data_transfer.cc 24.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/new_executor/data_transfer.h"
16

17
#include "paddle/fluid/framework/convert_utils.h"
18 19 20 21 22 23 24 25 26 27

namespace paddle {
namespace framework {
namespace interpreter {

bool DataTranferHelper::apply(const OpKernelType& kernel_type_for_var,
                              const OpKernelType& expected_kernel_key,
                              const std::string& var_name,
                              std::string* new_var_name,
                              std::vector<OpFuncNode>* op_func_nodes,
28 29
                              bool use_local_scope,
                              bool is_fetch_v2) {
30 31 32 33 34
  bool is_transferred = false;
  auto* src_var_name = &var_name;

  // 1. layout transform
  if (need_layout_transform(kernel_type_for_var, expected_kernel_key)) {
35 36 37 38 39
    auto op = TransferLayout(*src_var_name,
                             new_var_name,
                             kernel_type_for_var.data_layout_,
                             expected_kernel_key.data_layout_,
                             var_scope_,
40
                             scope_,
41
                             is_fetch_v2);
L
Leo Chen 已提交
42
    if (op) {
43 44
      RunAndConstructOpFuncNode(
          op, *src_var_name, *new_var_name, op_func_nodes);
L
Leo Chen 已提交
45
    }
46 47 48 49 50 51
    // update src_var_name
    src_var_name = new_var_name;
    is_transferred = true;
  }
  // 2. dype transform
  if (need_dtype_transform(kernel_type_for_var, expected_kernel_key)) {
52 53 54 55 56
    auto op = TransferDtype(*src_var_name,
                            new_var_name,
                            kernel_type_for_var.data_type_,
                            expected_kernel_key.data_type_,
                            var_scope_,
57
                            scope_);
L
Leo Chen 已提交
58
    if (op) {
59 60
      RunAndConstructOpFuncNode(
          op, *src_var_name, *new_var_name, op_func_nodes);
L
Leo Chen 已提交
61
    }
62 63 64 65 66 67 68 69
    // update src_var_name
    src_var_name = new_var_name;
    is_transferred = true;
  }
  // 3. device transform
  if (need_device_transform(kernel_type_for_var, expected_kernel_key)) {
    auto src_place = kernel_type_for_var.place_;
    auto dst_place = expected_kernel_key.place_;
L
Leo Chen 已提交
70

71 72
    auto op = TransferDevice(
        *src_var_name, new_var_name, src_place, dst_place, var_scope_, scope_);
L
Leo Chen 已提交
73
    if (op) {
74 75
      RunAndConstructOpFuncNode(
          op, *src_var_name, *new_var_name, op_func_nodes);
L
Leo Chen 已提交
76
    }
77 78 79 80 81
    is_transferred = true;
  }
  return is_transferred;
}

82
void DataTranferHelper::RunAndConstructShareNode(
83 84
    const std::string& src_var_name,
    const std::string& dst_var_name,
85 86 87 88 89 90 91 92 93 94
    std::vector<OpFuncNode>* op_func_nodes) {
  VariableNameMap in_name_map = {{"X", {src_var_name}}};
  VariableNameMap out_name_map = {{"Out", {dst_var_name}}};
  AttributeMap attr_map;

  std::string op_type("share_data");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

95 96
  VLOG(3) << string::Sprintf(
      "Insert %s with %s -> %s.", op_type, src_var_name, dst_var_name);
97 98 99 100

  RunAndConstructOpFuncNode(op, src_var_name, dst_var_name, op_func_nodes);
}

101
void DataTranferHelper::RunAndConstructOpFuncNode(
102 103
    const std::shared_ptr<OperatorBase>& op,
    const std::string& var_name,
104 105 106 107 108 109
    const std::string& new_var_name,
    std::vector<OpFuncNode>* new_op_func_nodes) {
  auto& op_type = op->Type();

  // 1. Construct RuntimeContext
  RuntimeContext runtime_context({}, {});
110 111
  runtime_context.inputs["X"] = {scope_->FindVar(var_name)};
  runtime_context.outputs["Out"] = {scope_->Var(new_var_name)};
112 113 114 115
  InterpretercoreInferShapeContext infer_shape_ctx(*op, runtime_context);

