
2649 2650
        parent_block_var = var
    else:
2651 2652 2653
        parent_block_var = parent_block.create_var(
            dtype=var.dtype, shape=var.shape, type=var.type
        )
2654
        assign(var, parent_block_var)
2655 2656 2657
    return parent_block_var


2658
def cond(pred, true_fn=None, false_fn=None, name=None, return_names=None):
2659
    """
2660 2661 2662 2663 2664 2665 2666 2667 2668
    This API returns ``true_fn()`` if the predicate ``pred`` is true else
    ``false_fn()`` . Users could also set ``true_fn`` or ``false_fn`` to
    ``None`` if do nothing and this API will treat the callable simply returns
    ``None`` in this case.

    ``true_fn`` and ``false_fn`` should return same nest structure of tensors
    or both return ``None`` if user doens't like to return anything. A nest
    structure of tensors in PaddlePaddle is tensor(s), or tuple of tensors, or
    list of tensors.
2669 2670

    Note:
2671 2672 2673 2674
        1. The tuples or lists returned by ``true_fn`` and ``false_fn`` must have
        the same shape because of dataflow model of PaddlePaddle while the
        tensors in the tuples or the lists can have different shapes.

2675 2676 2677
        2. This API could be used under both static mode or dygraph mode. If it
        is in dygraph mode, the API only runs one branch based on condition.

2678
        3. If it is in static mode, any tensors or operations created outside
2679 2680 2681
        or inside of ``true_fn`` and ``false_fn`` will be in net building
        regardless of which branch is selected at runtime. This has frequently
        surprised users who expected a lazy semantics. For example:
2682 2683

        .. code-block:: python
2684 2685 2686 2687 2688

            import paddle

            a = paddle.zeros((1, 1))
            b = paddle.zeros((1, 1))
2689
            c = a * b
2690
            out = paddle.static.nn.cond(a < b, lambda: a + c, lambda: b * b)
2691

2692 2693 2694
        No matter whether ``a < b`` , ``c = a * b`` will be in net building and
        run. ``a + c`` and ``b * b`` will be in net building, but only one
        branch will be executed during runtime.
2695 2696

    Args:
2697
        pred(Tensor): A boolean tensor whose numel should be 1. The boolean
2698
            value determines whether to return the result of ``true_fn`` or
2699 2700 2701 2702 2703 2704
            ``false_fn`` .
        true_fn(callable, optional): A callable to be performed if ``pred`` is
            true. The default value is ``None`` .
        false_fn(callable, optional): A callable to be performed if ``pred`` is
            false. The default value is ``None`` .
        name(str, optional): The default value is ``None`` . Normally users
2705
             don't have to set this parameter. For more information, please
2706
             refer to :ref:`api_guide_Name` .
2707 2708 2709
        return_names(sequence of string, optional): The default value is ``None`` .
             Normally users don't have to set this parameters.  A sequence of strings
             to represents the name of returned vars.  The structure of sequence must
2710
             be same with return values of true_fn and false_fn.
2711 2712

    Returns:
2713
        Tensor|list(Tensor)|tuple(Tensor): returns ``true_fn()`` if the
2714
        predicate ``pred`` is true else ``false_fn()`` .
2715 2716 2717

    Raises:
        TypeError: if ``true_fn`` or ``false_fn`` is not callable.
2718 2719
        ValueError: if ``true_fn`` and ``false_fn`` don't return the same nest
            structure of tensors.
2720 2721 2722 2723

    Examples:
        .. code-block:: python

2724
            import paddle
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734

            #
            # pseudocode:
            # if 0.1 < 0.23:
            #     return 1, True
            # else:
            #     return 3, 2
            #

            def true_func():
2735 2736 2737 2738
                return paddle.full(shape=[1, 2], dtype='int32',
                                   fill_value=1), paddle.full(shape=[2, 3],
                                                              dtype='bool',
                                                              fill_value=True)
2739

2740 2741

            def false_func():
2742 2743 2744 2745 2746
                return paddle.full(shape=[3, 4], dtype='float32',
                                   fill_value=3), paddle.full(shape=[4, 5],
                                                              dtype='int64',
                                                              fill_value=2)

2747

2748 2749
            x = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
            y = paddle.full(shape=[1], dtype='float32', fill_value=0.23)
2750
            pred = paddle.less_than(x=x, y=y, name=None)
2751
            ret = paddle.static.nn.cond(pred, true_func, false_func)
2752
            # ret is a tuple containing 2 tensors
2753 2754
            # ret[0] = [[1 1]]
            # ret[1] = [[ True  True  True]
2755
            #           [ True  True  True]]
2756

2757
    """
J
Jiabin Yang 已提交
2758
    if _non_static_mode():
2759
        assert isinstance(pred, Variable), "The pred in cond must be Variable"
C
crystal 已提交
2760
        assert pred.size == 1, "condition input's numel should be 1"
2761 2762 2763 2764 2765
        pred = pred.numpy()[0]
        if pred:
            if true_fn is not None:
                if not callable(true_fn):
                    raise TypeError(
2766 2767 2768 2769
                        "The true_fn in cond must be callable, but received {}".format(
                            type(true_fn).__name__
                        )
                    )
2770 2771 2772 2773 2774
                return true_fn()
        else:
            if false_fn is not None:
                if not callable(false_fn):
                    raise TypeError(
2775 2776 2777 2778
                        "The false_fn in cond must be callable, but received {}".format(
                            type(false_fn).__name__
                        )
                    )
2779 2780 2781
                return false_fn()
        return None

2782 2783
    check_variable_and_dtype(pred, "pred", ['bool'], "fluid.layers.cond")
    check_type(name, "name", (str, type(None)), "fluid.layers.cond")
2784 2785 2786
    helper = LayerHelper('cond', **locals())
    true_output = None
    false_output = None
2787
    copy_to_parent_func = lambda var: copy_var_to_parent_block(var, helper)
2788 2789
    if true_fn is not None:
        if not callable(true_fn):
2790 2791
            raise TypeError(
                "The true_fn in cond must be callable, but received {}".format(
2792 2793 2794
                    type(true_fn).__name__
                )
            )
2795 2796 2797 2798
        true_cond_block = ConditionalBlock([pred], is_scalar_condition=True)
        with true_cond_block.block():
            origin_true_output = true_fn()
            if origin_true_output is not None:
2799 2800 2801
                true_output = map_structure(
                    copy_to_parent_func, origin_true_output
                )
2802 2803
    if false_fn is not None:
        if not callable(false_fn):
2804 2805
            raise TypeError(
                "The false_fn in cond must be callable, but received {}".format(
2806 2807 2808 2809 2810 2811
                    type(false_fn).__name__
                )
            )
        false_cond_block = ConditionalBlock(
            [logical_not(pred)], is_scalar_condition=True
        )
2812 2813 2814
        with false_cond_block.block():
            origin_false_output = false_fn()
            if origin_false_output is not None:
2815 2816 2817
                false_output = map_structure(
                    copy_to_parent_func, origin_false_output
                )
2818 2819 2820 2821 2822 2823 2824

    if true_output is None and false_output is None:
        return None

    if true_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
2825 2826
            "true_fn returns None while false_fn returns non-None"
        )
2827 2828 2829
    if false_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
2830 2831
            "true_fn returns non-None while false_fn returns None"
        )
2832

