conv_op.cc 19.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16 17 18 19

#include <string>
#include <vector>

20 21 22 23 24 25
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
C
chengduoZH 已提交
26 27 28 29

namespace paddle {
namespace operators {

C
chengduoZH 已提交
30
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
31
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
32
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
33
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
34
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
35
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
36
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
37 38 39

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
40

C
chengduoZH 已提交
41 42 43
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
44
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
45

C
chengduoZH 已提交
46 47
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "Conv intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
48 49 50 51 52 53 54 55 56
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
F
fengjiayi 已提交
57

Y
Yang Yu 已提交
58
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups,
C
chengduoZH 已提交
59
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
60
                    "channels * groups.");
C
chengduoZH 已提交
61
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
62
      filter_dims[0] % groups, 0,
C
chengduoZH 已提交
63 64 65
      "The number of output channels should be divided by groups.");

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
C
chengduoZH 已提交
66
  for (size_t i = 0; i < strides.size(); ++i) {
Y
Yang Yang 已提交
67 68 69
    output_shape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2],
                                          dilations[i], paddings[i],
                                          strides[i]));
C
chengduoZH 已提交
70
  }
71
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
72
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
73 74
}

75 76
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
77
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
78
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
79
  std::string data_format = ctx.Attr<std::string>("data_format");
M
mozga-intel 已提交
80 81
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
82
#ifdef PADDLE_WITH_CUDA
83
  if (platform::CanCUDNNBeUsed(ctx)) {
84
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
85 86
  }
#endif
87
#ifdef PADDLE_WITH_MKLDNN
88
  if (library == framework::LibraryType::kPlain &&
89
      platform::CanMKLDNNBeUsed(ctx)) {
90
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
91
    layout = framework::DataLayout::kMKLDNN;
92
  }
93
#endif
94

K
Kexin Zhao 已提交
95 96
  auto input_data_type =
      framework::ToDataType(ctx.Input<Tensor>("Input")->type());
X
xiaolil1 已提交
97 98 99 100
  //auto filter_data_type =
  //    framework::ToDataType(ctx.Input<Tensor>("Filter")->type());
  //PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
  //                  "input and filter data type should be consistent");
K
Kexin Zhao 已提交
101 102

  if (input_data_type == framework::proto::VarType::FP16) {
103
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
K
Kexin Zhao 已提交
104 105 106
                      "float16 can only be used when CUDNN is used");
  }

107 108
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                 library);
109 110
}

Y
Yu Yang 已提交
111
void Conv2DOpMaker::Make() {
112 113 114 115
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
116 117
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
118 119 120 121
      "(Tensor) The input tensor of convolution operator. "
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
122
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
123
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
124 125
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
126 127
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
128
           "input image channels divided by the groups.");
129 130 131 132 133
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
X
xiaoli.liu@intel.com 已提交
134 135 136 137 138 139 140 141
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
            "The format of output tensor is also NCHW.");

  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
142
      .AsDispensable();
C
chengduoZH 已提交
143
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
144
            "(Tensor) The output tensor of convolution operator. "
145
            "The format of output tensor is also NCHW.");
146

Z
Zhang, Guoming 已提交
147 148 149 150 151
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
      .AsDispensable();
C
chengduoZH 已提交
152 153 154 155
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
156
      .SetDefault({1, 1});
C
chengduoZH 已提交
157 158 159 160
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
                            "paddings(h_pad, w_pad) of "
                            "convolution operator.")
C
chengduoZH 已提交
161 162 163
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
164
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
165 166 167 168
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
169
      .SetDefault(1);
C
chengduoZH 已提交
170
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
171 172
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
173
                            "convolution operator.")
C
chengduoZH 已提交
174
      .SetDefault({1, 1});
175 176 177 178
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
179 180 181
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
M
Michal Gallus 已提交
182 183
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
Z
Zhang, Guoming 已提交
184
  AddAttr<bool>("fuse_residual_connection",
185
                "(bool, default false) Only used in mkldnn kernel. Used "
Z
Zhang, Guoming 已提交
186 187
                "whenever convolution output is as an input to residual "
                "connection.")
188
      .SetDefault(false);
X
xiaoli.liu@intel.com 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
  AddAttr<float>("Scale_in",
           "Scale_in to be used for int8 input data."
           "Only used with INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_out",
           "Scale_out to be used for int8 output data."
           "Only used with MKL-DNN.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_in_eltwise",
           "Scale_in_eltwise to be used for int8 eltwise input data."
           "Only used with MKL-DNN.")
      .SetDefault(1.0f);
  AddAttr<std::vector<float>>("Scale_weights",
           "Scale_weights to be used for int8 weights data."
           "Only used with MKL-DNN.")
      .SetDefault({1.0f});
H
Haihao Shen 已提交
205
  AddAttr<bool>("force_fp32_output", "(bool, default false) Force INT8 kernel output FP32, only used in mkldnn kernel")
H
Haihao Shen 已提交
206
      .SetDefault(false);
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
223 224 225 226 227
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
                "convolution, whether enable exhaustive search ",
                "for cuDNN convolution or not, defalut is False.")
      .SetDefault(false);
C
chengduoZH 已提交
228
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
229 230
Convolution Operator.

