test_fleet_unitaccessor.py 3.9 KB
Newer Older
X
xujiaqi01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test fleet."""

from __future__ import print_function
import os
import unittest
import paddle.fluid.incubate.fleet.base.role_maker as role_maker


class TestFleet1(unittest.TestCase):
    """
    Test cases for fleet minimize.
    """

    def setUp(self):
        """Set up, set envs."""
        os.environ["PADDLE_TRAINERS_NUM"] = "2"
        os.environ[
            "PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36001,127.0.0.2:36001"

    def test_pslib_1(self):
        """Test cases for pslib."""
        import paddle.fluid as fluid
36 37
        from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
        from paddle.fluid.incubate.fleet.parameter_server.pslib import PSLib
X
xujiaqi01 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50
        from paddle.fluid.incubate.fleet.base.role_maker import GeneralRoleMaker
        try:
            import netifaces
        except:
            print("warning: no netifaces, skip test_pslib_1")
            return
        os.environ["POD_IP"] = "127.0.0.1"
        os.environ["PADDLE_PORT"] = "36001"
        os.environ["TRAINING_ROLE"] = "TRAINER"
        os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
        os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36002"
        os.environ["PADDLE_TRAINER_ID"] = "0"
        role_maker = GeneralRoleMaker()
51
        #role_maker.generate_role()
X
xujiaqi01 已提交
52 53
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
54
        #fleet.init(role_maker)
X
xujiaqi01 已提交
55 56 57 58 59
        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
        with fluid.program_guard(train_program, startup_program):
            show = fluid.layers.data(name="show", shape=[-1, 1], \
60
                                     dtype="int64", lod_level=1, append_batch_size=False)
X
xujiaqi01 已提交
61
            emb = fluid.layers.embedding(input=show, size=[1, 1], \
62 63
                                         is_sparse=True, is_distributed=True, \
                                         param_attr=fluid.ParamAttr(name="embedding"))
X
xujiaqi01 已提交
64 65
            fc = fluid.layers.fc(input=emb, size=1, act=None)
            label = fluid.layers.data(name="click", shape=[-1, 1], \
66
                                      dtype="int64", lod_level=1, append_batch_size=False)
X
xujiaqi01 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
            label_cast = fluid.layers.cast(label, dtype='float32')
            cost = fluid.layers.log_loss(fc, label_cast)

        strategy = {}
        strategy["embedding"] = {}
        strategy["embedding"]["sparse_accessor_class"] = "DownpourUnitAccessor"
        strategy["embedding"]["embed_sparse_optimizer"] = "naive"
        try:
            adam1 = fluid.optimizer.Adam(learning_rate=0.000005)
            adam1 = fleet.distributed_optimizer(adam1, strategy=strategy)
            adam1.minimize([cost], [scope])

            strategy["embedding"]["embed_sparse_optimizer"] = "adagrad"
            adam2 = fluid.optimizer.Adam(learning_rate=0.000005)
            adam2 = fleet.distributed_optimizer(adam2, strategy=strategy)
            adam2.minimize([cost], [scope])

            strategy["embedding"]["embed_sparse_optimizer"] = "adam"
            adam3 = fluid.optimizer.Adam(learning_rate=0.000005)
            adam3 = fleet.distributed_optimizer(adam3, strategy=strategy)
            adam3.minimize([cost], [scope])
        except:
            print("do not support pslib test, skip")
            return


if __name__ == "__main__":
    unittest.main()