2833
    # Merge true and false output if they are not None
2834
    if return_names is None:
2835
        is_dy2staic = False
2836
        return_names = ["no name"] * len(_to_sequence_except_dict(true_output))
2837
    else:
2838
        """
2839 2840
        dy2static will set the return_names and expand the return values to UndefinedVar.
        """
2841 2842 2843 2844 2845 2846 2847
        is_dy2staic = True

        # TODO:  expand_undefined_var will replace None to Undefinedvar(), to fix cases like:
        #       a = None
        #       if condition:
        #           a = 1
        # Because we can not use variable to express 'None'
2848
        true_output, false_output = expand_undefined_var(
2849 2850
            true_output, false_output, return_names
        )
2851

2852 2853 2854
    if len(_to_sequence_except_dict(true_output)) != len(
        _to_sequence_except_dict(false_output)
    ):
2855
        raise ValueError(
2856
            "true fn returns {} vars, but false fn returns {} vars, which is not equals".format(
2857 2858
                len(_to_sequence_except_dict(true_output)),
                len(_to_sequence_except_dict(false_output)),
2859 2860 2861
            )
        )
    for true_out, false_out, return_name in zip(
2862 2863 2864
        _to_sequence_except_dict(true_output),
        _to_sequence_except_dict(false_output),
        _to_sequence_except_dict(return_names),
2865
    ):
2866 2867 2868 2869
        try:
            assert_same_structure(true_out, false_out, check_types=False)
        except ValueError as e:
            raise ValueError(
2870 2871 2872 2873
                "Incompatible return values of `{}` in true_fn and false_fn in cond: {}".format(
                    return_name, e
                )
            )
2874

2875
    def check_ret_none(seq_true, seq_false, seq_names):
2876 2877 2878
        for f_true, f_false, f_name in zip(seq_true, seq_false, seq_names):
            f_true = flatten(f_true)
            f_false = flatten(f_false)
2879
            for idx in range(len(f_true)):
2880 2881 2882 2883 2884 2885
                if (
                    f_true[idx] is None
                    and f_false[idx] is not None
                    or f_false[idx] is None
                    and f_true[idx] is not None
                ):
2886 2887 2888 2889
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
2890
                            f_name,
2891 2892 2893 2894 2895 2896 2897 2898
                            type(f_true[idx]),
                            f_true[idx],
                            type(f_false[idx]),
                            f_false[idx],
                        )
                    )

    check_ret_none(
2899 2900 2901
        _to_sequence_except_dict(true_output),
        _to_sequence_except_dict(false_output),
        _to_sequence_except_dict(return_names),
2902
    )
2903 2904 2905

    if is_dy2staic:
        true_output, false_output = change_none_to_undefinedvar(
2906 2907
            true_output, false_output
        )
2908

2909
    mask = cast(pred, dtype='int32')
2910 2911 2912 2913 2914
    merge_func = (
        lambda name, false_var, true_var: select_input_with_buildin_type(
            [false_var, true_var], mask, name
        )
    )
2915 2916 2917 2918 2919

    def merge_every_var_list(false_vars, true_vars, name):
        return map_structure(partial(merge_func, name), false_vars, true_vars)

    merged_output = list(
2920 2921
        map(
            merge_every_var_list,
2922 2923 2924
            _to_sequence_except_dict(false_output),
            _to_sequence_except_dict(true_output),
            _to_sequence_except_dict(return_names),
2925 2926
        )
    )
2927
    merged_output = pack_sequence_as(false_output, flatten(merged_output))
2928 2929 2930
    return merged_output


2931 2932 2933 2934
def change_none_to_undefinedvar(nest1, nest2):
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar

    def map_fn(x):
2935 2936
        if x is None:
            return UndefinedVar("padding")
2937 2938 2939 2940 2941 2942 2943
        return x

    nest1_out = pack_sequence_as(nest1, list(map(map_fn, flatten(nest1))))
    nest2_out = pack_sequence_as(nest2, list(map(map_fn, flatten(nest2))))
    return nest1_out, nest2_out


2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
def _to_sequence_except_dict(x):
    """
    In this function, dict is not viewed as sequence.
    """
    if isinstance(x, dict):
        return [x]
    return to_sequence(x)


def _is_sequence_except_dict(x):
    """
    In this function, dict is not viewed as sequence.
    """
    if isinstance(x, dict):
        return False
    return is_sequence(x)


2962
def expand_undefined_var(nest1, nest2, names):
2963 2964 2965 2966
    """TODO: make this function recursively.
    nest1: Var1, (UndefinedVar, [1,2,3])
    nest2: Var2, ([1,2,3,4], UndefinedVar)
    In this case, we should not expand recursively.
2967
    """
2968
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar
2969 2970 2971
    from paddle.fluid.dygraph.dygraph_to_static.return_transformer import (
        RETURN_VALUE_PREFIX,
    )
2972 2973

    def pack_undefined_var_as(seq):
2974 2975 2976
        return pack_sequence_as(
            seq, [UndefinedVar("padding") for i in flatten(seq)]
        )
2977

2978
    def map_fn(n1, n2, name, order):
2979 2980 2981
        if not name.startswith(RETURN_VALUE_PREFIX) and (
            isinstance(n1, UndefinedVar) or n1 is None
        ):
2982 2983 2984 2985 2986 2987
            if n1 is None and n2 is not None:
                if order == 0:
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
2988 2989 2990
                            name, type(n1), n1, type(n2), n2
                        )
                    )
2991 2992 2993 2994 2995
                else:
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
2996 2997 2998
                            name, type(n2), n2, type(n1), n1
                        )
                    )
2999 3000 3001 3002
            return pack_undefined_var_as(n2)
        return n1

    nest1_out = list(
3003 3004
        map(
            map_fn,
3005 3006 3007 3008
            _to_sequence_except_dict(nest1),
            _to_sequence_except_dict(nest2),
            _to_sequence_except_dict(names),
            [0 for i in _to_sequence_except_dict(names)],
3009 3010
        )
    )
3011
    nest2_out = list(
3012 3013
        map(
            map_fn,
3014 3015 3016 3017
            _to_sequence_except_dict(nest2),
            _to_sequence_except_dict(nest1),
            _to_sequence_except_dict(names),
            [1 for i in _to_sequence_except_dict(names)],
3018 3019
        )
    )
3020
    if not _is_sequence_except_dict(nest1):
3021
        nest1_out = nest1_out[0]
3022
    if not _is_sequence_except_dict(nest2):
3023
        nest2_out = nest2_out[0]
3024 3025 3026
    return nest1_out, nest2_out


L
liym27 已提交
3027
def _error_message(what, arg_name, op_name, right_value, error_value):
3028 3029
    error_message = (
        "{what} of '{arg_name}' in {op_name} must be "
L
liym27 已提交
3030
        "{right_value}, but received: {error_value}.".format(
3031 3032 3033 3034 3035 3036 3037
            what=what,
            arg_name=arg_name,
            op_name=op_name,
            right_value=right_value,
            error_value=error_value,
        )
    )
L
liym27 已提交
3038 3039 3040 3041 3042 3043

    return error_message


def case(pred_fn_pairs, default=None, name=None):
    '''
3044 3045
    :api_attr: Static Graph

L
liym27 已提交
3046 3047 3048 3049 3050 3051 3052 3053
    This operator works like an if-elif-elif-else chain.

