Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6cc4bd53
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6cc4bd53
编写于
12月 26, 2017
作者:
T
typhoonzero
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
wip
上级
1398854f
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
232 addition
and
13 deletion
+232
-13
paddle/operators/adam_op.h
paddle/operators/adam_op.h
+107
-13
python/paddle/v2/fluid/tests/test_adam_op.py
python/paddle/v2/fluid/tests/test_adam_op.py
+125
-0
未找到文件。
paddle/operators/adam_op.h
浏览文件 @
6cc4bd53
...
...
@@ -79,6 +79,71 @@ struct AdamFunctor {
}
};
template
<
typename
T
>
struct
SparseAdamFunctor
{
T
beta1_
;
T
beta2_
;
T
epsilon_
;
const
T
*
beta1_pow_
;
const
T
*
beta2_pow_
;
const
T
*
moment1_
;
T
*
moment1_out_
;
const
T
*
moment2_
;
T
*
moment2_out_
;
const
T
*
lr_
;
const
T
*
grad_
;
const
T
*
param_
;
T
*
param_out_
;
const
int64_t
*
rows_
;
int64_t
row_numel_
;
int64_t
height_
;
SparseAdamFunctor
(
T
beta1
,
T
beta2
,
T
epsilon
,
const
T
*
beta1_pow
,
const
T
*
beta2_pow
,
const
T
*
mom1
,
T
*
mom1_out
,
const
T
*
mom2
,
T
*
mom2_out
,
const
T
*
lr
,
const
T
*
grad
,
const
T
*
param
,
T
*
param_out
,
const
int64_t
*
rows
,
int64_t
row_numel
,
int64_t
height
)
:
beta1_
(
beta1
),
beta2_
(
beta2
),
epsilon_
(
epsilon
),
beta1_pow_
(
beta1_pow
),
beta2_pow_
(
beta2_pow
),
moment1_
(
mom1
),
moment1_out_
(
mom1_out
),
moment2_
(
mom2
),
moment2_out_
(
mom2_out
),
lr_
(
lr
),
grad_
(
grad
),
param_
(
param
),
param_out_
(
param_out
),
rows_
(
rows
),
row_numel_
(
row_numel
),
height_
(
height
)
{}
inline
HOSTDEVICE
void
operator
()(
size_t
i
)
const
{
for
(
int64_t
j
=
0
;
j
<
row_numel_
;
++
j
)
{
T
g
=
grad_
[
i
*
row_numel_
+
j
];
T
mom1
=
moment1_
[
rows_
[
i
]
*
row_numel_
+
j
];
T
mom2
=
moment2_
[
rows_
[
i
]
*
row_numel_
+
j
];
T
lr
=
*
lr_
;
T
beta1_pow
=
*
beta1_pow_
;
T
beta2_pow
=
*
beta2_pow_
;
T
p
=
param_
[
rows_
[
i
]
*
row_numel_
+
j
];
lr
*=
sqrt
(
1
-
beta2_pow
)
/
(
1
-
beta1_pow
);
mom1
=
beta1_
*
mom1
+
(
1
-
beta1_
)
*
g
;
mom2
=
beta2_
*
mom2
+
(
1
-
beta2_
)
*
g
*
g
;
p
-=
lr
*
(
mom1
/
(
sqrt
(
mom2
)
+
epsilon_
));
// FIXME(typhoonzero): row id may be duplicate
moment1_out_
[
rows_
[
i
]
*
row_numel_
+
j
]
=
mom1
;
moment2_out_
[
rows_
[
i
]
*
row_numel_
+
j
]
=
mom2
;
param_out_
[
rows_
[
i
]
*
row_numel_
+
j
]
=
p
;
}
// for col id
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
AdamOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -90,7 +155,8 @@ class AdamOpKernel : public framework::OpKernel<T> {
T
beta2
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"beta2"
));
T
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
auto
&
param
=
Ref
(
ctx
.
Input
<
LoDTensor
>
(
"Param"
),
"Must set Param"
);
auto
&
grad
=
Ref
(
ctx
.
Input
<
LoDTensor
>
(
"Grad"
),
"Must set Grad"
);
// auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
auto
&
mom1
=
Ref
(
ctx
.
Input
<
LoDTensor
>
(
"Moment1"
),
"Must set Moment1"
);
auto
&
mom2
=
Ref
(
ctx
.
Input
<
LoDTensor
>
(
"Moment2"
),
"Must set Moment2"
);
auto
&
lr
=
...
...
@@ -108,18 +174,46 @@ class AdamOpKernel : public framework::OpKernel<T> {
auto
&
mom2_out
=
Ref
(
ctx
.
