test_fleet_unitaccessor.py 3.6 KB
Newer Older
X
xujiaqi01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test fleet."""

import os
import unittest

19 20
import paddle

X
xujiaqi01 已提交
21 22 23 24 25 26 27 28 29 30

class TestFleet1(unittest.TestCase):
    """
    Test cases for fleet minimize.
    """

    def setUp(self):
        """Set up, set envs."""
        os.environ["PADDLE_TRAINERS_NUM"] = "2"
        os.environ[
31 32
            "PADDLE_PSERVERS_IP_PORT_LIST"
        ] = "127.0.0.1:36001,127.0.0.2:36001"
X
xujiaqi01 已提交
33 34 35 36 37

    def test_pslib_1(self):
        """Test cases for pslib."""
        import paddle.fluid as fluid
        from paddle.fluid.incubate.fleet.base.role_maker import GeneralRoleMaker
38
        from paddle.incubate.fleet.parameter_server.pslib import fleet
1
123malin 已提交
39

X
xujiaqi01 已提交
40 41 42 43 44 45 46
        os.environ["POD_IP"] = "127.0.0.1"
        os.environ["PADDLE_PORT"] = "36001"
        os.environ["TRAINING_ROLE"] = "TRAINER"
        os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
        os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36002"
        os.environ["PADDLE_TRAINER_ID"] = "0"
        role_maker = GeneralRoleMaker()
47
        # role_maker.generate_role()
X
xujiaqi01 已提交
48 49
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
50
        # fleet.init(role_maker)
X
xujiaqi01 已提交
51 52 53 54
        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
        with fluid.program_guard(train_program, startup_program):
G
GGBond8488 已提交
55 56
            show = paddle.static.data(
                name="show", shape=[-1, 1], dtype="int64", lod_level=1
57 58 59 60 61 62 63 64
            )
            emb = fluid.layers.embedding(
                input=show,
                size=[1, 1],
                is_sparse=True,
                is_distributed=True,
                param_attr=fluid.ParamAttr(name="embedding"),
            )
C
Charles-hit 已提交
65
            fc = paddle.static.nn.fc(x=emb, size=1, activation=None)
G
GGBond8488 已提交
66 67
            label = paddle.static.data(
                name="click", shape=[-1, 1], dtype="int64", lod_level=1
68
            )
69
            label_cast = paddle.cast(label, dtype='float32')
70
            cost = paddle.nn.functional.log_loss(fc, label_cast)
X
xujiaqi01 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

        strategy = {}
        strategy["embedding"] = {}
        strategy["embedding"]["sparse_accessor_class"] = "DownpourUnitAccessor"
        strategy["embedding"]["embed_sparse_optimizer"] = "naive"
        try:
            adam1 = fluid.optimizer.Adam(learning_rate=0.000005)
            adam1 = fleet.distributed_optimizer(adam1, strategy=strategy)
            adam1.minimize([cost], [scope])

            strategy["embedding"]["embed_sparse_optimizer"] = "adagrad"
            adam2 = fluid.optimizer.Adam(learning_rate=0.000005)
            adam2 = fleet.distributed_optimizer(adam2, strategy=strategy)
            adam2.minimize([cost], [scope])

            strategy["embedding"]["embed_sparse_optimizer"] = "adam"
            adam3 = fluid.optimizer.Adam(learning_rate=0.000005)
            adam3 = fleet.distributed_optimizer(adam3, strategy=strategy)
            adam3.minimize([cost], [scope])
        except:
            print("do not support pslib test, skip")
            return


if __name__ == "__main__":
    unittest.main()