    Args:
        pred_fn_pairs(list|tuple): A list or tuple of (pred, fn) pairs. ``pred`` is a boolean Tensor with shape [1], ``fn`` is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3054
        Tensor|list(Tensor): Tensors returned by the callable from the first pair whose pred is True,
L
liym27 已提交
3055 3056 3057 3058 3059 3060 3061
        or Tensors returned by ``default`` if no pred in ``pred_fn_pairs`` is True and ``default`` is not None,
        or Tensors returned by the last callable in ``pred_fn_pairs``  if no pred in ``pred_fn_pairs`` is True and ``default`` is None.

    Raises:
        TypeError: If the type of ``pred_fn_pairs`` is not list or tuple.
        TypeError: If the type of elements in ``pred_fn_pairs`` is not tuple.
        TypeError: If the size of tuples in ``pred_fn_pairs`` is not 2.
3062
        TypeError: If the first element of 2-tuple in ``pred_fn_pairs`` is not a Tensor.
L
liym27 已提交
3063 3064 3065 3066 3067 3068
        TypeError: If the second element of 2-tuple in ``pred_fn_pairs`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

3069 3070 3071
            import paddle

            paddle.enable_static()
L
liym27 已提交
3072 3073

            def fn_1():
3074
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
3075 3076

            def fn_2():
3077
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
3078 3079

            def fn_3():
3080
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
3081

3082 3083 3084 3085
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()

            with paddle.static.program_guard(main_program, startup_program):
3086 3087 3088
                x = paddle.full(shape=[1], dtype='float32', fill_value=0.3)
                y = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
                z = paddle.full(shape=[1], dtype='float32', fill_value=0.2)
L
liym27 已提交
3089

3090 3091 3092
                pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = paddle.equal(x, y)      # false: 0.3 == 0.1
L
liym27 已提交
3093 3094

                # Call fn_1 because pred_1 is True
3095
                out_1 = paddle.static.nn.case(
L
liym27 已提交
3096 3097 3098 3099
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3)

                # Argument default is None and no pred in pred_fn_pairs is True. fn_3 will be called.
                # because fn_3 is the last callable in pred_fn_pairs.
3100
                out_2 = paddle.static.nn.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
L
liym27 已提交
3101

3102
                exe = paddle.static.Executor(paddle.CPUPlace())
L
liym27 已提交
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
                res_1, res_2 = exe.run(main_program, fetch_list=[out_1, out_2])
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [3 3 3]
    '''
    helper = LayerHelper('case', **locals())

    def _case_check_args(pred_fn_pairs, default):
        '''
        Check arguments pred_fn_pairs and default. Return canonical pre_fn_pairs and default.
        '''
3113
        check_type(pred_fn_pairs, 'pred_fn_pairs', (list, tuple), 'case')
L
liym27 已提交
3114 3115 3116 3117

        for pred_fn in pred_fn_pairs:
            if not isinstance(pred_fn, tuple):
                raise TypeError(
3118 3119 3120 3121 3122 3123 3124 3125
                    _error_message(
                        "The elements' type",
                        "pred_fn_pairs",
                        "case",
                        tuple,
                        type(pred_fn),
                    )
                )
L
liym27 已提交
3126 3127
            if len(pred_fn) != 2:
                raise TypeError(
3128 3129 3130 3131 3132 3133 3134 3135
                    _error_message(
                        "The tuple's size",
                        "pred_fn_pairs",
                        "case",
                        "2",
                        str(len(pred_fn)) + "-tuple",
                    )
                )
L
liym27 已提交
3136 3137 3138 3139
            pred, fn = pred_fn

            if not isinstance(pred, Variable):
                raise TypeError(
3140 3141 3142 3143 3144 3145 3146 3147
                    _error_message(
                        "The pred's type",
                        "pred_fn_pairs",
                        "case",
                        "boolean Variable",
                        type(pred),
                    )
                )
L
liym27 已提交
3148 3149 3150 3151

            if not callable(fn):
                raise TypeError(
                    "The fn for {} of pred_fn_pairs in Op(case) must"
3152 3153
                    " be callable.".format(pred.name)
                )
L
liym27 已提交
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174

        if default is None:
            default_index = len(pred_fn_pairs) - 1  # pick the last one
            default = pred_fn_pairs[default_index][1]
            pred_fn_pairs = pred_fn_pairs[:default_index]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        return pred_fn_pairs, default

    pred_fn_pairs, default = _case_check_args(pred_fn_pairs, default)

    false_fn = default
    for pred, true_fn in reversed(pred_fn_pairs):
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn

    return final_fn()


3175
class Switch:
Q
qiaolongfei 已提交
3176
    """
3177
    :api_attr: Static Graph
Q
qiaolongfei 已提交
3178

3179 3180 3181 3182 3183
    This class is used to implement Switch branch control function.
    Switch branch contains several case branches and one default branch.
    Switch control flow checks whether the case branch conditions are satisfied in turn,
    and only executes the statement after the first case branch that satisfies the conditions.
    If there is no case branch that satisfies the condition,
3184 3185
    only the statement following the default branch is executed.

3186 3187 3188 3189
    Note:
        A new OP :ref:`api_fluid_layers_case` is highly recommended instead of ``Switch`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_case` is easier to use and is called with less code but does the same thing as ``Switch`` .

3190
    Member Functions:
3191
        case(condition): The case branch of Switch whose parameter cond is a scalar Variable of bool type. Only if the cond of the current case branch is True and the cond of the previous case branch is False, the statement after the case branch will be executed, and the statement after the case branch will not be executed.
3192

3193 3194 3195 3196 3197
        default(): The default branch of Switch. When cond of all case branches is False, the statement after default branch is executed.

