test_adam_op.py 44.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import unittest
16

17
import numpy as np
18
from op_test import OpTest
19

M
MRXLT 已提交
20
import paddle
21 22 23
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.op import Operator
24 25 26 27


class TestAdamOp1(OpTest):
    def setUp(self):
28
        '''Test Adam Op with supplied attributes'''
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
        self.op_type = "adam"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")

        learning_rate = 0.004
        beta1 = 0.78
        beta2 = 0.836
        epsilon = 1e-4
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
50
            'Beta2Pow': np.array([beta2_pow]).astype("float32"),
51 52 53 54
        }

        self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}

55
        param_out, moment1_out, moment2_out = adam_step(self.inputs, self.attrs)
56 57 58 59

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
A
Aurelius84 已提交
60 61
            'ParamOut': param_out,
            'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1,
62
            'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2,
63 64 65 66 67 68 69
        }

    def test_check_output(self):
        self.check_output()


class TestAdamOp2(OpTest):
70 71 72
    def set_shape(self):
        self.shape = (102, 105)

73
    def setUp(self):
74
        '''Test Adam Op with supplied attributes'''
75
        self.op_type = "adam"
76 77 78 79
        self.set_shape()
        param = np.random.uniform(-1, 1, self.shape).astype("float32")
        grad = np.random.uniform(-1, 1, self.shape).astype("float32")
        moment1 = np.random.uniform(-1, 1, self.shape).astype("float32")
80
        # The second moment is positive
81
        moment2 = np.random.random(self.shape).astype("float32")
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

        learning_rate = 0.001
        beta1 = 0.9
        beta2 = 0.999
        epsilon = 1e-8
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
97
            'Beta2Pow': np.array([beta2_pow]).astype("float32"),
98 99 100 101
        }

        attributes = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}

102
        param_out, moment1_out, moment2_out = adam_step(self.inputs, attributes)
103 104 105 106

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
A
Aurelius84 已提交
107 108
            'ParamOut': param_out,
            'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1,
109
            'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2,
110 111 112 113 114 115
        }

    def test_check_output(self):
        self.check_output()


116 117
class TestAdamOnlyTailOp(TestAdamOp2):
    def set_shape(self):
118
        self.shape = 3
119 120


121 122
class TestAdamOpMultipleSteps(OpTest):
    def setUp(self):
123
        '''Test Adam Operator with supplied attributes'''
124 125 126 127 128 129 130 131 132 133
        self.op_type = "adam"
        self.num_steps = 10

        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")

        learning_rate = 0.001
A
Aurelius84 已提交
134 135
        self.beta1 = 0.9
        self.beta2 = 0.999
136
        epsilon = 1e-8
A
Aurelius84 已提交
137 138
        self.beta1_pow = self.beta1**10
        self.beta2_pow = self.beta2**10
139 140 141 142 143 144 145

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
A
Aurelius84 已提交
146
            'Beta1Pow': np.array([self.beta1_pow]).astype("float32"),
147
            'Beta2Pow': np.array([self.beta2_pow]).astype("float32"),
148 149
        }

A
Aurelius84 已提交
150 151 152
        self.attrs = {
            'epsilon': epsilon,
            'beta1': self.beta1,
153
            'beta2': self.beta2,
A
Aurelius84 已提交
154
        }
155 156 157

    def test_check_output(self):
        for _ in range(self.num_steps):
158 159 160
            param_out, moment1_out, moment2_out = adam_step(
                self.inputs, self.attrs
            )
161

A
Aurelius84 已提交
162 163
            beta1_pow_out = self.inputs['Beta1Pow'] * self.beta1
            beta2_pow_out = self.inputs['Beta2Pow'] * self.beta2
164 165 166
            self.outputs = {
                'Moment1Out': moment1_out,
                'Moment2Out': moment2_out,
A
Aurelius84 已提交
167 168
                'ParamOut': param_out,
                'Beta1PowOut': beta1_pow_out,
169
                'Beta2PowOut': beta2_pow_out,
170 171 172 173 174 175 176 177 178
            }

            # Verify output for this step
            self.check_output()

            # Output of this step becomes input for next step
            self.inputs['Param'] = param_out
            self.inputs['Moment1'] = moment1_out
            self.inputs['Moment2'] = moment2_out
179 180

            # Update powers of Beta1 and Beta2 for next time step
A
Aurelius84 已提交
181 182
            self.inputs['Beta1Pow'] = beta1_pow_out
            self.inputs['Beta2Pow'] = beta2_pow_out
183 184

            # Randomize gradient for next step
185 186 187
            self.inputs['Grad'] = np.random.uniform(-1, 1, (102, 105)).astype(
                "float32"
            )
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207


def adam_step(inputs, attributes):
    '''
    Simulate one step of the adam optimizer
    :param inputs: dict of inputs
    :param attributes: dict of attributes
    :return tuple: tuple of output param, moment1, moment2,
    beta1 power accumulator and beta2 power accumulator
    '''
    param = inputs['Param']
    grad = inputs['Grad']
    moment1 = inputs['Moment1']
    moment2 = inputs['Moment2']
    lr = inputs['LearningRate']
    beta1_pow = inputs['Beta1Pow']
    beta2_pow = inputs['Beta2Pow']

    epsilon = attributes['epsilon']

208 209 210 211 212 213 214 215 216
    if 'beta1' in attributes:
        beta1 = attributes['beta1']
    else:
        beta1 = inputs['Beta1Tensor'][0]
    if 'beta2' in attributes:
        beta2 = attributes['beta2']
    else:
        beta2 = inputs['Beta2Tensor'][0]