C
chengduoZH 已提交
231
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
232
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
233
parameters is checked in the infer-shape.
C
chengduoZH 已提交
234
Input(Input) and Output(Output) are in NCHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
235
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
236 237 238 239 240 241
the width of the feature.
Filters(Input) is MCHW format. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
242 243 244 245
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
246 247
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
248
  Output:
C
chengduoZH 已提交
249 250 251 252 253 254
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
       H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
C
chengduoZH 已提交
255
)DOC");
Q
qingqing01 已提交
256
  Apply();
C
chengduoZH 已提交
257 258
}

Y
Yu Yang 已提交
259
void Conv3DOpMaker::Make() {
C
chengduoZH 已提交
260 261
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
262
      "(Tensor) The input tensor of convolution operator. "
C
chengduoZH 已提交
263
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
C
fix doc  
chengduoZH 已提交
264 265 266
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
267
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
268
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
269 270
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
271 272 273
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
274 275
           "input image channels divided by the groups.");
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
276
            "(Tensor) The output tensor of convolution operator."
277
            "The format of output tensor is also NCDHW.");
C
chengduoZH 已提交
278 279 280 281
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
282
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
283 284 285 286
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int>, default:{0, 0, 0}), the "
                            "paddings(d_pad, h_pad, w_pad) of convolution "
                            "operator.")
C
chengduoZH 已提交
287 288 289
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
290
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
291 292 293 294
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
295
      .SetDefault(1);
C
chengduoZH 已提交
296
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
297 298
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
299
                            "convolution operator.")
C
chengduoZH 已提交
300
      .SetDefault({1, 1, 1});
301 302 303 304
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
305 306 307
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
308 309 310 311 312 313 314
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
315 316 317
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
      .SetDefault(false);
318 319 320 321 322 323 324 325
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
326 327 328 329 330
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
                "convolution, whether enable exhaustive search ",
                "for cuDNN convolution or not, defalut is False.")
      .SetDefault(false);
C
chengduoZH 已提交
331
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
332 333
Convolution3D Operator.

C
chengduoZH 已提交
334
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
335
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
336
parameters is checked in the infer-shape.
C
chengduoZH 已提交
337
Input(Input) and output(Output) are in NCDHW format, where N is batch
C
fix doc  
chengduoZH 已提交
338
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
339 340 341 342 343 344
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
345 346 347 348
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
349 350
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
351
  Output:
C
chengduoZH 已提交
352 353 354 355 356 357 358
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
       D_{out}= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
  $$
C
chengduoZH 已提交
359
)DOC");
Q
qingqing01 已提交
360
  Apply();
C
chengduoZH 已提交
361 362
}

C
chengduoZH 已提交
363 364 365 366 367 368 369 370 371 372 373
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

374 375
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
376
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
377 378 379 380
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
381
#ifdef PADDLE_WITH_CUDA
382 383
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
384 385
  }
#endif
386 387 388 389
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
390
    layout_ = framework::DataLayout::kMKLDNN;
391
  }
392
#endif
393 394 395 396 397 398

  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
      layout_, library_);
}

C
chengduoZH 已提交
399 400 401 402
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
403
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
C
chengduo 已提交
404
                  ops::ConvOpInferVarType,
405 406
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad);
407 408

// depthwise convolution op
Y
Yang Yang 已提交
409
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
410 411
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
C
chengduo 已提交
412

Y
Yang Yang 已提交
413
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
C
chengduo 已提交
414
                  ops::ConvOpInferVarType,
415 416
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad);
C
chengduoZH 已提交
417

418 419
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
420
REGISTER_OP_CPU_KERNEL(
421
    depthwise_conv2d,
X
xzl 已提交
422 423 424 425
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
426
    depthwise_conv2d_grad,
X
xzl 已提交
427 428
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
429

C
chengduoZH 已提交
430
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
431 432 433 434 435 436
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
437 438

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
439 440 441 442 443 444
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);