    Case and default functions can only be used inside the scope of Switch, as shown below:

    .. code-block:: python
3198

3199 3200 3201 3202 3203 3204 3205 3206 3207
        '''
        with fluid.layers.Switch() as switch:
            with switch.case(cond1):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            with switch.case(cond2):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
            with switch.default():
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
        '''
Q
qiaolongfei 已提交
3208

3209 3210
    Args:
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
Q
qiaolongfei 已提交
3211 3212 3213

    Examples:
        .. code-block:: python
3214

3215
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
3216

3217
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
3218 3219 3220 3221 3222
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
3223
            zero_var = fluid.layers.fill_constant(
3224
                shape=[1], dtype='float32', value=0.0)
3225
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
3226
                shape=[1], dtype='float32', value=1.0)
3227
            two_var = fluid.layers.fill_constant(
3228
                shape=[1], dtype='float32', value=2.0)
3229

3230
            global_step = fluid.layers.autoincreased_step_counter(counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
3231 3232

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
3233
                with switch.case(global_step == zero_var):
3234
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
3235
                with switch.default():
3236
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
3237

3238 3239 3240 3241 3242
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[lr])
            print(res) # [array([1.], dtype=float32)]
Q
qiaolongfei 已提交
3243 3244
    """

3245 3246 3247 3248 3249 3250 3251 3252 3253
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

3254
        check_variable_and_dtype(
3255 3256 3257 3258 3259
            condition,
            'condition',
            ['bool'],
            'the member function case of fluid.layers.Switch',
        )
3260

3261 3262 3263 3264 3265 3266 3267
        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
3268 3269 3270
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition)
            )
3271 3272
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
3273
                [logical_and(x=pre_not_cond, y=condition)],
3274 3275
                is_scalar_condition=True,
            )
3276 3277 3278 3279 3280 3281 3282 3283 3284

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
3285 3286
            is_scalar_condition=True,
        )
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
3303 3304


3305
class IfElseBlockGuard:
Y
Yu Yang 已提交
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
3326 3327 3328 3329 3330
        self.ie.status = (
            IfElse.IN_IF_ELSE_TRUE_BLOCKS
            if self.is_true
            else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        )
Y
Yu Yang 已提交
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


3342
class IfElse:
X
Xin Pan 已提交
3343
    """
3344 3345
    :api_attr: Static Graph

3346 3347 3348 3349
    This class is used to implement IfElse branch control function. IfElse contains two blocks, true_block and false_block. IfElse will put data satisfying True or False conditions into different blocks to run.

    Cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the execution conditions of the corresponding part of the input data.

3350 3351 3352 3353
    Note:
        A new OP :ref:`api_fluid_layers_cond` is highly recommended instead of ``IfElse``. if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_cond` is easier to use and is called with less code but does the same thing as ``IfElse`` .

3354 3355 3356
    IfElse OP is different from other OPs in usage, which may cause some users confusion. Here is a simple example to illustrate this OP.

    .. code-block:: python
3357

3358 3359 3360 3361 3362 3363 3364 3365 3366
        # The following code completes the function: subtract 10 from the data greater than 0 in x, add 10 to the data less than 0 in x, and sum all the data.
        import numpy as np
        import paddle.fluid as fluid

        x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32', append_batch_size=False)
        y = fluid.layers.data(name='y', shape=[4, 1], dtype='float32', append_batch_size=False)

        x_d = np.array([[3], [1], [-2], [-3]]).astype(np.float32)
        y_d = np.zeros((4, 1)).astype(np.float32)
3367

3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
        # Compare the size of x, y pairs of elements, output cond, cond is shape [4, 1], data type bool 2-D tensor.
        # Based on the input data x_d, y_d, it can be inferred that the data in cond are [[true], [true], [false], [false]].
        cond = fluid.layers.greater_than(x, y)
        # Unlike other common OPs, ie below returned by the OP is an IfElse OP object
        ie = fluid.layers.IfElse(cond)

        with ie.true_block():
            # In this block, according to cond condition, the data corresponding to true dimension in X is obtained and subtracted by 10.
            out_1 = ie.input(x)
            out_1 = out_1 - 10
            ie.output(out_1)
        with ie.false_block():
            # In this block, according to cond condition, get the data of the corresponding condition in X as false dimension, and add 10
            out_1 = ie.input(x)
            out_1 = out_1 + 10
            ie.output(out_1)

        # According to cond condition, the data processed in the two blocks are merged. The output here is output, the type is List, and the element type in List is Variable.
3386
        output = ie() #  [array([[-7.], [-9.], [ 8.], [ 7.]], dtype=float32)]
3387 3388 3389 3390 3391 3392 3393 3394

        # Get the first Variable in the output List and add all elements.
        out = fluid.layers.reduce_sum(output[0])

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        res = exe.run(fluid.default_main_program(), feed={"x":x_d, "y":y_d}, fetch_list=[out])
3395
        print(res)
3396
        # [array([-1.], dtype=float32)]
X
Xin Pan 已提交
3397 3398

    Args:
3399 3400
        cond (Variable): cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the corresponding execution conditions of N input data. The data type is bool.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
3401

3402 3403
    Returns:
        Unlike other common OPs, the OP call returns an IfElse OP object (e.g. ie in the example), which branches the input data by calling the internal functions of the object ``true_block ()``, ``false_block ()``, ``input ()``, ``output ()``, and integrates the data processed by different branches as the overall output by calling the internal ``call ()`` function. The output type is a list, and the type of each element in the list is Variable.
X
Xin Pan 已提交
3404

3405 3406
    Internal Functions:
        The block is constructed by calling the ``with ie. true_block()`` function in the object, and the computational logic under condition true is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.
3407

3408 3409 3410 3411 3412 3413 3414
        The block is constructed by calling the ``with ie. false_block()`` function in the object, and the computational logic under condition false is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.

        ``Out = ie. input (x)`` will take out the data of the corresponding conditional dimension in X and put it into out, supporting the internal processing of multiple inputs in block.

        ``ie. output (out)`` writes the result to the output of the corresponding condition.

        There is a ``call ()`` function inside the object, that is, by calling ``output = ie ()``, all the outputs inside the block of False are fused as the whole output, the output type is a list, and the type of each element in the list is Variable.
3415

X
Xin Pan 已提交
3416
    """
3417

Y
Yu Yang 已提交
3418 3419 3420 3421
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

3422
    def __init__(self, cond, name=None):
3423 3424
        check_type(cond, "cond", Variable, "fluid.layers.IfElse")
        check_type(name, "name", (str, type(None)), "fluid.layers.IfElse")
3425
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
3437
            parent_block = self._parent_block()
Y
Yu Yang 已提交
3438
            out_true = parent_block.create_var(
3439 3440 3441 3442 3443
                name=unique_name.generate_with_ignorable_key(
                    'ifelse_input' + self.helper.name
                ),
                dtype=x.dtype,
            )
Y
Yu Yang 已提交
3444 3445

            out_false = parent_block.create_var(
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
                name=unique_name.generate_with_ignorable_key(
                    'ifelse_input' + self.helper.name
                ),
                dtype=x.dtype,
            )
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true, 'OutFalse': out_false},
                attrs={'level': 0},
            )
Y
Yu Yang 已提交
3460 3461 3462 3463 3464 3465 3466 3467 3468
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