217 218
    moment1_out = beta1 * moment1 + (1 - beta1) * grad
    moment2_out = beta2 * moment2 + (1 - beta2) * np.square(grad)
219
    lr_t = lr * np.sqrt(1 - beta2_pow) / (1 - beta1_pow)
220
    param_out = param - lr_t * (moment1_out / (np.sqrt(moment2_out) + epsilon))
221
    return param_out, moment1_out, moment2_out
222 223


R
Roc 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
def adamw_step(inputs, attributes):
    '''
    Simulate one step of the adam optimizer
    :param inputs: dict of inputs
    :param attributes: dict of attributes
    :return tuple: tuple of output param, moment1, moment2,
    beta1 power accumulator and beta2 power accumulator
    '''
    param = inputs['Param']
    grad = inputs['Grad']
    moment1 = inputs['Moment1']
    moment2 = inputs['Moment2']
    lr = inputs['LearningRate']
    beta1_pow = inputs['Beta1Pow']
    beta2_pow = inputs['Beta2Pow']

    epsilon = attributes['epsilon']
    coeff = attributes["coeff"]
    if attributes.get("with_decay", False):
        decay = 1.0 - lr * coeff
        param2 = param * decay
        param = param2.copy()
    if 'beta1' in attributes:
        beta1 = attributes['beta1']
    else:
        beta1 = inputs['Beta1Tensor'][0]
    if 'beta2' in attributes:
        beta2 = attributes['beta2']
    else:
        beta2 = inputs['Beta2Tensor'][0]

    moment1_out = beta1 * moment1 + (1 - beta1) * grad
    moment2_out = beta2 * moment2 + (1 - beta2) * np.square(grad)
    lr_t = lr * np.sqrt(1 - beta2_pow) / (1 - beta1_pow)
    param_out = param - lr_t * (moment1_out / (np.sqrt(moment2_out) + epsilon))

    return param_out, moment1_out, moment2_out


263 264 265
def adam_step_sparse(
    inputs, attributes, height, rows, row_numel, np_grad, lazy_mode
):
T
wip  
typhoonzero 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
    '''
    Simulate one step of the adam optimizer
    :param inputs: dict of inputs
    :param attributes: dict of attributes
    :return tuple: tuple of output param, moment1, moment2,
    beta1 power accumulator and beta2 power accumulator
    '''
    param = inputs['Param']
    # grad = inputs['Grad']
    moment1 = inputs['Moment1']
    moment2 = inputs['Moment2']
    lr = inputs['LearningRate']
    beta1_pow = inputs['Beta1Pow']
    beta2_pow = inputs['Beta2Pow']

    beta1 = attributes['beta1']
    beta2 = attributes['beta2']
    epsilon = attributes['epsilon']

T
typhoonzero 已提交
285 286 287
    moment1_out = np.zeros(shape=[height, row_numel])
    moment2_out = np.zeros(shape=[height, row_numel])
    param_out = np.zeros(shape=[height, row_numel])
T
wip  
typhoonzero 已提交
288

Q
Qiao Longfei 已提交
289
    def update_row(row_id, update_value):
290 291 292 293 294 295
        moment1_out[row_id] = (
            beta1 * moment1[row_id] + (1 - beta1) * update_value
        )
        moment2_out[row_id] = beta2 * moment2[row_id] + (1 - beta2) * np.square(
            update_value
        )
T
wip  
typhoonzero 已提交
296
        lr_t = lr * np.sqrt(1 - beta2_pow) / (1 - beta1_pow)
297
        param_out[row_id] = param[row_id] - lr_t * (
298 299
            moment1_out[row_id] / (np.sqrt(moment2_out[row_id]) + epsilon)
        )
Q
Qiao Longfei 已提交
300 301 302 303 304 305 306 307 308 309 310

    if lazy_mode:
        for idx, row_id in enumerate(rows):
            update_row(row_id, np_grad[idx])
    else:
        for row_id in range(param_out.shape[0]):
            update_value = np.zeros(np_grad[0].shape).astype("float32")
            if row_id in rows:
                update_value = np_grad[rows.index(row_id)]
            update_row(row_id, update_value)

T
wip  
typhoonzero 已提交
311 312 313 314
    return param_out, moment1_out, moment2_out


class TestSparseAdamOp(unittest.TestCase):
Q
Qiao Longfei 已提交
315
    def setup(self, scope, place, lazy_mode):
T
wip  
typhoonzero 已提交
316 317 318
        beta1 = 0.78
        beta2 = 0.836
        epsilon = 1e-4
A
Aurelius84 已提交
319 320
        beta1_pow = np.array([beta1**10]).astype("float32")
        beta2_pow = np.array([beta2**10]).astype("float32")
T
wip  
typhoonzero 已提交
321 322 323

        height = 10
        rows = [0, 4, 7]
T
typhoonzero 已提交
324
        self.rows = rows
T
wip  
typhoonzero 已提交
325
        row_numel = 12
T
typhoonzero 已提交
326
        self.row_numel = row_numel
T
wip  
typhoonzero 已提交
327
        self.dense_inputs = {
Q
Qiao Longfei 已提交
328 329 330
            "Param": np.full((height, row_numel), 5.0).astype("float32"),
            "Moment1": np.full((height, row_numel), 5.0).astype("float32"),
            "Moment2": np.full((height, row_numel), 5.0).astype("float32"),
A
Aurelius84 已提交
331 332
            'Beta1Pow': beta1_pow,
            'Beta2Pow': beta2_pow,
333
            "LearningRate": np.full((1), 2.0).astype("float32"),
T
wip  
typhoonzero 已提交
334
        }
Q
Qiao Longfei 已提交
335
        self.init_output = np.full((height, row_numel), 0.0).astype("float32")
336 337 338 339
        self.attrs = {
            'epsilon': epsilon,
            'beta1': beta1,
            'beta2': beta2,
340
            'min_row_size_to_use_multithread': 2,
341
        }
T
wip  
typhoonzero 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        np_array = np.ones((len(rows), row_numel)).astype("float32")
        np_array[0, 0] = 2.0
        np_array[2, 8] = 4.0

