data_transfer.cc 25.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/new_executor/data_transfer.h"
16

17
#include "paddle/fluid/framework/convert_utils.h"
18 19
#include "paddle/phi/core/kernel_context.h"
#include "paddle/phi/core/kernel_factory.h"
20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace framework {
namespace interpreter {

bool DataTranferHelper::apply(const OpKernelType& kernel_type_for_var,
                              const OpKernelType& expected_kernel_key,
                              const std::string& var_name,
                              std::string* new_var_name,
                              std::vector<OpFuncNode>* op_func_nodes,
30 31
                              bool use_local_scope,
                              bool is_fetch_v2) {
32 33 34 35 36
  bool is_transferred = false;
  auto* src_var_name = &var_name;

  // 1. layout transform
  if (need_layout_transform(kernel_type_for_var, expected_kernel_key)) {
37 38 39 40 41
    auto op = TransferLayout(*src_var_name,
                             new_var_name,
                             kernel_type_for_var.data_layout_,
                             expected_kernel_key.data_layout_,
                             var_scope_,
42
                             scope_,
43
                             is_fetch_v2);
L
Leo Chen 已提交
44
    if (op) {
45 46
      RunAndConstructOpFuncNode(
          op, *src_var_name, *new_var_name, op_func_nodes);
L
Leo Chen 已提交
47
    }
48 49 50 51 52 53
    // update src_var_name
    src_var_name = new_var_name;
    is_transferred = true;
  }
  // 2. dype transform
  if (need_dtype_transform(kernel_type_for_var, expected_kernel_key)) {
54 55 56 57 58
    auto op = TransferDtype(*src_var_name,
                            new_var_name,
                            kernel_type_for_var.data_type_,
                            expected_kernel_key.data_type_,
                            var_scope_,
59
                            scope_);
L
Leo Chen 已提交
60
    if (op) {
61 62
      RunAndConstructOpFuncNode(
          op, *src_var_name, *new_var_name, op_func_nodes);
L
Leo Chen 已提交
63
    }
64 65 66 67 68 69 70 71
    // update src_var_name
    src_var_name = new_var_name;
    is_transferred = true;
  }
  // 3. device transform
  if (need_device_transform(kernel_type_for_var, expected_kernel_key)) {
    auto src_place = kernel_type_for_var.place_;
    auto dst_place = expected_kernel_key.place_;
L
Leo Chen 已提交
72

73 74
    auto op = TransferDevice(
        *src_var_name, new_var_name, src_place, dst_place, var_scope_, scope_);
L
Leo Chen 已提交
75
    if (op) {
76 77
      RunAndConstructOpFuncNode(
          op, *src_var_name, *new_var_name, op_func_nodes);
L
Leo Chen 已提交
78
    }
79 80 81 82 83
    is_transferred = true;
  }
  return is_transferred;
}

84
void DataTranferHelper::RunAndConstructShareNode(
85 86
    const std::string& src_var_name,
    const std::string& dst_var_name,
87 88 89 90 91 92 93 94 95 96
    std::vector<OpFuncNode>* op_func_nodes) {
  VariableNameMap in_name_map = {{"X", {src_var_name}}};
  VariableNameMap out_name_map = {{"Out", {dst_var_name}}};
  AttributeMap attr_map;

  std::string op_type("share_data");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

97 98
  VLOG(3) << string::Sprintf(
      "Insert %s with %s -> %s.", op_type, src_var_name, dst_var_name);
99 100 101 102

  RunAndConstructOpFuncNode(op, src_var_name, dst_var_name, op_func_nodes);
}

103
void DataTranferHelper::RunAndConstructOpFuncNode(
104 105
    const std::shared_ptr<OperatorBase>& op,
    const std::string& var_name,
106 107 108 109 110 111
    const std::string& new_var_name,
    std::vector<OpFuncNode>* new_op_func_nodes) {
  auto& op_type = op->Type();