3469
    def _parent_block(self):
Y
Yu Yang 已提交
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

3483 3484 3485
        out_table = self.output_table[
            1 if self.status == self.IN_IF_ELSE_TRUE_BLOCKS else 0
        ]
3486
        parent_block = self._parent_block()
Y
Yu Yang 已提交
3487
        for each_out in outs:
3488 3489 3490
            check_type(
                each_out, "each output", Variable, "fluid.layers.IfElse.output"
            )
Y
Yu Yang 已提交
3491 3492
            # create outside tensor
            outside_out = parent_block.create_var(
3493 3494 3495 3496 3497
                name=unique_name.generate_with_ignorable_key(
                    "_".join([self.helper.name, 'output'])
                ),
                dtype=each_out.dtype,
            )
Y
Yu Yang 已提交
3498 3499 3500
            out_table.append(outside_out)

            # assign local var to outside
3501
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
3502 3503 3504 3505

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
3506
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
3507
        if false_len == 0 and true_len == 0:
3508 3509 3510
            raise ValueError(
                "Must invoke true_block/false_block before " "__call__"
            )
Y
Yu Yang 已提交
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
3521 3522 3523 3524 3525 3526 3527 3528
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
                    level=0,
                )
            )
Y
Yu Yang 已提交
3529
        return rlist
3530 3531


3532
class DynamicRNN:
Y
yuyang18 已提交
3533
    """
3534 3535
    :api_attr: Static Graph

3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
    **Note: the input of this class should be LoDTensor which holds the
    information of variable-length sequences. If the input is fixed-length Tensor,
    please use StaticRNN (fluid.layers.** :ref:`api_fluid_layers_StaticRNN` **) for
    better performance.**

    DynamicRNN can process a minibatch of variable-length sequences.
    The length of each sample can be different and is recorded in LoD.
    In DynamicRNN, an input sequence will be unfolded into time steps and users
    can define how to process each time step in :code:`block()` .
    The total number of time steps is determined by the longest sequence.
    DynamicRNN will not pad all sequences to the same length, instead it will
    sort the sequences internally by the sequence length in descending order.
T
tianshuo78520a 已提交
3548
    The input sequences will be shrank because only sequences of which the
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
    length is larger than the time step will participate the remaining calculation.

    If defined :code:`drnn = DynamicRNN()`, then users can call :code:`drnn()`
    to obtain the result sequences. It is a LoDTensor gained by merging all
    time steps's output. When RNN's input sequence x meets :code:`x.lod_level == 1`,
    the output LoDTensor will have the same LoD with x. The result of :code:`drnn()`
    includes RNN's outputs of all time steps, users can call
    :ref:`api_fluid_layers_sequence_last_step` to extract the data of the last time step.

    Warning:
        Currently it is not supported to set :code:`is_sparse = True` of any
        layers defined within DynamicRNN's :code:`block` function.
Y
yuyang18 已提交
3561

3562 3563 3564 3565
    Args:
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information,
            please refer to :ref:`api_guide_Name` .
3566 3567 3568 3569

    Examples:
        .. code-block:: python

3570
            import paddle.fluid as fluid
3571

3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
            sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
            encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
            decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

            drnn = fluid.layers.DynamicRNN()
            with drnn.block():
                # Set sentence as RNN's input, each time step processes a word from the sentence
                current_word = drnn.step_input(sentence)
                # Set encode_proj as RNN's static input
                encoder_word = drnn.static_input(encoder_proj)
                # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                memory = drnn.memory(init=decoder_boot, need_reorder=True)
                fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                fc_2 = fluid.layers.fc(input=current_word, size=30)
                decoder_inputs = fc_1 + fc_2
                hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                # Update memory with hidden
                drnn.update_memory(ex_mem=memory, new_mem=hidden)
                out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                # Set hidden and out as RNN's outputs
                drnn.output(hidden, out)

            # Get RNN's result
            hidden, out = drnn()
            # Get RNN's result of the last time step
            last = fluid.layers.sequence_last_step(out)
Y
yuyang18 已提交
3598
    """
3599

3600 3601 3602 3603
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

3604 3605
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
3606 3607 3608 3609
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
3610
        self.zero_idx = None
3611 3612 3613
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
3614
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
3615 3616 3617 3618 3619
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

3620
    def step_input(self, x, level=0):
3621
        r"""
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
        This function is used to set sequence x as DynamicRNN's input.
        The maximum sequence length in x determines the number of time steps
        the RNN unit will be executed. DynamicRNN can take multiple inputs.
        When all inputs' :code:`lod_level` are 1, all inputs should hold the
        same LoD. When :code:`x.lod_level >= 2` , the input sequence will be
        unfold along specified level, and the slice of each time step is a
        LoDTensor whose lod_level is :code:`x.lod_level - level - 1` .
        In this case, the specified LoD level of multiple inputs should be the same.

        - Case 1:

        .. code-block:: text

            # input, where Si is slice data of shape [1, N]
            level = 0
            x.lod = [[2, 1, 3]]
            x.shape = [6, N]
            x.data = [[S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2],
                      [S2]]

            # output
            # step 0, time step data of 3 sequences
            out.lod = [[]]
            out.shape = [3, N]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, time step data of 2 sequences
            out.lod = [[]]
            out.shape = [2, N]
            out.data = [[S2],
                        [S0]]

            # step 2, time step data of 1 sequences
            out.lod = [[]]
            out.shape = [1, N]
            out.data = [[S2]]

H
haowang101779990 已提交
3665

Y
yuyang18 已提交
3666
        Args:
3667 3668 3669 3670 3671 3672 3673
            x (Variable): The input LoDTensor which holds information of a
                minibatch of variable-length sequences and should meet :code:`x.lod_level >= 1` .
                When RNN has multiple inputs, the first dimension should match
                across all inputs, but other shape components may differ.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
            level (int, optional): The level of lod used to split steps.
                It should be in range :math:`[0, x.lod\_level)` . The default value is 0.
Y
yuyang18 已提交
3674 3675

        Returns:
3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
            Variable: The current time step in the input sequence. If there are :code:`num_sequences` \
                sequences in x whose length is larger than :code:`step_idx` , the returned Variable \
                will only hold the :code:`step_idx` -th time step of those `num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod_level == 1` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`step_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.