Output
<
LoDTensor
>
(
"Moment2Out"
),
"Must set Moment1Out"
);
AdamFunctor
<
T
>
functor
(
beta1
,
beta2
,
epsilon
,
beta1_pow
.
template
data
<
T
>(),
beta2_pow
.
template
data
<
T
>(),
mom1
.
template
data
<
T
>(),
mom1_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
mom2
.
template
data
<
T
>(),
mom2_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
lr
.
template
data
<
T
>(),
grad
.
template
data
<
T
>(),
param
.
template
data
<
T
>(),
param_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()));
platform
::
ForRange
<
DeviceContext
>
for_range
(
static_cast
<
const
DeviceContext
&>
(
ctx
.
device_context
()),
param
.
numel
());
for_range
(
functor
);
if
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
&
grad
=
Ref
(
ctx
.
Input
<
LoDTensor
>
(
"Grad"
),
"Must set Grad"
);
AdamFunctor
<
T
>
functor
(
beta1
,
beta2
,
epsilon
,
beta1_pow
.
template
data
<
T
>(),
beta2_pow
.
template
data
<
T
>(),
mom1
.
template
data
<
T
>(),
mom1_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
mom2
.
template
data
<
T
>(),
mom2_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
lr
.
template
data
<
T
>(),
grad
.
template
data
<
T
>(),
param
.
template
data
<
T
>(),
param_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()));
platform
::
ForRange
<
DeviceContext
>
for_range
(
static_cast
<
const
DeviceContext
&>
(
ctx
.
device_context
()),
param
.
numel
());
for_range
(
functor
);
}
else
if
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
())
{
auto
&
grad
=
Ref
(
ctx
.
Input
<
framework
::
SelectedRows
>
(
"Grad"
),
"Must set Grad"
);
auto
&
grad_tensor
=
grad
.
value
();
const
T
*
grad_data
=
grad_tensor
.
template
data
<
T
>();
auto
*
rows
=
grad
.
rows
().
data
();
auto
height
=
grad
.
height
();
auto
row_numel
=
grad_tensor
.
numel
()
/
height
;
SparseAdamFunctor
<
T
>
functor
(
beta1
,
beta2
,
epsilon
,
beta1_pow
.
template
data
<
T
>(),
beta2_pow
.
template
data
<
T
>(),
mom1
.
template
data
<
T
>(),
mom1_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
mom2
.
template
data
<
T
>(),
mom2_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
lr
.
template
data
<
T
>(),
grad_data
,
param
.
template
data
<
T
>(),
param_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
rows
,
row_numel
,
height
);
platform
::
ForRange
<
DeviceContext
>
for_range
(
static_cast
<
const
DeviceContext
&>
(
ctx
.
device_context
()),
grad
.
rows
().
size
());
for_range
(
functor
);
}
else
{
PADDLE_THROW
(
"Variable type not supported by adam_op"
);
}
}
};
...
...
python/paddle/v2/fluid/tests/test_adam_op.py
浏览文件 @
6cc4bd53
...
...
@@ -176,5 +176,130 @@ def adam_step(inputs, attributes):
return
param_out
,
moment1_out
,
moment2_out
def
adam_step_sparse
(
inputs
,
attributes
,
height
,
rows
,
row_numel
,
np_grad
):
'''
Simulate one step of the adam optimizer
:param inputs: dict of inputs
:param attributes: dict of attributes
:return tuple: tuple of output param, moment1, moment2,
beta1 power accumulator and beta2 power accumulator
'''
param
=
inputs
[
'Param'
]
# grad = inputs['Grad']
moment1
=
inputs
[
'Moment1'
]
moment2
=
inputs
[
'Moment2'
]
lr
=
inputs
[
'LearningRate'
]
beta1_pow
=
inputs
[
'Beta1Pow'
]
beta2_pow
=
inputs
[
'Beta2Pow'
]
beta1
=
attributes
[
'beta1'
]
beta2
=
attributes
[
'beta2'
]
epsilon
=
attributes
[
'epsilon'
]
moment1_out
=
np
.
array
([
height
,
row_numel
])
moment2_out
=
np
.
array
([
height
,
row_numel
])
param_out
=
np
.
array
([
height
,
row_numel
])
for
idx
,
row_id
in
enumerate
(
rows
):
moment1_out
[
row_id
]
=
beta1
*
moment1
[
row_id
]
+
(
1
-
beta1
)
*
np_grad
[
idx
]
moment2_out
[
row_id
]
=
beta2
*
moment2
[
row_id
]
+
(
1
-
beta2
)
*
np
.
square
(
np_grad
[
idx
])
lr_t
=
lr
*
np
.
sqrt
(
1
-
beta2_pow
)
/
(
1
-
beta1_pow
)
param_out
[
row_id
]
=
param
[
row_id
]
-
lr_t
*
(
moment1_out
/
(
np
.
sqrt
(
moment2_out
)
+
epsilon
))
return
param_out
,
moment1_out
,
moment2_out
class
TestSparseAdamOp
(
unittest
.