  // 1. Construct RuntimeContext
  RuntimeContext runtime_context({}, {});
112 113
  runtime_context.inputs["X"] = {scope_->FindVar(var_name)};
  runtime_context.outputs["Out"] = {scope_->Var(new_var_name)};
114
  InterpretercoreInferShapeContext infer_shape_ctx(*op, runtime_context);
115
  op.get()->Info().infer_shape_(&infer_shape_ctx);
116 117 118 119 120 121 122 123 124 125 126

  // 2. choose kernel

  // prepare a ptr to OperatorWithKernel
  OperatorBase* op_ptr = op.get();
  if (dynamic_cast<framework::OperatorWithKernel*>(op_ptr) == nullptr) {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "%s should be OperatorWithKernel type.", op_ptr->Type()));
  }
  auto op_with_kernel = static_cast<framework::OperatorWithKernel*>(op_ptr);

127 128
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place_);
129 130 131 132 133 134 135 136 137
  auto exec_ctx = ExecutionContext(*op, Scope(), *dev_ctx, runtime_context);
  auto expected_kernel_key = op_with_kernel->GetExpectedKernelType(exec_ctx);

  VLOG(6) << "expected_kernel_key " << expected_kernel_key << "\n";
  VLOG(6) << "op_with_kernel Type() " << op_with_kernel->Type() << "\n";

  bool run_phi_kernel = false;

  // check if phi kernel exists
138 139
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
          op_with_kernel->Type())) {
140 141 142
    auto phi_kernel_key = op_with_kernel->ChoosePhiKernel(exec_ctx);
    VLOG(6) << "phi_kernel_key " << phi_kernel_key << "\n";

143 144 145
    if (op_with_kernel->PhiKernel()->IsValid()) {
      run_phi_kernel = true;
    }
146
  }
147 148 149 150 151

  // 3. Execute transfer op and construct OpFuncNode
  OpFuncNode new_op_func_node;
  new_op_func_node.input_index["X"] = {var_scope_->VarId(var_name)};
  new_op_func_node.output_index["Out"] = {var_scope_->VarId(new_var_name)};
152 153 154 155 156 157 158 159 160 161 162 163 164

  if (!run_phi_kernel) {
    op_with_kernel->ChooseKernel(exec_ctx);
    new_op_func_node.kernel_func_ = *op_with_kernel->kernel_func();
    new_op_func_node.kernel_func_(exec_ctx);
  } else {
    new_op_func_node.phi_kernel_ = op_with_kernel->PhiKernel();
    phi::KernelContext phi_kernel_context;
    op_with_kernel->BuildPhiKernelContext(
        runtime_context, dev_ctx, &phi_kernel_context);
    (*new_op_func_node.phi_kernel_)(&phi_kernel_context);
  }

165 166 167 168 169 170 171
  // NOTE(winter-wang): in npu device, D2H kernel is asynchronous. need to
  // explicit synchronization.
#ifdef PADDLE_WITH_ASCEND_CL
  if (op_type == kMemcpyD2H) {
    dev_ctx->Wait();
  }
#endif
172 173 174 175 176 177 178 179 180 181
  // NOTE(Aurelius84): data_transform_op is expensive operation, so we tag them
  // as kQueueSync and execute them in thread pool.
  new_op_func_node.type_ = OpFuncType::kQueueSync;
  new_op_func_node.dev_ctx_ = dev_ctx;
  new_op_func_node.operator_base_ = op;
  VLOG(3) << "Run " << op_type << " done.";

  new_op_func_nodes->emplace_back(std::move(new_op_func_node));
}

L
Leo Chen 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194
// Var is initialized && var contains tensor && tensor is initialized
bool IsTensorOfVarInitialized(Variable* var) {
  if (var->IsInitialized()) {
    if (var->IsType<LoDTensor>() || var->IsType<phi::SelectedRows>()) {
      return GetLoDTensorOrSelectedRowsValueFromVar(*var)->IsInitialized();
    } else if (var->IsType<LoDTensorArray>()) {
      return static_cast<const Tensor*>(&(var->Get<LoDTensorArray>()[0]))
          ->IsInitialized();
    }
  }
  return false;
}