        Examples:
            ..  code-block:: python

                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 1], dtype='int64', lod_level=1)
                embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set embedding as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(embedding)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 200],
                    # where batch_size is the number of sequences in embedding.
                    memory = drnn.memory(shape=[200])
                    hidden = fluid.layers.fc(input=[word, memory], size=200, act='relu')
                    # Update memory to hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3710
        """
3711
        self._assert_in_rnn_block_("step_input")
3712
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.step_input()')
3713 3714 3715
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
3716
                name=unique_name.generate('lod_rank_table'),
3717 3718
                type=core.VarDesc.VarType.LOD_RANK_TABLE,
            )
3719
            self.lod_rank_table.stop_gradient = True
3720 3721 3722 3723 3724 3725
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
                outputs={"Out": self.lod_rank_table},
                attrs={"level": level},
            )
3726
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
3727
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
3728 3729
                dtype='int64',
            )
3730
            self.max_seq_len.stop_gradient = False
3731 3732 3733 3734 3735
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len},
            )
3736
            self.cond.stop_gradient = True
3737 3738 3739 3740 3741 3742
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx, 'Y': self.max_seq_len},
                outputs={'Out': self.cond},
                attrs={'force_cpu': True},
            )
3743 3744

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
3745
            name=unique_name.generate('dynamic_rnn_input_array'),
3746
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
3747 3748
            dtype=x.dtype,
        )
3749
        self.input_array.append((input_array, x.dtype))
3750 3751 3752 3753 3754
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x, 'RankTable': self.lod_rank_table},
            outputs={'Out': input_array},
        )
3755
        return array_read(array=input_array, i=self.step_idx)
3756

Y
yangyaming 已提交
3757
    def static_input(self, x):
3758
        r"""
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
        This function is used to set x as DynamicRNN's static input. It is optional.

        - Case 1, set static input with LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[3, 1, 2]]
            x.shape = [6, M]
            x.data = [[S0],
                      [S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[2, 3, 1]]
            out.shape = [6, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[2, 3]]
            out.shape = [5, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[2]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S2]]


        - Case 2, set static input without LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[]]
            x.shape = [3, M]
            x.data = [[S0],
                      [S1],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[]]
            out.shape = [3, M]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[]]
            out.shape = [1, M]
            out.data = [[S2]]

H
haowang101779990 已提交
3832

Y
yuyang18 已提交
3833
        Args:
3834 3835 3836 3837
            x (Variable): The static input LoDTensor which should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` ). If the LoD is None,
                the input x will be treated as a minibatch with :code:`x.shape[0]` sequences of length 1.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
3838 3839

        Returns:
T
tianshuo78520a 已提交
3840
            Variable: The input LoDTensor after sorted and shrank. If there are :code:`num_sequences` \
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
                the static input Tensor will be sorted to the same order as RNN's input and \
                will only retain data corresponding to those :code:`num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod == None` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`static_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.
            RuntimeError: When :code:`static_input()` is called before :code:`step_input()` .
3852 3853 3854 3855

        Examples:
            .. code-block:: python

3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
                decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    current_word = drnn.step_input(sentence)
                    # Set encode_proj as RNN's static input
                    encoder_word = drnn.static_input(encoder_proj)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=decoder_boot, need_reorder=True)
                    fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                    fc_2 = fluid.layers.fc(input=current_word, size=30)
                    decoder_inputs = fc_1 + fc_2
                    hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                    # Set out as RNN's output
                    drnn.output(out)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3882
        """
Y
yangyaming 已提交
3883
        self._assert_in_rnn_block_("static_input")
3884
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.static_input()')
Y
yangyaming 已提交
3885 3886
        if self.lod_rank_table is None:
            raise RuntimeError(
3887 3888
                "static_input() must be called after step_input()."
            )
Y
yangyaming 已提交
3889 3890
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
3891
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
3892
            type=core.VarDesc.VarType.LOD_TENSOR,
3893 3894 3895 3896 3897 3898 3899
            dtype=x.dtype,
        )
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x], 'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]},
        )
Y
yangyaming 已提交
3900 3901
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
3902
    @signature_safe_contextmanager
3903
    def block(self):
Y
yuyang18 已提交
3904
        """
3905 3906 3907 3908 3909 3910
        The function is used to list the operations executed during
        each time step in RNN. The operation list will be executed :code:`max_sequence_len`
        times (where :code:`max_sequence_len` is the maximum length of RNN's input sequences).

        Raises:
            ValueError: When :code:`block()` is called multi-times.
Y
yuyang18 已提交
3911
        """
3912 3913
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
3914 3915 3916
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True
        )
3917 3918 3919 3920
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
3921
            increment(x=self.step_idx, value=1.0, in_place=True)
3922 3923

            for new_mem, mem_array in self.mem_link:
3924 3925
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

3926 3927 3928 3929 3930 3931
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond,
            )
3932 3933 3934 3935

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
3936 3937
                array_to_lod_tensor(x=each_array, table=self.lod_rank_table)
            )
3938 3939

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
3940
        """
T
tianshuo78520a 已提交
3941
        This function is used to get the output  sequences of DynamicRNN.
3942 3943 3944 3945 3946 3947 3948 3949 3950

        Args:
            None

        Returns:
            Variable or Variable list: RNN's output sequences.

        Raises:
            ValueError: When :code:`__call__()` is called before :code:`block()` .
Y
yuyang18 已提交
3951
        """
3952
        if self.status != DynamicRNN.AFTER_RNN:
3953 3954 3955 3956 3957 3958
            raise ValueError(
                (
                    "Output of the dynamic RNN can only be visited "
                    "outside the rnn block."
                )
            )
3959 3960 3961 3962 3963
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

3964 3965 3966 3967 3968 3969 3970 3971
    def memory(
        self,
        init=None,
        shape=None,
        value=0.0,
        need_reorder=False,
        dtype='float32',
    ):
3972
        r"""
3973 3974 3975
        Create a memory Variable for DynamicRNN to deliver data cross time steps.
        It can be initialized by an existing Tensor or a constant Tensor of given
        dtype and shape.
Y
yuyang18 已提交
3976

3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
        Args:
            init (Variable, optional): LoDTensor used to initialize the memory.
                If init is not None, it should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` )
                and the memory will be initialized to it. If init's LoD is None,
                it will be treated as a minibatch with :code:`init.shape[0]` sequences
                of length 1. The default value is None.
            shape (list|tuple, optional): When init is None, it is used to specify
                the memory's shape. Note that the shape does not include the batch_size.
                If setting shape to :math:`\{D_1, D_2, ...\}` , the shape of memory Tensor
                will be :math:`\{batch\_size, D_1, D_2, ...\}` , where batch_size is
                determined by RNN's input sequences. The default value is None.
T
tianshuo78520a 已提交
3989
            value (float, optional): When init is None, it is used as initialized value
3990 3991
                of memory. The default value is 0.0.
            need_reorder (bool, optional): When init is not None, it determines whether
T
tianshuo78520a 已提交
3992
                the memory needs to reorder like the RNN's input sequences. It should be
3993 3994 3995 3996 3997 3998 3999
                set to True when the initialized memory depends on the order of input samples.
                The default value is False.
            dtype (str|numpy.dtype, optional): When init is None, it is used to set the
                data type of memory. The default value is "float32". Optional data types
                are: "float32", "float64", "int32", "int64".