        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(np_array, place)

        self.sparse_inputs = ["Grad"]

355 356 357 358 359 360 361 362 363
        param_out, mom1, mom2 = adam_step_sparse(
            self.dense_inputs,
            self.attrs,
            height,
            rows,
            row_numel,
            np_array,
            lazy_mode,
        )
T
wip  
typhoonzero 已提交
364
        self.outputs = {
T
typhoonzero 已提交
365
            "ParamOut": param_out,
T
wip  
typhoonzero 已提交
366
            "Moment1Out": mom1,
A
Aurelius84 已提交
367 368
            "Moment2Out": mom2,
            'Beta1PowOut': beta1_pow * beta1,
369
            'Beta2PowOut': beta2_pow * beta2,
T
wip  
typhoonzero 已提交
370 371
        }

Q
Qiao Longfei 已提交
372
    def check_with_place(self, place, lazy_mode):
T
wip  
typhoonzero 已提交
373
        scope = core.Scope()
Q
Qiao Longfei 已提交
374
        self.setup(scope, place, lazy_mode)
T
wip  
typhoonzero 已提交
375 376

        op_args = dict()
Q
Qiao Longfei 已提交
377
        op_args['lazy_mode'] = lazy_mode
378
        for key, np_array in self.dense_inputs.items():
T
wip  
typhoonzero 已提交
379 380 381 382 383
            var = scope.var(key).get_tensor()
            var.set(np_array, place)
            op_args[key] = key
        for s in self.sparse_inputs:
            op_args[s] = s
T
typhoonzero 已提交
384 385
        for s in self.outputs:
            var = scope.var(s).get_tensor()
Q
Qiao Longfei 已提交
386
            var.set(self.init_output, place)
T
typhoonzero 已提交
387
            op_args[s] = s
T
wip  
typhoonzero 已提交
388 389 390 391
        for k in self.attrs:
            op_args[k] = self.attrs[k]

        # create and run sgd operator
T
typhoonzero 已提交
392 393
        adam_op = Operator("adam", **op_args)
        adam_op.run(scope, place)
T
wip  
typhoonzero 已提交
394

395
        for key, np_array in self.outputs.items():
T
wip  
typhoonzero 已提交
396 397
            out_var = scope.var(key).get_tensor()
            actual = np.array(out_var)
T
typhoonzero 已提交
398 399
            actual = actual.reshape([actual.size])
            np_array = np_array.reshape([np_array.size])
Q
Qiao Longfei 已提交
400 401 402

            for i in range(np_array.size):
                self.assertLess((actual[i] - np_array[i]), 0.00001)
T
wip  
typhoonzero 已提交
403

Q
Qiao Longfei 已提交
404
    def test_sparse_adam(self):
T
wip  
typhoonzero 已提交
405
        places = [core.CPUPlace()]
406
        if core.is_compiled_with_cuda():
T
wip  
typhoonzero 已提交
407 408
            places.append(core.CUDAPlace(0))
        for place in places:
Q
Qiao Longfei 已提交
409 410
            for lazy_mode in (True, False):
                self.check_with_place(place, lazy_mode)
T
wip  
typhoonzero 已提交
411 412


413 414
class TestAdamOpBetaVariable(OpTest):
    def setUp(self):
415
        '''Test Adam Op with beta as Variable'''
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
        self.op_type = "adam"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")
        beta1 = 0.85
        beta2 = 0.95

        learning_rate = 0.001
        epsilon = 1e-8
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32"),
            "Beta1Tensor": np.array([beta1]).astype("float32"),
            "Beta2Tensor": np.array([beta2]).astype("float32"),
        }

        attributes = {'epsilon': epsilon}

444
        param_out, moment1_out, moment2_out = adam_step(self.inputs, attributes)
445 446 447 448

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
A
Aurelius84 已提交
449 450
            'ParamOut': param_out,
            'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1,
451
            'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2,
452 453 454 455 456 457
        }

    def test_check_output(self):
        self.check_output()


458 459
class TestAdamOpBetaEpsilonVariable(OpTest):
    def setUp(self):
460
        '''Test Adam Op with beta/epsilon as Variable'''
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
        self.op_type = "adam"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")
        beta1 = 0.85
        beta2 = 0.95

        learning_rate = 0.001
        epsilon = 1e-8
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32"),
            "Beta1Tensor": np.array([beta1]).astype("float32"),
            "Beta2Tensor": np.array([beta2]).astype("float32"),
            "EpsilonTensor": np.array([epsilon]).astype("float32"),
        }

        attributes = {'epsilon': epsilon}

490
        param_out, moment1_out, moment2_out = adam_step(self.inputs, attributes)
491 492 493 494 495 496

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
            'ParamOut': param_out,
            'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1,
497
            'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2,
498 499 500 501 502 503
        }

    def test_check_output(self):
        self.check_output()


