# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test fleet.""" import os import unittest import paddle class TestFleet1(unittest.TestCase): """ Test cases for fleet minimize. """ def setUp(self): """Set up, set envs.""" os.environ["PADDLE_TRAINERS_NUM"] = "2" os.environ[ "PADDLE_PSERVERS_IP_PORT_LIST" ] = "127.0.0.1:36001,127.0.0.2:36001" def test_pslib_1(self): """Test cases for pslib.""" import paddle.fluid as fluid from paddle.fluid.incubate.fleet.base.role_maker import GeneralRoleMaker from paddle.incubate.fleet.parameter_server.pslib import fleet os.environ["POD_IP"] = "127.0.0.1" os.environ["PADDLE_PORT"] = "36001" os.environ["TRAINING_ROLE"] = "TRAINER" os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001" os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36002" os.environ["PADDLE_TRAINER_ID"] = "0" role_maker = GeneralRoleMaker() # role_maker.generate_role() place = fluid.CPUPlace() exe = fluid.Executor(place) # fleet.init(role_maker) train_program = fluid.Program() startup_program = fluid.Program() scope = fluid.Scope() with fluid.program_guard(train_program, startup_program): show = paddle.static.data( name="show", shape=[-1, 1], dtype="int64", lod_level=1 ) emb = fluid.layers.embedding( input=show, size=[1, 1], is_sparse=True, is_distributed=True, param_attr=fluid.ParamAttr(name="embedding"), ) fc = paddle.static.nn.fc(x=emb, size=1, activation=None) label = paddle.static.data( name="click", shape=[-1, 1], dtype="int64", lod_level=1 ) label_cast = paddle.cast(label, dtype='float32') cost = paddle.nn.functional.log_loss(fc, label_cast) strategy = {} strategy["embedding"] = {} strategy["embedding"]["sparse_accessor_class"] = "DownpourUnitAccessor" strategy["embedding"]["embed_sparse_optimizer"] = "naive" try: adam1 = fluid.optimizer.Adam(learning_rate=0.000005) adam1 = fleet.distributed_optimizer(adam1, strategy=strategy) adam1.minimize([cost], [scope]) strategy["embedding"]["embed_sparse_optimizer"] = "adagrad" adam2 = fluid.optimizer.Adam(learning_rate=0.000005) adam2 = fleet.distributed_optimizer(adam2, strategy=strategy) adam2.minimize([cost], [scope]) strategy["embedding"]["embed_sparse_optimizer"] = "adam" adam3 = fluid.optimizer.Adam(learning_rate=0.000005) adam3 = fleet.distributed_optimizer(adam3, strategy=strategy) adam3.minimize([cost], [scope]) except: print("do not support pslib test, skip") return if __name__ == "__main__": unittest.main()