        Returns:
T
tianshuo78520a 已提交
4000
            Variable: The memory LoDTensor after shrank.  If there are :code:`num_sequences` \
4001
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
T
tianshuo78520a 已提交
4002
                the memory Tensor also need to be shrank and will only retain data \
4003 4004 4005 4006 4007 4008
                corresponding to those :code:`num_sequences` sequences.

        Raises:
            ValueError: When :code:`memory()` is called outside :code:`block()` .
            TypeError: When init is set and is not a Variable.
            ValueError: When :code:`memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
4009

4010 4011 4012
        Examples:
            .. code-block:: python

4013
                import paddle.fluid as fluid
4014

4015 4016
                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                boot_memory = fluid.data(name='boot', shape=[None, 10], dtype='float32')
4017

4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=boot_memory, need_reorder=True)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)
Y
yuyang18 已提交
4029

4030 4031
                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
4032 4033


4034 4035
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
4036

4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 10],
                    # where batch_size is the number of sequences in sentence.
                    memory = drnn.memory(shape=[10], dtype='float32', value=0)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
4056
        """
4057
        self._assert_in_rnn_block_('memory')
4058
        self._init_zero_idx_()
4059
        if shape is not None:
4060 4061 4062 4063 4064 4065
            check_type(
                shape,
                'shape',
                (list, tuple),
                'fluid.layers.DynamicRNN.memory()',
            )
4066
        if init is not None:
4067 4068 4069
            check_type(
                init, 'init', Variable, 'fluid.layers.DynamicRNN.memory()'
            )
4070
            parent_block = self._parent_block_()
4071 4072 4073 4074 4075 4076
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
4077 4078
                        'memory(init=init, need_reordered=True, ...).'
                    )
4079
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
4080
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
4081
                    type=core.VarDesc.VarType.LOD_TENSOR,
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
                    dtype=init.dtype,
                )
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table],
                    },
                    outputs={'Out': [init_reordered]},
                )
4092
                init_tensor = init_reordered
4093
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
4094
                name=unique_name.generate('dynamic_rnn_mem_array'),
4095
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
4096 4097 4098 4099 4100 4101 4102
                dtype=init.dtype,
            )
            parent_block.append_op(
                type='write_to_array',
                inputs={'X': init_tensor, 'I': self.zero_idx},
                outputs={'Out': mem_array},
            )
4103
            retv = array_read(array=mem_array, i=self.step_idx)
4104 4105 4106
            retv = shrink_memory(
                x=retv, i=self.step_idx, table=self.lod_rank_table
            )
4107 4108 4109 4110 4111 4112 4113 4114 4115
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
4116 4117
                name=unique_name.generate('mem_init'), dtype=dtype
            )
4118
            arr, dtype = self.input_array[0]
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype
            )
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr], 'I': [self.zero_idx]},
                outputs={'Out': [in0]},
            )
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype,
                },
            )
4137 4138 4139
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
4140
        """
4141 4142
        Update the memory which need to be delivered across time steps.

Y
yuyang18 已提交
4143
        Args:
4144 4145 4146
            ex_mem (Variable): The memory data of previous time step.
            new_mem (Variable): The new memory data produced in current time step.
                The shape and data type of ex_mem and new_mem should be the same.
Y
yuyang18 已提交
4147 4148 4149

        Returns:
            None
4150

4151 4152 4153 4154 4155
        Raises:
            ValueError: When :code:`update_memory()` is called outside :code:`block()` .
            TypeError: When :code:`ex_mem` or :code:`new_mem` is not a Variable.
            ValueError: When :code:`ex_mem` is defined by :code:`memory()` .
            ValueError: When :code:`update_memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
4156
        """
4157
        self._assert_in_rnn_block_('update_memory')
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
        check_type(
            ex_mem,
            'ex_mem',
            Variable,
            'fluid.layers.DynamicRNN.update_memory()',
        )
        check_type(
            new_mem,
            'new_mem',
            Variable,
            'fluid.layers.DynamicRNN.update_memory()',
        )
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
4180
        """
4181
        This function is used to set :code:`outputs` as RNN's output.
Y
yuyang18 已提交
4182 4183

        Args:
4184 4185
            *outputs (Variable ...): The output Tensor. DynamicRNN can mark multiple
                Variables as its output.
Y
yuyang18 已提交
4186 4187 4188

        Returns:
            None
4189 4190 4191

        Raises:
            ValueError: When :code:`output()` is called outside :code:`block()` .
Y
yuyang18 已提交
4192
        """
4193 4194 4195
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
4196 4197 4198
            check_type(
                each, "outputs", Variable, "fluid.layers.DynamicRNN.output"
            )
4199
            outside_array = parent_block.create_var(
4200 4201 4202
                name=unique_name.generate_with_ignorable_key(
                    "_".join([self.helper.name, "output_array", each.name])
                ),
4203
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
4204 4205
                dtype=each.dtype,
            )
4206 4207 4208
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

4209 4210 4211 4212
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
                name=unique_name.generate('zero_idx'), dtype='int64'
            )
            parent_block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [self.zero_idx]},
                attrs={
                    'shape': [1],
                    'dtype': self.zero_idx.dtype,
                    'value': float(0),
                    'force_cpu': True,
                },
            )
4226

4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
4237
            raise ValueError(
4238 4239
                "{0} can only be invoked inside rnn block.".format(method)
            )
Y
Yang Yu 已提交
4240 4241


L
liym27 已提交
4242 4243
def switch_case(branch_index, branch_fns, default=None, name=None):
    '''
4244 4245
    :api_attr: Static Graph

L
liym27 已提交
4246 4247 4248
    This operator is like a C++ switch/case statement.

    Args:
4249
        branch_index(Tensor): A Tensor with shape [1] to specify which branch to execute. The data type is ``int32``, ``int64`` or ``uint8``.
L
liym27 已提交
4250 4251 4252 4253 4254
        branch_fns(dict|list|tuple): If it's a list or tuple, the elements in it could be pairs of (int, callable) or simple callables whose actual index will be used as the index of callable. If it's a dict, its key is a python integer and the value is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4255
        Tensor|list(Tensor): Tensors returned by the callable specified by ``branch_index`` in ``branch_fns``,
L
liym27 已提交
4256 4257 4258 4259
        or Tensors returned by ``default`` if ``default`` is not None and no index matches in ``branch_fns``,
        or Tensors returned by the callable with the max index in ``branch_fns`` if ``default`` is None and no index matches in ``branch_fns``.