504 505
class TestAdamOpWithGlobalBetaPow(OpTest):
    def setUp(self):
506
        '''Test Adam Op with global_beta_pow'''
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
        self.op_type = "adam"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")
        beta1 = 0.85
        beta2 = 0.95

        learning_rate = 0.001
        epsilon = 1e-8
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32"),
            "Beta1Tensor": np.array([beta1]).astype("float32"),
            "Beta2Tensor": np.array([beta2]).astype("float32"),
            "EpsilonTensor": np.array([epsilon]).astype("float32"),
        }

        attributes = {'epsilon': epsilon}

536
        param_out, moment1_out, moment2_out = adam_step(self.inputs, attributes)
537 538 539 540 541 542 543 544 545

        self.attrs = {'use_global_beta_pow': True}

        # use_global_beta_pow=True, Beta1PowOut and Beta2PowOut are empty.
        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
            'ParamOut': param_out,
            'Beta1PowOut': np.array([]),
546
            'Beta2PowOut': np.array([]),
547 548 549 550 551 552
        }

    def test_check_output(self):
        self.check_output()


553 554
class TestAdamOpWithSkipUpdate(OpTest):
    def setUp(self):
555
        '''Test Adam Op with global_beta_pow'''
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
        self.op_type = "adam"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")
        beta1 = 0.85
        beta2 = 0.95

        learning_rate = 0.001
        epsilon = 1e-8
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32"),
            "Beta1Tensor": np.array([beta1]).astype("float32"),
            "Beta2Tensor": np.array([beta2]).astype("float32"),
            "EpsilonTensor": np.array([epsilon]).astype("float32"),
            "SkipUpdate": np.array([True]).astype("bool"),
        }

        attributes = {'epsilon': epsilon}

        self.attrs = {'use_global_beta_pow': True}

        # use_global_beta_pow=True, Beta1PowOut and Beta2PowOut are empty.
        self.outputs = {
            'Moment1Out': moment1,
            'Moment2Out': moment2,
            'ParamOut': param,
            'Beta1PowOut': self.inputs['Beta1Pow'],
            'Beta2PowOut': self.inputs['Beta2Pow'],
        }

    def test_check_output(self):
        self.check_output()


M
MRXLT 已提交
601 602 603
class TestAdamOpV2(unittest.TestCase):
    def test_adam_op(self):
        place = fluid.CPUPlace()
604
        shape = [2, 3, 8, 8]
M
MRXLT 已提交
605 606 607 608 609 610
        exe = fluid.Executor(place)
        train_prog = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(train_prog, startup):
            with fluid.unique_name.guard():
                data = fluid.data(name="data", shape=shape)
611
                conv = paddle.static.nn.conv2d(data, 8, 3)
612
                loss = paddle.mean(conv)
M
MRXLT 已提交
613

614
                beta1 = paddle.static.create_global_var(
615 616
                    shape=[1], value=0.85, dtype='float32', persistable=True
                )
617
                beta2 = paddle.static.create_global_var(
618 619
                    shape=[1], value=0.95, dtype='float32', persistable=True
                )
M
MRXLT 已提交
620
                betas = [beta1, beta2]
621 622 623 624 625 626 627
                opt = paddle.optimizer.Adam(
                    learning_rate=1e-5,
                    beta1=beta1,
                    beta2=beta2,
                    weight_decay=0.01,
                    epsilon=1e-8,
                )
M
MRXLT 已提交
628 629 630 631 632 633 634 635 636 637 638
                opt.minimize(loss)

        exe.run(startup)
        data_np = np.random.random(shape).astype('float32')
        rets = exe.run(train_prog, feed={"data": data_np}, fetch_list=[loss])
        assert rets[0] is not None

    def test_adam_op_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = fluid.dygraph.to_variable(value)
639
        linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
640

641 642 643
        adam = paddle.optimizer.Adam(
            learning_rate=0.01, parameters=linear.parameters()
        )
M
MRXLT 已提交
644 645 646 647
        out = linear(a)
        out.backward()
        adam.step()
        adam.clear_gradients()
648
        paddle.enable_static()
M
MRXLT 已提交
649 650 651 652

    def test_adam_op_with_state_dict(self):

        paddle.disable_static()
T
tangwei12 已提交
653
        emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
654 655 656 657 658

        adam = paddle.optimizer.Adam(0.001, parameters=emb.parameters())
        state_dict = adam.state_dict()
        adam.set_state_dict(state_dict)

659
        # learning_rate is LRScheduler
660
        learning_rate = paddle.optimizer.lr.CosineAnnealingDecay(
661 662
            learning_rate=0.1, T_max=10
        )
M
MRXLT 已提交
663 664 665
        adam = paddle.optimizer.Adam(
            learning_rate=learning_rate,
            weight_decay=fluid.regularizer.L2Decay(0.001),
666 667
            parameters=emb.parameters(),
        )
M
MRXLT 已提交
668 669 670 671
        lr = adam.get_lr()
        state_dict = adam.state_dict()
        adam.set_state_dict(state_dict)