TestCase
):
def
setup
(
self
,
scope
,
place
):
beta1
=
0.78
beta2
=
0.836
epsilon
=
1e-4
height
=
10
rows
=
[
0
,
4
,
7
]
row_numel
=
12
self
.
dense_inputs
=
{
"Param"
:
np
.
full
((
height
,
row_numel
),
5.0
).
astype
(
"float32"
),
"Moment1"
:
np
.
full
((
height
,
row_numel
),
5.0
).
astype
(
"float32"
),
"Moment2"
:
np
.
full
((
height
,
row_numel
),
5.0
).
astype
(
"float32"
),
'Beta1Pow'
:
np
.
array
([
0.9
**
10
]).
astype
(
"float32"
),
'Beta2Pow'
:
np
.
array
([
0.999
**
10
]).
astype
(
"float32"
),
"LearningRate"
:
np
.
full
((
1
),
2.0
).
astype
(
"float32"
)
}
self
.
attrs
=
{
'epsilon'
:
epsilon
,
'beta1'
:
beta1
,
'beta2'
:
beta2
}
grad_selected_rows
=
scope
.
var
(
'Grad'
).
get_selected_rows
()
grad_selected_rows
.
set_height
(
height
)
grad_selected_rows
.
set_rows
(
rows
)
np_array
=
np
.
ones
((
len
(
rows
),
row_numel
)).
astype
(
"float32"
)
np_array
[
0
,
0
]
=
2.0
np_array
[
2
,
8
]
=
4.0
grad_tensor
=
grad_selected_rows
.
get_tensor
()
grad_tensor
.
set
(
np_array
,
place
)
self
.
sparse_inputs
=
[
"Grad"
]
param_out
,
mom1
,
mom2
=
adam_step_sparse
(
self
.
dense_inputs
,
self
.
attrs
,
height
,
rows
,
row_numel
,
np_array
)
self
.
outputs
=
{
"Param"
:
param_out
,
"Moment1Out"
:
mom1
,
"Moment2Out"
:
mom2
}
def
check_with_place
(
self
,
place
):
scope
=
core
.
Scope
()
self
.
setup
(
scope
,
place
)
op_args
=
dict
()
for
key
,
np_array
in
self
.
dense_inputs
.
iteritems
():
var
=
scope
.
var
(
key
).
get_tensor
()
var
.
set
(
np_array
,
place
)
op_args
[
key
]
=
key
for
s
in
self
.
sparse_inputs
:
op_args
[
s
]
=
s
for
k
in
self
.
attrs
:
op_args
[
k
]
=
self
.
attrs
[
k
]
# create and run sgd operator
sgd_op
=
Operator
(
"adam"
,
**
op_args
)
sgd_op
.
run
(
scope
,
place
)
for
key
,
np_array
in
self
.
outputs
.
iteritems
():
out_var
=
scope
.
var
(
key
).
get_tensor
()
actual
=
np
.
array
(
out_var
)
actual
.
reshape
([
actual
.
size
()])
np_array
.
reshape
([
np_array
.
size
()])
i
=
0
while
i
<
actual
.
size
():
self
.
assertAlmostEqual
(
actual
[
i
],
np_array
[
i
])
i
+=
1
# # rows[0] = 0, 5.0 - 2.0 * 2.0
# self.assertAlmostEqual(1.0, result_array[rows[0], 0])
# # rows[0] = 0, 5.0 - 2.0 * 1.0
# self.assertAlmostEqual(3.0, result_array[rows[0], 2])
# # 5.0 - 2.0 * 0.0
# self.assertAlmostEqual(5.0, result_array[1, 0])
# # rows[1] = 4, 5.0 - 2.0 * 1.0
# self.assertAlmostEqual(3.0, result_array[rows[1], 10])
# # 5.0 - 2.0 * 0.0
# self.assertAlmostEqual(5.0, result_array[5, 8])
# # rows[2] = 7, 5.0 - 2.0 * 1.0
# self.assertAlmostEqual(3.0, result_array[rows[2], 1])
# # rows[2] = 7, 5.0 - 2.0 * 4.0
# self.assertAlmostEqual(-3.0, result_array[rows[2], 8])
def
test_sparse_sgd
(
self
):
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compile_gpu
():
places
.
append
(
core
.
CUDAPlace
(
0
))
for
place
in
places
:
self
.
check_with_place
(
place
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录