    Raises:
4260
        TypeError: If the type of ``branch_index`` is not Tensor.
L
liym27 已提交
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
        TypeError: If the data type of ``branch_index`` is not ``int32``, ``int64`` or ``uint8``.
        TypeError: If the type of ``branch_fns`` is not dict, list or tuple.
        TypeError: If the elements of ``branch_fns`` is not 2-tuple.
        TypeError: If the first element of 2-tuple in ``branch_fns`` is not integer.
        ValueError: If the first element of 2-tuple in ``branch_fns`` is not unique.
        TypeError: If the second element of 2-tuple in ``branch_fns`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

4272 4273 4274
            import paddle

            paddle.enable_static()
4275

L
liym27 已提交
4276
            def fn_1():
4277
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
4278 4279

            def fn_2():
4280
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
4281 4282

            def fn_3():
4283
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
4284

4285 4286 4287
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()
            with paddle.static.program_guard(main_program, startup_program):
4288 4289
                index_1 = paddle.full(shape=[1], dtype='int32', fill_value=1)
                index_2 = paddle.full(shape=[1], dtype='int32', fill_value=2)
L
liym27 已提交
4290

4291
                out_1 = paddle.static.nn.switch_case(
L
liym27 已提交
4292 4293 4294 4295
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3)

4296
                out_2 = paddle.static.nn.switch_case(
L
liym27 已提交
4297 4298 4299 4300 4301
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3)

                # Argument default is None and no index matches. fn_3 will be called because of the max index 7.
4302
                out_3 = paddle.static.nn.switch_case(
L
liym27 已提交
4303 4304 4305
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)])

4306
                exe = paddle.static.Executor(paddle.CPUPlace())
4307
                res_1, res_2, res_3 = exe.run(main_program, fetch_list=[out_1, out_2, out_3])
L
liym27 已提交
4308 4309 4310 4311 4312 4313 4314 4315
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [[2 2] [2 2]]
                print(res_3)  # [3 3 3]
    '''
    helper = LayerHelper('switch_case', **locals())

    def _check_args(branch_index, branch_fns, default):

4316 4317 4318 4319 4320 4321
        check_variable_and_dtype(
            branch_index,
            'branch_index',
            ['uint8', 'int32', 'int64'],
            'switch_case',
        )
L
liym27 已提交
4322 4323 4324 4325

        if convert_dtype(branch_index.dtype) != "int64":
            branch_index = cast(branch_index, "int64")

4326
        check_type(branch_fns, 'branch_fns', (list, tuple, dict), 'switch_case')
L
liym27 已提交
4327

4328 4329 4330
        branch_fns = (
            branch_fns.items() if isinstance(branch_fns, dict) else branch_fns
        )
L
liym27 已提交
4331

4332 4333 4334 4335 4336
        branch_fns = (
            list(enumerate(branch_fns))
            if all(callable(fn) for fn in branch_fns)
            else branch_fns
        )
L
liym27 已提交
4337 4338 4339 4340 4341

        keys_of_fns = []
        for index_fn_pair in branch_fns:
            if not isinstance(index_fn_pair, tuple):
                raise TypeError(
4342 4343 4344 4345 4346 4347 4348 4349
                    _error_message(
                        "The elements' type",
                        "branch_fns",
                        "switch_case",
                        tuple,
                        type(branch_fns),
                    )
                )
L
liym27 已提交
4350 4351 4352

            if len(index_fn_pair) != 2:
                raise TypeError(
4353 4354 4355 4356 4357 4358 4359 4360
                    _error_message(
                        "The tuple's size",
                        "branch_fns",
                        "switch_case",
                        "2",
                        str(len(index_fn_pair)) + "-tuple",
                    )
                )
L
liym27 已提交
4361 4362 4363 4364 4365

            key, fn = index_fn_pair

            if not isinstance(key, int):
                raise TypeError(
4366 4367 4368 4369 4370 4371 4372 4373
                    _error_message(
                        "The key's type",
                        "branch_fns",
                        "switch_case",
                        int,
                        type(key),
                    )
                )
L
liym27 已提交
4374 4375 4376

            if key in keys_of_fns:
                raise ValueError(
4377 4378 4379 4380
                    "The key in 'branch_fns' must be unique, but '{}' appears more than once.".format(
                        key
                    )
                )
L
liym27 已提交
4381 4382 4383 4384 4385
            else:
                keys_of_fns.append(key)

            if not callable(fn):
                raise TypeError(
4386 4387
                    _error_message(
                        "The type of function for key {}".format(key),
4388 4389 4390 4391 4392 4393
                        "branch_fns",
                        "switch_case",
                        "callable",
                        type(fn),
                    )
                )
L
liym27 已提交
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417

        if default is None:
            default = sorted(branch_fns)[-1][1]
            branch_fns = sorted(branch_fns)[:-1]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        pred_fn_pairs = []
        for index, fn in branch_fns:
            new_index = fill_constant(shape=[1], dtype="int64", value=index)
            pred = equal(branch_index, new_index)
            pred_fn_pairs.append((pred, fn))

        return pred_fn_pairs, default

    pred_fn_pairs, default = _check_args(branch_index, branch_fns, default)
    false_fn = default
    for pred, true_fn in pred_fn_pairs:
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn
    return final_fn()


4418
@templatedoc()
Y
Yang Yu 已提交
4419
def reorder_lod_tensor_by_rank(x, rank_table):
4420 4421 4422 4423
    """
    ${comment}

    Args:
4424 4425
        x(${x_type}): ${x_comment}.
        rank_table(${rank_table_type}): ${rank_table_comment}.
4426

4427
    Returns:
4428
        out(${out_type}): ${out_comment}.
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
4442 4443

    check_type(x, 'x', (Variable), 'reorder_lod_tensor_by_rank')
4444 4445 4446
    check_type(
        rank_table, 'rank_table', (Variable), 'reorder_lod_tensor_by_rank'
    )
4447 4448 4449
    if rank_table.type != core.VarDesc.VarType.LOD_RANK_TABLE:
        raise TypeError("The type of rank_table should be LOD_RANK_TABLE.")

Y
Yang Yu 已提交
4450 4451
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())

X
Xin Pan 已提交
4452
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
4453 4454 4455 4456 4457
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x], 'RankTable': [rank_table]},
        outputs={'Out': [out]},
    )
Y
Yang Yu 已提交
4458
    return out
4459 4460


4461
def is_empty(x, name=None):
4462
    """
4463

4464
    Test whether a Tensor is empty.
4465 4466

    Args:
4467 4468 4469 4470
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .
4471 4472

    Returns:
4473
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.
4474 4475 4476 4477

    Examples:
        .. code-block:: python

4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
            print("res:", res)
            # ('res:', Tensor: eager_tmp_1
            #    - place: CPUPlace
            #    - shape: [1]
            #    - layout: NCHW
            #    - dtype: bool
            #    - data: [0])
4489

4490
    """
H
hong 已提交
4491
    if in_dygraph_mode():
W
wanghuancoder 已提交
4492
        return _C_ops.is_empty(x)
4493 4494
    if _in_legacy_dygraph():
        return _legacy_C_ops.is_empty(x)
4495

4496 4497 4498
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'is_empty'
    )
4499 4500
    check_type(name, "name", (str, type(None)), "is_empty")

4501
    helper = LayerHelper("is_empty", **locals())
4502 4503
    cond = helper.create_variable_for_type_inference(dtype='bool')
    cond.stop_gradient = True
4504 4505 4506
    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]}
    )
4507
    return cond