672
        # leanrning_rate is Tensor
M
MRXLT 已提交
673 674 675
        with self.assertRaises(TypeError):
            learning_rate = np.array([0.01]).astype("float32")
            learning_rate = paddle.to_tensor(learning_rate)
676 677 678
            adam = paddle.optimizer.Adam(
                learning_rate=learning_rate, parameters=emb.parameters()
            )
M
MRXLT 已提交
679 680

        params = adam.get_opti_var_name_list()
681
        assert params is not None
682
        paddle.enable_static()
M
MRXLT 已提交
683 684 685 686 687

    def test_adam_with_grad_clip(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = fluid.dygraph.to_variable(value)
688
        linear = paddle.nn.Linear(13, 5)
689
        clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)
690 691 692
        adam = paddle.optimizer.Adam(
            0.1, parameters=linear.parameters(), grad_clip=clip
        )
M
MRXLT 已提交
693 694 695 696
        out = linear(a)
        out.backward()
        adam.step()
        adam.clear_gradients()
697
        paddle.enable_static()
M
MRXLT 已提交
698 699 700 701 702 703 704 705 706

    def test_adam_op_with_set_lr(self):
        paddle.disable_static()
        linear = paddle.nn.Linear(10, 10)
        adam = paddle.optimizer.Adam(0.1, parameters=linear.parameters())

        lr = 0.01
        adam.set_lr(lr)
        cur_lr = adam.get_lr()
707
        assert lr == cur_lr
M
MRXLT 已提交
708
        with self.assertRaises(TypeError):
709
            lr_var = paddle.static.create_global_var(
710 711
                shape=[1], value=lr, dtype='float32'
            )
712
            adam.set_lr(lr_var)
713
        paddle.enable_static()
714

M
MRXLT 已提交
715 716 717 718
    def test_adam_op_invalid_input(self):
        paddle.disable_static()
        linear = paddle.nn.Linear(10, 10)
        with self.assertRaises(ValueError):
719 720 721
            adam = paddle.optimizer.Adam(
                0.1, beta1=-1, parameters=linear.parameters()
            )
M
MRXLT 已提交
722
        with self.assertRaises(ValueError):
723 724 725
            adam = paddle.optimizer.Adam(
                0.1, beta2=-1, parameters=linear.parameters()
            )
M
MRXLT 已提交
726
        with self.assertRaises(ValueError):
727 728 729
            adam = paddle.optimizer.Adam(
                0.1, epsilon=-1, parameters=linear.parameters()
            )
730
        paddle.enable_static()
M
MRXLT 已提交
731

732 733 734 735 736 737
    def test_adam_op_with_sparse_input_and_weight_decay(self):

        paddle.disable_static()
        x_data = np.arange(0, 10).reshape((10, 1)).astype(np.int64)
        x = paddle.to_tensor(x_data, stop_gradient=False)
        emb = paddle.nn.Embedding(10, 10, sparse=True)
738 739 740
        adam = paddle.optimizer.Adam(
            0.001, parameters=emb.parameters(), weight_decay=0.01
        )
741 742 743 744 745

        with self.assertRaises(RuntimeError):
            out = emb(x)
            out.backward()
            adam.step()
746
        paddle.enable_static()
747

748

749
class TestAdamOptimizer(unittest.TestCase):
750 751 752 753 754 755 756 757
    def _test(
        self,
        place,
        use_tensor=True,
        use_fluid_api=True,
        use_global_beta_pow=False,
        flatten_param_grads=False,
    ):
758 759 760 761 762 763 764
        paddle.enable_static()
        main_prog = paddle.static.Program()
        startup_prog = paddle.static.Program()
        SEED = 2021
        paddle.seed(SEED)
        np.random.seed(SEED)

765 766 767 768 769
        a_np = np.random.random(size=(2, 2)).astype('float32')
        b_np = np.random.random(size=(2, 2)).astype('float32')
        label_np = np.random.randint(2, size=(2, 1)).astype('int64')
        weight_attr1 = paddle.ParamAttr(
            name="weight1",
770
            initializer=paddle.nn.initializer.Constant(value=1.0),
771 772
            trainable=True,
        )
773 774
        weight_attr2 = paddle.ParamAttr(
            name="weight2",
775
            initializer=paddle.nn.initializer.Constant(value=2.0),
776 777
            trainable=True,
        )
778
        clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)
779 780

        with paddle.static.program_guard(main_prog, startup_prog):
781 782 783
            with paddle.utils.unique_name.guard():
                a = paddle.static.data(name="a", shape=[2, 2], dtype='float32')
                b = paddle.static.data(name="b", shape=[2, 2], dtype='float32')
784 785 786
                label = paddle.static.data(
                    name="label", shape=[2, 1], dtype='int64'
                )
787 788 789 790

                sum = paddle.add(a, b)
                z = paddle.pow(sum, 2.0)

C
Charles-hit 已提交
791 792 793 794 795 796 797 798
                fc_1 = paddle.static.nn.fc(
                    x=z, size=2, weight_attr=weight_attr1
                )
                prediction = paddle.static.nn.fc(
                    x=fc_1,
                    size=2,
                    weight_attr=weight_attr2,
                    activation='softmax',
799
                )
800

801 802 803 804 805 806
                cost = paddle.nn.functional.cross_entropy(
                    input=prediction,
                    label=label,
                    reduction='none',
                    use_softmax=False,
                )
807
                loss = paddle.mean(cost)
808 809 810 811
                beta1_init = 0.9
                beta2_init = 0.999
                epsilon_init = 1e-8
                if use_tensor:
812
                    beta1 = paddle.static.create_global_var(
813 814 815 816
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        persistable=True,
817 818
                        name="beta1",
                    )
819
                    beta2 = paddle.static.create_global_var(
820 821 822 823
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        persistable=True,
824 825
                        name="beta2",
                    )
826
                    epsilon = paddle.static.create_global_var(
827 828 829 830
                        shape=[1],
                        value=float(epsilon_init),
                        dtype='float32',
                        persistable=True,
831 832
                        name="epsilon",
                    )
833 834 835 836 837 838 839 840 841
                    if use_fluid_api:
                        adam = fluid.optimizer.Adam(
                            learning_rate=0.01,
                            beta1=beta1,
                            beta2=beta2,
                            epsilon=epsilon,
                            use_global_beta_pow=use_global_beta_pow,
                            flatten_param_grads=flatten_param_grads,
                            align_size=256,
842 843
                            grad_clip=clip,
                        )
844
                    else:
845 846 847 848 849 850 851
                        adam = paddle.optimizer.Adam(
                            learning_rate=0.01,
                            beta1=beta1,
                            beta2=beta2,
                            epsilon=epsilon,
                            grad_clip=clip,
                        )
852
                else:
853 854 855 856 857 858 859 860 861
                    if use_fluid_api:
                        adam = fluid.optimizer.Adam(
                            learning_rate=0.01,
                            beta1=beta1_init,
                            beta2=beta2_init,
                            epsilon=epsilon_init,
                            use_global_beta_pow=use_global_beta_pow,
                            flatten_param_grads=flatten_param_grads,
                            align_size=256,
862 863
                            grad_clip=clip,
                        )
864
                    else:
865 866 867 868 869 870 871
                        adam = fluid.optimizer.Adam(
                            learning_rate=0.01,
                            beta1=beta1_init,
                            beta2=beta2_init,
                            epsilon=epsilon_init,
                            grad_clip=clip,
                        )
872 873 874 875 876 877 878 879 880 881

