test_fleet_unitaccessor.py 3.7 KB
Newer Older
X
xujiaqi01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test fleet."""

import os
import unittest


class TestFleet1(unittest.TestCase):
    """
    Test cases for fleet minimize.
    """

    def setUp(self):
        """Set up, set envs."""
        os.environ["PADDLE_TRAINERS_NUM"] = "2"
        os.environ[
29 30
            "PADDLE_PSERVERS_IP_PORT_LIST"
        ] = "127.0.0.1:36001,127.0.0.2:36001"
X
xujiaqi01 已提交
31 32 33 34 35

    def test_pslib_1(self):
        """Test cases for pslib."""
        import paddle.fluid as fluid
        from paddle.fluid.incubate.fleet.base.role_maker import GeneralRoleMaker
36
        from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
1
123malin 已提交
37

X
xujiaqi01 已提交
38 39 40 41 42 43 44
        os.environ["POD_IP"] = "127.0.0.1"
        os.environ["PADDLE_PORT"] = "36001"
        os.environ["TRAINING_ROLE"] = "TRAINER"
        os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
        os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36002"
        os.environ["PADDLE_TRAINER_ID"] = "0"
        role_maker = GeneralRoleMaker()
45
        # role_maker.generate_role()
X
xujiaqi01 已提交
46 47
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
48
        # fleet.init(role_maker)
X
xujiaqi01 已提交
49 50 51 52
        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
        with fluid.program_guard(train_program, startup_program):
53 54 55 56 57 58 59 60 61 62 63 64 65 66
            show = fluid.layers.data(
                name="show",
                shape=[-1, 1],
                dtype="int64",
                lod_level=1,
                append_batch_size=False,
            )
            emb = fluid.layers.embedding(
                input=show,
                size=[1, 1],
                is_sparse=True,
                is_distributed=True,
                param_attr=fluid.ParamAttr(name="embedding"),
            )
X
xujiaqi01 已提交
67
            fc = fluid.layers.fc(input=emb, size=1, act=None)
68 69 70 71 72 73 74
            label = fluid.layers.data(
                name="click",
                shape=[-1, 1],
                dtype="int64",
                lod_level=1,
                append_batch_size=False,
            )
X
xujiaqi01 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
            label_cast = fluid.layers.cast(label, dtype='float32')
            cost = fluid.layers.log_loss(fc, label_cast)

        strategy = {}
        strategy["embedding"] = {}
        strategy["embedding"]["sparse_accessor_class"] = "DownpourUnitAccessor"
        strategy["embedding"]["embed_sparse_optimizer"] = "naive"
        try:
            adam1 = fluid.optimizer.Adam(learning_rate=0.000005)
            adam1 = fleet.distributed_optimizer(adam1, strategy=strategy)
            adam1.minimize([cost], [scope])

            strategy["embedding"]["embed_sparse_optimizer"] = "adagrad"
            adam2 = fluid.optimizer.Adam(learning_rate=0.000005)
            adam2 = fleet.distributed_optimizer(adam2, strategy=strategy)
            adam2.minimize([cost], [scope])

            strategy["embedding"]["embed_sparse_optimizer"] = "adam"
            adam3 = fluid.optimizer.Adam(learning_rate=0.000005)
            adam3 = fleet.distributed_optimizer(adam3, strategy=strategy)
            adam3.minimize([cost], [scope])
        except:
            print("do not support pslib test, skip")
            return


if __name__ == "__main__":
    unittest.main()