195 196 197 198 199 200 201
std::shared_ptr<OperatorBase> TransferLayout(const std::string& var_name,
                                             std::string* new_var_name,
                                             DataLayout in_layout,
                                             DataLayout out_layout,
                                             VariableScope* var_scope,
                                             framework::Scope* local_scope,
                                             bool is_fetch_v2) {
L
Leo Chen 已提交
202 203 204 205 206 207 208 209
#ifdef PADDLE_WITH_MKLDNN
  // NOTE(zhiqiu): hot fix, follow the same logic in DataCopy() in fetch_op.cc
  if (in_layout == framework::DataLayout::kMKLDNN &&
      var_name == framework::GradVarName("Filter") && is_fetch_v2) {
    out_layout = framework::DataLayout::kNCHW;
  }
#endif

210
  // 1. Generate new_var_name and Initialize it
L
Leo Chen 已提交
211 212 213 214 215
  *new_var_name = var_name + "_layout_" +
                  std::to_string(static_cast<int>(in_layout)) + "_" +
                  std::to_string(static_cast<int>(out_layout));

  if (var_scope->HasVar(*new_var_name) &&
216
      IsTensorOfVarInitialized(local_scope->FindVar(*new_var_name))) {
L
Leo Chen 已提交
217 218 219 220
    // already has same var
    VLOG(4) << "Use cached variable: " << *new_var_name;
    return nullptr;
  }
221

L
Leo Chen 已提交
222
  auto* ptr = local_scope->Var(*new_var_name);
223
  auto var_type = local_scope->FindVar(var_name)->Type();
224
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
225 226 227
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
228
  var_scope->AddVar(*new_var_name, nullptr);
229 230 231 232

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};
233 234
  AttributeMap attr_map = {{"src_layout", static_cast<int>(in_layout)},
                           {"dst_layout", static_cast<int>(out_layout)}};
235

236
  // 3. Create transfer_layout_op
237 238 239 240 241
  std::string op_type("transfer_layout");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

242
  VLOG(3) << string::Sprintf("Insert %s for variable %s(%s) -> %s(%s).",
243 244 245 246
                             op_type,
                             var_name,
                             in_layout,
                             *new_var_name,
247
                             out_layout);
248 249 250 251 252 253 254
  return op;
}

std::shared_ptr<OperatorBase> TransferDtype(const std::string& var_name,
                                            std::string* new_var_name,
                                            proto::VarType::Type in_dtype,
                                            proto::VarType::Type out_dtype,
255
                                            framework::VariableScope* var_scope,
256 257
                                            framework::Scope* local_scope) {
  // 1. Generate new_var_name and Initialize it
L
Leo Chen 已提交
258 259 260 261
  *new_var_name = var_name + "_dtype_" +
                  std::to_string(static_cast<int>(in_dtype)) + "_" +
                  std::to_string(static_cast<int>(out_dtype));
  if (var_scope->HasVar(*new_var_name) &&
262
      IsTensorOfVarInitialized(local_scope->FindVar(*new_var_name))) {
L
Leo Chen 已提交
263 264 265 266
    // already has same var
    VLOG(4) << "Use cached variable: " << *new_var_name;
    return nullptr;
  }
267

L
Leo Chen 已提交
268
  auto* ptr = local_scope->Var(*new_var_name);
269
  auto var_type = local_scope->FindVar(var_name)->Type();
270
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
271

272 273 274
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
275
  var_scope->AddVar(*new_var_name, nullptr);
276 277 278 279 280 281 282 283 284 285

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};
  AttributeMap attr_map;
  attr_map["in_dtype"] = static_cast<int>(in_dtype);
  attr_map["out_dtype"] = static_cast<int>(out_dtype);
  // NOTE(Aurelius84): In whice case use_mkldnn = true?
  attr_map["use_mkldnn"] = false;

286
  // 3. Create transfer_dtype_op
287 288 289 290 291
  std::string op_type("transfer_dtype");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