                adam.minimize(loss)

        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe = paddle.static.Executor(place)
            exe.run(startup_prog)

            print("Start run on {}".format(place))
            for epoch in range(10):
882 883 884 885 886 887 888 889 890 891
                pred_res, loss_res = exe.run(
                    main_prog,
                    feed={"a": a_np, "b": b_np, "label": label_np},
                    fetch_list=[prediction, loss],
                )
                print(
                    "Epoch {} | Prediction[0]: {}, Loss: {}".format(
                        epoch, pred_res[0], loss_res
                    )
                )
892 893
            paddle.disable_static()
            return pred_res, loss_res
894 895 896 897 898 899 900

    def _test_with_place(self, place):
        preds = []
        losses = []

        for use_tensor in [True, False]:
            for use_fluid_api in [True, False]:
901
                for use_global_beta_pow in [True, False]:
902
                    for flatten_param_grads in [True, False]:
903 904 905 906 907 908 909
                        pred, loss = self._test(
                            place,
                            use_tensor,
                            use_fluid_api,
                            use_global_beta_pow,
                            flatten_param_grads,
                        )
910 911
                        preds.append(pred)
                        losses.append(loss)
912
        for pred in preds:
913
            np.testing.assert_allclose(pred, preds[0], rtol=1e-05)
914
        for loss in losses:
915
            np.testing.assert_allclose(loss, losses[0], rtol=1e-05)
916 917 918 919 920 921 922

    def test_adam_api(self):
        # NOTE(zhiqiu): cpu and gpu has different seed, so should compare separatly.
        self._test_with_place(paddle.CPUPlace())
        if core.is_compiled_with_cuda():
            self._test_with_place(paddle.CUDAPlace(0))

923 924 925 926 927 928
    def test_adam_flatten_param_grads_with_regularizer(self):
        # flatten_param_grads + regularizer is not supported yet.
        paddle.enable_static()
        main = fluid.Program()
        weight_attr = paddle.ParamAttr(
            name="weight1",
929
            initializer=paddle.nn.initializer.Constant(value=1.0),
930
            regularizer=fluid.regularizer.L1DecayRegularizer(
931 932 933 934
                regularization_coeff=0.1
            ),
            trainable=True,
        )
935 936 937
        with fluid.program_guard(main):
            x = fluid.data(name='x', shape=[None, 13], dtype='float32')
            y = fluid.data(name='y', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
938
            y_predict = paddle.static.nn.fc(x, size=1, weight_attr=weight_attr)
939 940 941
            cost = paddle.nn.functional.square_error_cost(
                input=y_predict, label=y
            )
942
            avg_cost = paddle.mean(cost)
943

944 945 946
            adam = fluid.optimizer.AdamOptimizer(
                0.01, flatten_param_grads=True, align_size=256
            )
947 948 949 950 951
            adam.minimize(avg_cost)
            paddle.disable_static()

            self.assertEqual(adam._flatten_param_grads, False)

952 953 954 955 956 957 958 959 960
    def test_adam_exception(self):
        paddle.enable_static()
        a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
        b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
        label = paddle.static.data(name="label", shape=[32, 1], dtype='int64')

        sum = paddle.add(a, b)
        z = paddle.pow(sum, 2.0)

C
Charles-hit 已提交
961 962
        fc_1 = paddle.static.nn.fc(x=z, size=128)
        prediction = paddle.static.nn.fc(x=fc_1, size=2, activation='softmax')
963

964 965 966
        cost = paddle.nn.functional.cross_entropy(
            input=prediction, label=label, reduction='none', use_softmax=False
        )
967
        loss = paddle.mean(cost)
968 969 970
        adam = fluid.optimizer.Adam(use_global_beta_pow=True)
        adam.minimize(loss)
        self.assertRaises(Exception, adam._get_global_accumulator, 'tmp')
971 972 973
        adam._add_global_accumulator(
            'tmp', type=core.VarDesc.VarType.LOD_TENSOR
        )
974
        adam._get_global_accumulator('tmp')
975 976 977 978 979 980
        self.assertRaises(
            Exception,
            adam._add_global_accumulator,
            adam._beta1_pow_acc_str,
            type=core.VarDesc.VarType.LOD_TENSOR,
        )
981 982 983 984 985 986 987 988
        paddle.disable_static()

    def test_adam_save_load(self):
        paddle.disable_static()
        a = paddle.rand([4, 10])
        linear = paddle.nn.Linear(10, 10)
        b = linear(a)
        state_dict = linear.state_dict()
989
        paddle.save(state_dict, "paddle_dy.pdparams")
990