  // 2. Execute infer shape and choose kernel
  auto& all_op_kernels = OperatorWithKernel::AllOpKernels();
116
  op.get()->Info().infer_shape_(&infer_shape_ctx);
117
  auto kernels_iter = all_op_kernels.find(op_type);
118 119
  PADDLE_ENFORCE_NE(kernels_iter,
                    all_op_kernels.end(),
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
                    platform::errors::Unavailable(
                        "There are no kernels which are registered in "
                        "the %s operator.",
                        op_type));
  OpKernelMap& kernels = kernels_iter->second;
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place_);
  Scope scope;
  auto exec_ctx = ExecutionContext(*op, scope, *dev_ctx, runtime_context);
  auto expected_kernel_key =
      dynamic_cast<const framework::OperatorWithKernel*>(op.get())
          ->GetExpectedKernelType(exec_ctx);
  auto kernel_iter = kernels.find(expected_kernel_key);

  // 3. Execute transfer op and construct OpFuncNode
  OpFuncNode new_op_func_node;
  new_op_func_node.input_index["X"] = {var_scope_->VarId(var_name)};
  new_op_func_node.output_index["Out"] = {var_scope_->VarId(new_var_name)};
  new_op_func_node.kernel_func_ = OpKernelComputeFunc(kernel_iter->second);
  new_op_func_node.kernel_func_(exec_ctx);
140 141 142 143 144 145 146
  // NOTE(winter-wang): in npu device, D2H kernel is asynchronous. need to
  // explicit synchronization.
#ifdef PADDLE_WITH_ASCEND_CL
  if (op_type == kMemcpyD2H) {
    dev_ctx->Wait();
  }
#endif
147 148 149 150 151 152 153 154 155 156
  // NOTE(Aurelius84): data_transform_op is expensive operation, so we tag them
  // as kQueueSync and execute them in thread pool.
  new_op_func_node.type_ = OpFuncType::kQueueSync;
  new_op_func_node.dev_ctx_ = dev_ctx;
  new_op_func_node.operator_base_ = op;
  VLOG(3) << "Run " << op_type << " done.";

  new_op_func_nodes->emplace_back(std::move(new_op_func_node));
}

L
Leo Chen 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169
// Var is initialized && var contains tensor && tensor is initialized
bool IsTensorOfVarInitialized(Variable* var) {
  if (var->IsInitialized()) {
    if (var->IsType<LoDTensor>() || var->IsType<phi::SelectedRows>()) {
      return GetLoDTensorOrSelectedRowsValueFromVar(*var)->IsInitialized();
    } else if (var->IsType<LoDTensorArray>()) {
      return static_cast<const Tensor*>(&(var->Get<LoDTensorArray>()[0]))
          ->IsInitialized();
    }
  }
  return false;
}

170 171 172 173 174 175 176
std::shared_ptr<OperatorBase> TransferLayout(const std::string& var_name,
                                             std::string* new_var_name,
                                             DataLayout in_layout,
                                             DataLayout out_layout,
                                             VariableScope* var_scope,
                                             framework::Scope* local_scope,
                                             bool is_fetch_v2) {
L
Leo Chen 已提交
177 178 179 180 181 182 183 184
#ifdef PADDLE_WITH_MKLDNN
  // NOTE(zhiqiu): hot fix, follow the same logic in DataCopy() in fetch_op.cc
  if (in_layout == framework::DataLayout::kMKLDNN &&
      var_name == framework::GradVarName("Filter") && is_fetch_v2) {
    out_layout = framework::DataLayout::kNCHW;
  }
#endif

185
  // 1. Generate new_var_name and Initialize it
L
Leo Chen 已提交
186 187 188 189 190
  *new_var_name = var_name + "_layout_" +
                  std::to_string(static_cast<int>(in_layout)) + "_" +
                  std::to_string(static_cast<int>(out_layout));

  if (var_scope->HasVar(*new_var_name) &&
191
      IsTensorOfVarInitialized(local_scope->FindVar(*new_var_name))) {
L
Leo Chen 已提交
192 193 194 195
    // already has same var
    VLOG(4) << "Use cached variable: " << *new_var_name;
    return nullptr;
  }
196

L
Leo Chen 已提交
197
  auto* ptr = local_scope->Var(*new_var_name);
198
  auto var_type = local_scope->FindVar(var_name)->Type();
199
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
200 201 202
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
203
  var_scope->AddVar(*new_var_name, nullptr);
204 205 206 207

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};
208 209
  AttributeMap attr_map = {{"src_layout", static_cast<int>(in_layout)},
                           {"dst_layout", static_cast<int>(out_layout)}};
210

211
  // 3. Create transfer_layout_op
212 213 214 215 216
  std::string op_type("transfer_layout");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