292 293 294 295 296 297
  VLOG(3) << string::Sprintf("Insert %s with %s(%s) -> %s(%s).",
                             op_type,
                             var_name,
                             DataTypeToString(in_dtype),
                             *new_var_name,
                             DataTypeToString(out_dtype));
298 299 300 301 302 303 304 305 306 307
  return op;
}

std::shared_ptr<OperatorBase> TransferDevice(const std::string& var_name,
                                             std::string* new_var_name,
                                             const platform::Place& src_place,
                                             const platform::Place& dst_place,
                                             VariableScope* var_scope,
                                             framework::Scope* local_scope) {
  // 1. Generate new_var_name and Initialize it
L
Leo Chen 已提交
308 309 310
  *new_var_name = var_name + "_device_" + src_place.DebugString() + "_" +
                  dst_place.DebugString();

311 312
  if (local_scope->FindVar(*new_var_name) &&
      IsTensorOfVarInitialized(local_scope->FindVar(*new_var_name))) {
L
Leo Chen 已提交
313 314 315 316
    // already has same var
    VLOG(4) << "Use cached variable: " << *new_var_name;
    return nullptr;
  }
317

L
Leo Chen 已提交
318
  auto* ptr = local_scope->Var(*new_var_name);
319
  auto var_type = local_scope->FindVar(var_name)->Type();
320
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
321 322 323
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
324
  var_scope->AddVar(*new_var_name, nullptr);
325 326 327 328 329

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};

330
  // 3. Create memcpy_d2h_op or memcpy_h2d_op
331 332
  std::string op_type;
  AttributeMap attr_map;
333 334
  PADDLE_ENFORCE_EQ(platform::is_same_place(src_place, dst_place),
                    false,
335 336 337 338 339 340 341 342
                    platform::errors::PreconditionNotMet(
                        "Required src_place shall be different with dst_place, "
                        "but received same place: %s",
                        src_place));
  if (IsSupportedHetePlace(dst_place)) {
    op_type = kMemcpyH2D;
    int dst_place_type = platform::is_gpu_place(dst_place)   ? 0
                         : platform::is_npu_place(dst_place) ? 1
343
                         : platform::is_ipu_place(dst_place) ? 3
344 345 346 347 348 349 350 351 352 353 354 355 356 357
                         : platform::is_xpu_place(dst_place) ? 2
                                                             : -1;
    attr_map = {{"dst_place_type", dst_place_type}};
  } else if (IsSupportedHetePlace(src_place)) {
    op_type = kMemcpyD2H;
    int dst_place_type = platform::is_cpu_place(dst_place)           ? 0
                         : platform::is_cuda_pinned_place(dst_place) ? 1
                                                                     : -1;
    attr_map = {{"dst_place_type", dst_place_type}};
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Not support Memcpy typ : %s -> %s", src_place, dst_place));
  }

358 359 360 361
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

362 363 364 365 366 367
  VLOG(3) << string::Sprintf("Insert %s with %s(%s) -> %s(%s).",
                             op_type,
                             var_name,
                             src_place,
                             *new_var_name,
                             dst_place);
368 369 370 371 372 373
  return op;
}

void ApplyDataTransform(const OpKernelType& expected_kernel_key,
                        const platform::Place& place,
                        VariableValueMap* ins_map_temp,
374
                        VariableValueMap* outs_map_temp,
375 376
                        VariableScope* var_scope,
                        OpFuncNode* op_func_node,
377 378
                        std::vector<OpFuncNode>* new_op_func_nodes,
                        bool use_local_scope) {
379 380 381
  Scope* local_scope = use_local_scope ? var_scope->GetMutableLocalScope()
                                       : var_scope->GetMutableScope();

382
  auto op_base = op_func_node->operator_base_.get();
383 384 385 386
  PADDLE_ENFORCE_NOT_NULL(op_base,
                          platform::errors::PreconditionNotMet(
                              "op_base is null, please pass a valid "
                              "op_base in apply_data_transform."));
387 388

  VariableNameMap new_ins(op_base->Inputs());
389
  VariableNameMap new_outs(op_base->Outputs());
390 391 392
  // record the no need transform variable index.
  std::unordered_set<int> no_data_transform_index;