991 992 993 994 995 996 997 998
        scheduler = paddle.optimizer.lr.NoamDecay(
            d_model=0.01, warmup_steps=100, verbose=True
        )
        adam = paddle.fluid.optimizer.Adam(
            learning_rate=scheduler,
            parameter_list=linear.parameters(),
            use_global_beta_pow=True,
        )
999 1000
        adam.minimize(b)
        state_dict = adam.state_dict()
1001 1002 1003
        paddle.save(state_dict, "paddle_dy.pdopt")
        para_state_dict = paddle.load("paddle_dy.pdparams")
        opt_state_dict = paddle.load("paddle_dy.pdopt")
1004
        adam.set_state_dict(opt_state_dict)
1005 1006 1007

        paddle.enable_static()

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
    def test_adam_save_load_error(self):
        paddle.disable_static()

        def get_opt(dtype, shape):
            with paddle.utils.unique_name.guard():
                paddle.set_default_dtype(dtype)
                a = paddle.rand([4, 10])
                linear = paddle.nn.Linear(10, 10)
                b = linear(a)
                state_dict = linear.state_dict()
1018
                paddle.save(state_dict, "paddle_dy.pdparams")
1019

1020 1021 1022
                scheduler = paddle.optimizer.lr.NoamDecay(
                    d_model=0.01, warmup_steps=100, verbose=True
                )
1023 1024 1025
                adam = paddle.fluid.optimizer.Adam(
                    learning_rate=scheduler,
                    parameter_list=linear.parameters(),
1026 1027
                    use_global_beta_pow=True,
                )
1028 1029 1030 1031 1032 1033
                adam.minimize(b)
                return adam

        adam = get_opt('float32', [10, 10])

        state_dict = adam.state_dict()
1034 1035 1036
        paddle.save(state_dict, "paddle_dy.pdopt")
        para_state_dict = paddle.load("paddle_dy.pdparams")
        opt_state_dict = paddle.load("paddle_dy.pdopt")
1037 1038 1039 1040 1041 1042
        adam.set_state_dict(opt_state_dict)

        adam2 = get_opt('float64', [10, 10])  # dtype not match
        self.assertRaises(AssertionError, adam2.set_state_dict, opt_state_dict)

        adam3 = get_opt('float32', [10, 10])  # shape not match
1043 1044 1045
        opt_state_dict['beta1_pow_acc_0'] = np.array(
            [0.9, 0.9], dtype='float32'
        )
1046 1047 1048
        self.assertRaises(AssertionError, adam3.set_state_dict, opt_state_dict)
        paddle.enable_static()

1049

1050 1051 1052 1053 1054 1055 1056 1057
class TestAdamOpV2Group(TestAdamOpV2):
    def test_adam_op(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear_1 = paddle.nn.Linear(13, 5)
        linear_2 = paddle.nn.Linear(5, 3)
        # This can be any optimizer supported by dygraph.
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
        adam = paddle.optimizer.Adam(
            learning_rate=0.01,
            parameters=[
                {'params': linear_1.parameters()},
                {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'beta1': 0.1,
                    'beta2': 0.99,
                },
            ],
            weight_decay=0.1,
        )
1071 1072 1073 1074 1075 1076 1077
        out = linear_1(a)
        out = linear_2(out)
        out.backward()
        adam.step()
        adam.clear_gradients()


Z
zhangbo9674 已提交
1078
class TestMultiTensorAdam(unittest.TestCase):
1079 1080 1081 1082 1083 1084 1085 1086
    def _adam_optimize_dygraph(
        self,
        place,
        use_param_attr=False,
        use_param_group=False,
        use_amp=False,
        use_multi_tensor=False,
    ):
Z
zhangbo9674 已提交
1087 1088 1089 1090 1091 1092 1093 1094 1095
        paddle.disable_static()
        paddle.seed(10)
        paddle.set_device(place)

        input = paddle.randn((5, 5))

        weight_attr = paddle.ParamAttr(
            learning_rate=0.5,
            regularizer=paddle.regularizer.L2Decay(1.0),
1096 1097
            trainable=True,
        )
Z
zhangbo9674 已提交
1098
        if use_param_attr:
1099
            model = paddle.nn.Linear(5, 5, weight_attr=weight_attr)
Z
zhangbo9674 已提交
1100 1101 1102 1103
        else:
            model = paddle.nn.Linear(5, 5)

        if not use_param_group:
1104 1105 1106 1107 1108
            optimizer = paddle.optimizer.Adam(
                parameters=model.parameters(),
                use_multi_tensor=use_multi_tensor,
                multi_precision=use_amp,
            )
Z
zhangbo9674 已提交
1109
        else:
1110 1111
            parameters = list(model.parameters())
            param_num = len(parameters)
1112 1113 1114
            optimizer = paddle.optimizer.Adam(
                parameters=[
                    {
1115
                        'params': parameters[: int(param_num / 2)],
1116 1117 1118
                        'weight_decay': 0.001,
                        'beta1': 0.1,
                        'beta2': 0.99,
1119 1120 1121 1122 1123 1124 1125
                    },
                    {
                        'params': parameters[int(param_num / 2) :],
                        'weight_decay': 0.001,
                        'beta1': 0.1,
                        'beta2': 0.99,
                    },
1126 1127 1128 1129
                ],
                use_multi_tensor=use_multi_tensor,
                multi_precision=use_amp,
            )
Z
zhangbo9674 已提交
1130 1131

        for idx in range(2):
1132
            if place == 'gpu' and use_amp:
Z
zhangbo9674 已提交
1133 1134 1135
                model = paddle.amp.decorate(models=model, level='O2')
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)