217
  VLOG(3) << string::Sprintf("Insert %s for variable %s(%s) -> %s(%s).",
218 219 220 221
                             op_type,
                             var_name,
                             in_layout,
                             *new_var_name,
222
                             out_layout);
223 224 225 226 227 228 229
  return op;
}

std::shared_ptr<OperatorBase> TransferDtype(const std::string& var_name,
                                            std::string* new_var_name,
                                            proto::VarType::Type in_dtype,
                                            proto::VarType::Type out_dtype,
230
                                            framework::VariableScope* var_scope,
231 232
                                            framework::Scope* local_scope) {
  // 1. Generate new_var_name and Initialize it
L
Leo Chen 已提交
233 234 235 236
  *new_var_name = var_name + "_dtype_" +
                  std::to_string(static_cast<int>(in_dtype)) + "_" +
                  std::to_string(static_cast<int>(out_dtype));
  if (var_scope->HasVar(*new_var_name) &&
237
      IsTensorOfVarInitialized(local_scope->FindVar(*new_var_name))) {
L
Leo Chen 已提交
238 239 240 241
    // already has same var
    VLOG(4) << "Use cached variable: " << *new_var_name;
    return nullptr;
  }
242

L
Leo Chen 已提交
243
  auto* ptr = local_scope->Var(*new_var_name);
244
  auto var_type = local_scope->FindVar(var_name)->Type();
245
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
246

247 248 249
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
250
  var_scope->AddVar(*new_var_name, nullptr);
251 252 253 254 255 256 257 258 259 260

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};
  AttributeMap attr_map;
  attr_map["in_dtype"] = static_cast<int>(in_dtype);
  attr_map["out_dtype"] = static_cast<int>(out_dtype);
  // NOTE(Aurelius84): In whice case use_mkldnn = true?
  attr_map["use_mkldnn"] = false;

261
  // 3. Create transfer_dtype_op
262 263 264 265 266
  std::string op_type("transfer_dtype");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

267 268 269 270 271 272
  VLOG(3) << string::Sprintf("Insert %s with %s(%s) -> %s(%s).",
                             op_type,
                             var_name,
                             DataTypeToString(in_dtype),
                             *new_var_name,
                             DataTypeToString(out_dtype));
273 274 275 276 277 278 279 280 281 282
  return op;
}

std::shared_ptr<OperatorBase> TransferDevice(const std::string& var_name,
                                             std::string* new_var_name,
                                             const platform::Place& src_place,
                                             const platform::Place& dst_place,
                                             VariableScope* var_scope,
                                             framework::Scope* local_scope) {
  // 1. Generate new_var_name and Initialize it
L
Leo Chen 已提交
283 284 285
  *new_var_name = var_name + "_device_" + src_place.DebugString() + "_" +
                  dst_place.DebugString();

286 287
  if (local_scope->FindVar(*new_var_name) &&
      IsTensorOfVarInitialized(local_scope->FindVar(*new_var_name))) {
L
Leo Chen 已提交
288 289 290 291
    // already has same var
    VLOG(4) << "Use cached variable: " << *new_var_name;
    return nullptr;
  }
292

L
Leo Chen 已提交
293
  auto* ptr = local_scope->Var(*new_var_name);
294
  auto var_type = local_scope->FindVar(var_name)->Type();
295
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
296 297 298
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
299
  var_scope->AddVar(*new_var_name, nullptr);
300 301 302 303 304

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};

305
  // 3. Create memcpy_d2h_op or memcpy_h2d_op
306 307
  std::string op_type;
  AttributeMap attr_map;
308 309
  PADDLE_ENFORCE_EQ(platform::is_same_place(src_place, dst_place),
                    false,
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
                    platform::errors::PreconditionNotMet(
                        "Required src_place shall be different with dst_place, "
                        "but received same place: %s",
                        src_place));
  if (IsSupportedHetePlace(dst_place)) {
    op_type = kMemcpyH2D;
    int dst_place_type = platform::is_gpu_place(dst_place)   ? 0
                         : platform::is_npu_place(dst_place) ? 1
                         : platform::is_xpu_place(dst_place) ? 2
                                                             : -1;
    attr_map = {{"dst_place_type", dst_place_type}};
  } else if (IsSupportedHetePlace(src_place)) {
    op_type = kMemcpyD2H;
    int dst_place_type = platform::is_cpu_place(dst_place)           ? 0
                         : platform::is_cuda_pinned_place(dst_place) ? 1
                                                                     : -1;
    attr_map = {{"dst_place_type", dst_place_type}};
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Not support Memcpy typ : %s -> %s", src_place, dst_place));
  }