L
Leo Chen 已提交
393 394 395
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
  auto& no_buffer_inferer = op_base->Info().NoNeedBufferVarsInferer();
  if (no_buffer_inferer) {
396 397
    no_buffer_ins = &(no_buffer_inferer(
        op_base->Inputs(), op_base->Outputs(), op_base->Attrs()));
L
Leo Chen 已提交
398 399 400 401 402
    if (no_buffer_ins->empty()) {
      no_buffer_ins = nullptr;
    }
  }

403
  bool transfered = false;
404
  DataTranferHelper data_transfer_helper(place, var_scope, local_scope);
405
  for (auto& var_name_item : *ins_map_temp) {
L
Leo Chen 已提交
406 407 408
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

409 410
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto var = var_name_item.second[i];
411
      auto var_name = new_ins[var_name_item.first].at(i);
412
      const Tensor* tensor_in;
L
Leo Chen 已提交
413 414 415
      std::string new_var_name;
      bool is_transferred = false;

416
      if (var->IsType<LoDTensor>() || var->IsType<phi::SelectedRows>()) {
417 418
        tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      } else if (var->IsType<LoDTensorArray>()) {
419 420 421
        if (var->Get<LoDTensorArray>().size() == 0) {
          continue;
        }
422 423 424
        tensor_in =
            static_cast<const Tensor*>(&(var->Get<LoDTensorArray>()[0]));
      } else {
425
        continue;
426
      }
L
Leo Chen 已提交
427
      // special case
428
      if (!tensor_in->IsInitialized()) {
L
Leo Chen 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
        if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
          // Var without buffer may be needed
          // for some situation like InferShape().
          // In this situation We cannot skip Var analysis, as
          // MKL-DNN shape of Var may differ from kNHWC Var
          // In such situation corressponding resized Var
          // has to be created and registered
          if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
              (var->IsType<LoDTensor>() == true) &&
              (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
              (paddle::platform::MKLDNNDeviceContext::tls()
                   .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
            VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                       "but kNHWC layout"
                    << var_name_item.first << " in Operator "
                    << op_base->Type();
446 447 448 449 450 451 452
            auto op = TransferLayout(var_name,
                                     &new_var_name,
                                     tensor_in->layout(),
                                     DataLayout::kNHWC,
                                     var_scope,
                                     local_scope,
                                     op_base->Type() == "fetch_v2");
L
Leo Chen 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
            if (op) {
              data_transfer_helper.RunAndConstructOpFuncNode(
                  op, var_name, new_var_name, new_op_func_nodes);
            }
            is_transferred = true;
          } else {
            VLOG(7) << "Skip scanning input " << var_name_item.first
                    << " in Operator " << op_base->Type();
          }
#endif
        } else {
          continue;
        }
      } else {
        auto kernel_type_for_var =
            static_cast<const framework::OperatorWithKernel*>(op_base)
469 470
                ->GetKernelTypeForVar(
                    var_name_item.first, *tensor_in, expected_kernel_key);
L
Leo Chen 已提交
471
        // apply data transform
472 473 474 475 476 477 478 479
        is_transferred =
            data_transfer_helper.apply(kernel_type_for_var,
                                       expected_kernel_key,
                                       var_name,
                                       &new_var_name,
                                       new_op_func_nodes,
                                       use_local_scope,
                                       op_base->Type() == "fetch_v2");
480 481 482
      }