1136
            if place == 'gpu' and use_amp:
Z
zhangbo9674 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
                with paddle.amp.auto_cast(level='O2'):
                    output = model(input)
                    loss = paddle.mean(output)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.step(optimizer)
                optimizer.clear_grad()
            else:
                output = model(input)
                loss = paddle.mean(output)
                loss.backward()
                optimizer.step()
                optimizer.clear_grad()

        return output, model.parameters()

1153 1154 1155
    def _adam_optimize_static(
        self, place, use_amp=False, use_multi_tensor=False
    ):
Z
zhangbo9674 已提交
1156 1157 1158 1159 1160 1161 1162 1163
        paddle.enable_static()
        paddle.seed(10)
        np.random.seed(10)
        if place == 'cpu':
            use_amp = False
        exe = paddle.static.Executor(place=place)
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
1164 1165 1166
        optimizer = paddle.optimizer.Adam(
            multi_precision=use_amp, use_multi_tensor=use_multi_tensor
        )
Z
zhangbo9674 已提交
1167 1168 1169 1170 1171 1172
        if use_amp:
            optimizer = paddle.static.amp.decorate(
                optimizer,
                init_loss_scaling=128.0,
                use_dynamic_loss_scaling=True,
                use_pure_fp16=True,
1173 1174
                use_fp16_guard=False,
            )
Z
zhangbo9674 已提交
1175 1176
        with paddle.static.program_guard(train_program, startup_program):
            if use_amp:
1177 1178 1179
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float16'
                )
Z
zhangbo9674 已提交
1180
            else:
1181 1182 1183
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float32'
                )
Z
zhangbo9674 已提交
1184
            hidden = paddle.static.nn.fc(x=data, size=10)
1185
            loss = paddle.mean(hidden)
Z
zhangbo9674 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194
            optimizer.minimize(loss)
        exe.run(startup_program)
        if use_amp:
            optimizer.amp_init(place=place, scope=paddle.static.global_scope())
            x = np.random.random(size=(2, 2)).astype('float16')
        else:
            x = np.random.random(size=(2, 2)).astype('float32')
        out = []
        for idx in range(5):
1195 1196 1197
            (loss_data,) = exe.run(
                train_program, feed={"X": x}, fetch_list=[loss.name]
            )
Z
zhangbo9674 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
            out.append(loss_data)
        return out

    def _get_places(self):
        places = ['cpu']
        if paddle.is_compiled_with_cuda():
            places.append('gpu')
        return places

    def _check_with_place_amp(self, place, use_amp):
        # test dygraph mode
        output_dygraph1, params_dygraph1 = self._adam_optimize_dygraph(
1210 1211
            place=place, use_amp=use_amp, use_multi_tensor=True
        )
Z
zhangbo9674 已提交
1212
        output_dygraph2, params_dygraph2 = self._adam_optimize_dygraph(
1213 1214
            place=place, use_amp=use_amp, use_multi_tensor=False
        )
1215
        np.testing.assert_allclose(output_dygraph1, output_dygraph2, rtol=1e-05)
Z
zhangbo9674 已提交
1216
        for idx in range(len(params_dygraph1)):
1217 1218 1219
            np.testing.assert_allclose(
                params_dygraph1[idx], params_dygraph2[idx], rtol=1e-05
            )
1220
        # test static graph mode
1221 1222 1223 1224 1225 1226
        output_static1 = self._adam_optimize_static(
            place=place, use_amp=use_amp, use_multi_tensor=True
        )
        output_static2 = self._adam_optimize_static(
            place=place, use_amp=use_amp, use_multi_tensor=False
        )
Z
zhangbo9674 已提交
1227
        for idx in range(len(output_static1)):
1228 1229 1230
            np.testing.assert_allclose(
                output_static1[idx], output_static2[idx], rtol=1e-05
            )
Z
zhangbo9674 已提交
1231 1232

    def _check_with_param_arrt(self, place, use_amp):
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
        output1, params1 = self._adam_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_attr=True,
            use_multi_tensor=True,
        )
        output2, params2 = self._adam_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_attr=True,
            use_multi_tensor=False,
        )
Z
zhangbo9674 已提交
1245

1246
        np.testing.assert_allclose(output1, output2, rtol=1e-05)
Z
zhangbo9674 已提交
1247
        for idx in range(len(params1)):
1248
            np.testing.assert_allclose(params1[idx], params2[idx], rtol=1e-05)
Z
zhangbo9674 已提交
1249 1250

    def _check_with_param_group(self, place, use_amp):
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
        output1, params1 = self._adam_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_group=True,
            use_multi_tensor=True,
        )
        output2, params2 = self._adam_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_group=True,
            use_multi_tensor=False,
        )
Z
zhangbo9674 已提交
1263

1264
        np.testing.assert_allclose(output1, output2, rtol=1e-05)
Z
zhangbo9674 已提交
1265
        for idx in range(len(params1)):
1266
            np.testing.assert_allclose(params1[idx], params2[idx], rtol=1e-05)
Z
zhangbo9674 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276

    def test_main(self):
        for place in self._get_places():
            use_amp_list = [True, False]
            for use_amp in use_amp_list:
                self._check_with_place_amp(place, use_amp)
                self._check_with_param_arrt(place, use_amp)
                self._check_with_param_group(place, use_amp)


1277
if __name__ == "__main__":
H
hong 已提交
1278
    paddle.enable_static()
1279
    unittest.main()