332 333 334 335
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

336 337 338 339 340 341
  VLOG(3) << string::Sprintf("Insert %s with %s(%s) -> %s(%s).",
                             op_type,
                             var_name,
                             src_place,
                             *new_var_name,
                             dst_place);
342 343 344 345 346 347
  return op;
}

void ApplyDataTransform(const OpKernelType& expected_kernel_key,
                        const platform::Place& place,
                        VariableValueMap* ins_map_temp,
348
                        VariableValueMap* outs_map_temp,
349 350
                        VariableScope* var_scope,
                        OpFuncNode* op_func_node,
351 352
                        std::vector<OpFuncNode>* new_op_func_nodes,
                        bool use_local_scope) {
353 354 355
  Scope* local_scope = use_local_scope ? var_scope->GetMutableLocalScope()
                                       : var_scope->GetMutableScope();

356
  auto op_base = op_func_node->operator_base_.get();
357 358 359 360
  PADDLE_ENFORCE_NOT_NULL(op_base,
                          platform::errors::PreconditionNotMet(
                              "op_base is null, please pass a valid "
                              "op_base in apply_data_transform."));
361 362

  VariableNameMap new_ins(op_base->Inputs());
363
  VariableNameMap new_outs(op_base->Outputs());
364 365 366
  // record the no need transform variable index.
  std::unordered_set<int> no_data_transform_index;

L
Leo Chen 已提交
367 368 369
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
  auto& no_buffer_inferer = op_base->Info().NoNeedBufferVarsInferer();
  if (no_buffer_inferer) {
370 371
    no_buffer_ins = &(no_buffer_inferer(
        op_base->Inputs(), op_base->Outputs(), op_base->Attrs()));
L
Leo Chen 已提交
372 373 374 375 376
    if (no_buffer_ins->empty()) {
      no_buffer_ins = nullptr;
    }
  }

377
  bool transfered = false;
378
  DataTranferHelper data_transfer_helper(place, var_scope, local_scope);
379
  for (auto& var_name_item : *ins_map_temp) {
L
Leo Chen 已提交
380 381 382
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

383 384
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto var = var_name_item.second[i];
385
      auto var_name = new_ins[var_name_item.first].at(i);
386
      const Tensor* tensor_in;
L
Leo Chen 已提交
387 388 389
      std::string new_var_name;
      bool is_transferred = false;

390
      if (var->IsType<LoDTensor>() || var->IsType<phi::SelectedRows>()) {
391 392
        tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      } else if (var->IsType<LoDTensorArray>()) {
393 394 395
        if (var->Get<LoDTensorArray>().size() == 0) {
          continue;
        }
396 397 398
        tensor_in =
            static_cast<const Tensor*>(&(var->Get<LoDTensorArray>()[0]));
      } else {
399
        continue;
400
      }
L
Leo Chen 已提交
401
      // special case
402
      if (!tensor_in->IsInitialized()) {
L
Leo Chen 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
        if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
          // Var without buffer may be needed
          // for some situation like InferShape().
          // In this situation We cannot skip Var analysis, as
          // MKL-DNN shape of Var may differ from kNHWC Var
          // In such situation corressponding resized Var
          // has to be created and registered
          if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
              (var->IsType<LoDTensor>() == true) &&
              (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
              (paddle::platform::MKLDNNDeviceContext::tls()
                   .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
            VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                       "but kNHWC layout"
                    << var_name_item.first << " in Operator "
                    << op_base->Type();
420 421 422 423 424 425 426
            auto op = TransferLayout(var_name,
                                     &new_var_name,
                                     tensor_in->layout(),
                                     DataLayout::kNHWC,
                                     var_scope,
                                     local_scope,
                                     op_base->Type() == "fetch_v2");
L
Leo Chen 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
            if (op) {
              data_transfer_helper.RunAndConstructOpFuncNode(
                  op, var_name, new_var_name, new_op_func_nodes);
            }
            is_transferred = true;
          } else {
            VLOG(7) << "Skip scanning input " << var_name_item.first
                    << " in Operator " << op_base->Type();
          }
#endif
        } else {
          continue;
        }
      } else {
        auto kernel_type_for_var =
            static_cast<const framework::OperatorWithKernel*>(op_base)
443 444
                ->GetKernelTypeForVar(
                    var_name_item.first, *tensor_in, expected_kernel_key);
L
Leo Chen 已提交
445
        // apply data transform
446 447 448 449 450 451 452 453
        is_transferred =
            data_transfer_helper.apply(kernel_type_for_var,
                                       expected_kernel_key,
                                       var_name,
                                       &new_var_name,
                                       new_op_func_nodes,
                                       use_local_scope,
                                       op_base->Type() == "fetch_v2");
454 455 456
      }