      if (is_transferred) {
483
        transfered = true;
484 485 486
        // update RuntimeContext.inputs and original op_func_node inputs
        op_func_node->input_index[var_name_item.first][i] =
            var_scope->VarId(new_var_name);
487
        var_name_item.second[i] = local_scope->FindVar(new_var_name);
488
        new_ins[var_name_item.first][i] = new_var_name;
489 490 491 492 493 494 495
        for (auto& pair : new_outs) {
          for (size_t j = 0; j < pair.second.size(); ++j) {
            VLOG(4) << pair.second[j] << " " << var_name;
            if (pair.second[j] == var_name) {
              VLOG(4) << "Found inplace between input(" << var_name_item.first
                      << ") and output(" << pair.first
                      << "), the variable name is " << var_name;
496 497
              (*outs_map_temp)[pair.first][j] =
                  local_scope->FindVar(new_var_name);
498 499 500 501 502 503 504 505 506
              new_outs[pair.first][j] = new_var_name;
              op_func_node
                  ->inplace_back_map[var_scope->GetIdByName(new_var_name)] =
                  var_scope->GetIdByName(var_name);
              op_func_node->output_index[pair.first][j] =
                  var_scope->VarId(new_var_name);
            }
          }
        }
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
        // NOTE(Aurelius84): avoid deepcopy twice if we already insert data
        // transfer op.
        if (op_base->Type() == "fetch_v2") {
          op_base->SetAttr("deepcopy", false);
        }
      } else {
        // record no need data transformer input var_id
        VLOG(3) << op_base->Type()
                << " found no data_transform var: " << var_name
                << " with id: " << var_scope->VarId(var_name);
        no_data_transform_index.emplace(var_scope->VarId(var_name));
      }
    }
  }

522 523
  if (transfered) {
    // NOTE(zhiqiu): UPDATE the corresponding OeratorBase to make it consistent
524 525 526
    // with instruction.
    op_base->Inputs() = new_ins;
    op_base->Outputs() = new_outs;
527
  }
528 529 530
  op_func_node->no_data_transform_index = std::move(no_data_transform_index);
}

531 532 533 534 535 536 537
void HandleComplexGradToRealGrad(const OpFuncNode& op_func_node,
                                 const platform::Place& place,
                                 const VariableNameMap& out_names,
                                 VariableValueMap* out_vars,
                                 VariableScope* var_scope,
                                 std::vector<OpFuncNode>* op_func_nodes,
                                 framework::Scope* local_scope) {
538
  DataTranferHelper data_transfer_helper(place, var_scope, local_scope);
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
  for (auto& var_name_item : out_names) {
    std::vector<Variable*>& vars = out_vars->at(var_name_item.first);
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = framework::GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        VLOG(3) << "skip " << var_name << " with same name as "
                << orig_var_name;
        continue;
      }
      auto* grad_var = vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        VLOG(3) << "skip grad_var with nullptr";
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!framework::VarIsTensor(*grad_var)) {
        VLOG(3) << "skip grad_var with LoDTensorArray type";
        continue;
      }
      auto* grad_tensor =
          framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        VLOG(3) << "skip with grad_tensor not IsInitialized";
        continue;
      }
      // only focus on complex dtype now
571
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
572 573 574 575 576 577
      if (!framework::IsComplexType(src_type)) {
        VLOG(3) << "skip grad_tensor with not complexType";
        continue;
      }

      // 2. find forward var & check whether need to cast
578
      auto* var = local_scope->FindVar(orig_var_name);
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
      // if forward var not exists, do nothing
      if (var == nullptr) {
        VLOG(3) << "skip " << orig_var_name << " with not found in var_scope";
        continue;
      }
      if (!framework::VarIsTensor(*var)) {
        VLOG(3) << "skip " << orig_var_name << " with LoDTensorArray.";
        continue;
      }
      const auto* tensor =
          framework::GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
595
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
596 597 598 599 600 601 602 603 604 605 606 607 608 609
      // only focus on real dtype and need casting
      if (framework::IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad inplacely
      VLOG(3) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";

      // NOTE(Aurelius84): Consider to define a complex2real op to deal this
      // case.
      std::string new_var_name;
610 611 612 613 614 615
      auto op = TransferDtype(
          var_name, &new_var_name, src_type, dst_type, var_scope, local_scope);
      data_transfer_helper.RunAndConstructOpFuncNode(
          op, var_name, new_var_name, op_func_nodes);
      data_transfer_helper.RunAndConstructShareNode(
          new_var_name, var_name, op_func_nodes);
616 617 618 619
    }
  }
}

620 621 622
}  // namespace interpreter
}  // namespace framework
}  // namespace paddle