      if (is_transferred) {
457
        transfered = true;
458 459 460
        // update RuntimeContext.inputs and original op_func_node inputs
        op_func_node->input_index[var_name_item.first][i] =
            var_scope->VarId(new_var_name);
461
        var_name_item.second[i] = local_scope->FindVar(new_var_name);
462
        new_ins[var_name_item.first][i] = new_var_name;
463 464 465 466 467 468 469
        for (auto& pair : new_outs) {
          for (size_t j = 0; j < pair.second.size(); ++j) {
            VLOG(4) << pair.second[j] << " " << var_name;
            if (pair.second[j] == var_name) {
              VLOG(4) << "Found inplace between input(" << var_name_item.first
                      << ") and output(" << pair.first
                      << "), the variable name is " << var_name;
470 471
              (*outs_map_temp)[pair.first][j] =
                  local_scope->FindVar(new_var_name);
472 473 474 475 476 477 478 479 480
              new_outs[pair.first][j] = new_var_name;
              op_func_node
                  ->inplace_back_map[var_scope->GetIdByName(new_var_name)] =
                  var_scope->GetIdByName(var_name);
              op_func_node->output_index[pair.first][j] =
                  var_scope->VarId(new_var_name);
            }
          }
        }
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
        // NOTE(Aurelius84): avoid deepcopy twice if we already insert data
        // transfer op.
        if (op_base->Type() == "fetch_v2") {
          op_base->SetAttr("deepcopy", false);
        }
      } else {
        // record no need data transformer input var_id
        VLOG(3) << op_base->Type()
                << " found no data_transform var: " << var_name
                << " with id: " << var_scope->VarId(var_name);
        no_data_transform_index.emplace(var_scope->VarId(var_name));
      }
    }
  }

496 497
  if (transfered) {
    // NOTE(zhiqiu): UPDATE the corresponding OeratorBase to make it consistent
498 499 500
    // with instruction.
    op_base->Inputs() = new_ins;
    op_base->Outputs() = new_outs;
501
  }
502 503 504
  op_func_node->no_data_transform_index = std::move(no_data_transform_index);
}

505 506 507 508 509 510 511
void HandleComplexGradToRealGrad(const OpFuncNode& op_func_node,
                                 const platform::Place& place,
                                 const VariableNameMap& out_names,
                                 VariableValueMap* out_vars,
                                 VariableScope* var_scope,
                                 std::vector<OpFuncNode>* op_func_nodes,
                                 framework::Scope* local_scope) {
512
  DataTranferHelper data_transfer_helper(place, var_scope, local_scope);
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
  for (auto& var_name_item : out_names) {
    std::vector<Variable*>& vars = out_vars->at(var_name_item.first);
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = framework::GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        VLOG(3) << "skip " << var_name << " with same name as "
                << orig_var_name;
        continue;
      }
      auto* grad_var = vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        VLOG(3) << "skip grad_var with nullptr";
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!framework::VarIsTensor(*grad_var)) {
        VLOG(3) << "skip grad_var with LoDTensorArray type";
        continue;
      }
      auto* grad_tensor =
          framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        VLOG(3) << "skip with grad_tensor not IsInitialized";
        continue;
      }
      // only focus on complex dtype now
545
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
546 547 548 549 550 551
      if (!framework::IsComplexType(src_type)) {
        VLOG(3) << "skip grad_tensor with not complexType";
        continue;
      }

      // 2. find forward var & check whether need to cast
552
      auto* var = local_scope->FindVar(orig_var_name);
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
      // if forward var not exists, do nothing
      if (var == nullptr) {
        VLOG(3) << "skip " << orig_var_name << " with not found in var_scope";
        continue;
      }
      if (!framework::VarIsTensor(*var)) {
        VLOG(3) << "skip " << orig_var_name << " with LoDTensorArray.";
        continue;
      }
      const auto* tensor =
          framework::GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
569
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
570 571 572 573 574 575 576 577 578 579 580 581 582 583
      // only focus on real dtype and need casting
      if (framework::IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad inplacely
      VLOG(3) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";

      // NOTE(Aurelius84): Consider to define a complex2real op to deal this
      // case.
      std::string new_var_name;
584 585 586 587 588 589
      auto op = TransferDtype(
          var_name, &new_var_name, src_type, dst_type, var_scope, local_scope);
      data_transfer_helper.RunAndConstructOpFuncNode(
          op, var_name, new_var_name, op_func_nodes);
      data_transfer_helper.RunAndConstructShareNode(
          new_var_name, var_name, op_func_nodes);
590 591 592 593
    }
  }
}

594 595 596
}  // namespace interpreter
}  // namespace framework
}  // namespace paddle