data_transfer.cc 25.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/new_executor/data_transfer.h"
16

17
#include "paddle/fluid/framework/convert_utils.h"
18 19
#include "paddle/phi/core/kernel_context.h"
#include "paddle/phi/core/kernel_factory.h"
20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace framework {
namespace interpreter {

bool DataTranferHelper::apply(const OpKernelType& kernel_type_for_var,
                              const OpKernelType& expected_kernel_key,
                              const std::string& var_name,
                              std::string* new_var_name,
                              std::vector<OpFuncNode>* op_func_nodes,
30 31
                              bool use_local_scope,
                              bool is_fetch_v2) {
32 33 34 35 36
  bool is_transferred = false;
  auto* src_var_name = &var_name;

  // 1. layout transform
  if (need_layout_transform(kernel_type_for_var, expected_kernel_key)) {
37 38 39 40 41
    auto op = TransferLayout(*src_var_name,
                             new_var_name,
                             kernel_type_for_var.data_layout_,
                             expected_kernel_key.data_layout_,
                             var_scope_,
42
                             scope_,
43
                             is_fetch_v2);
L
Leo Chen 已提交
44
    if (op) {
45 46
      RunAndConstructOpFuncNode(
          op, *src_var_name, *new_var_name, op_func_nodes);
L
Leo Chen 已提交
47
    }
48 49 50 51 52 53
    // update src_var_name
    src_var_name = new_var_name;
    is_transferred = true;
  }
  // 2. dype transform
  if (need_dtype_transform(kernel_type_for_var, expected_kernel_key)) {
54 55 56 57 58
    auto op = TransferDtype(*src_var_name,
                            new_var_name,
                            kernel_type_for_var.data_type_,
                            expected_kernel_key.data_type_,
                            var_scope_,
59
                            scope_);
L
Leo Chen 已提交
60
    if (op) {
61 62
      RunAndConstructOpFuncNode(
          op, *src_var_name, *new_var_name, op_func_nodes);
L
Leo Chen 已提交
63
    }
64 65 66 67 68 69 70 71
    // update src_var_name
    src_var_name = new_var_name;
    is_transferred = true;
  }
  // 3. device transform
  if (need_device_transform(kernel_type_for_var, expected_kernel_key)) {
    auto src_place = kernel_type_for_var.place_;
    auto dst_place = expected_kernel_key.place_;
L
Leo Chen 已提交
72

73 74
    auto op = TransferDevice(
        *src_var_name, new_var_name, src_place, dst_place, var_scope_, scope_);
L
Leo Chen 已提交
75
    if (op) {
76 77
      RunAndConstructOpFuncNode(
          op, *src_var_name, *new_var_name, op_func_nodes);
L
Leo Chen 已提交
78
    }
79 80 81 82 83
    is_transferred = true;
  }
  return is_transferred;
}

84
void DataTranferHelper::RunAndConstructShareNode(
85 86
    const std::string& src_var_name,
    const std::string& dst_var_name,
87 88 89 90 91 92 93 94 95 96
    std::vector<OpFuncNode>* op_func_nodes) {
  VariableNameMap in_name_map = {{"X", {src_var_name}}};
  VariableNameMap out_name_map = {{"Out", {dst_var_name}}};
  AttributeMap attr_map;

  std::string op_type("share_data");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

97 98
  VLOG(3) << string::Sprintf(
      "Insert %s with %s -> %s.", op_type, src_var_name, dst_var_name);
99 100 101 102

  RunAndConstructOpFuncNode(op, src_var_name, dst_var_name, op_func_nodes);
}

103
void DataTranferHelper::RunAndConstructOpFuncNode(
104 105
    const std::shared_ptr<OperatorBase>& op,
    const std::string& var_name,
106 107 108 109 110 111
    const std::string& new_var_name,
    std::vector<OpFuncNode>* new_op_func_nodes) {
  auto& op_type = op->Type();

  // 1. Construct RuntimeContext
  RuntimeContext runtime_context({}, {});
112 113
  runtime_context.inputs["X"] = {scope_->FindVar(var_name)};
  runtime_context.outputs["Out"] = {scope_->Var(new_var_name)};
114
  InterpretercoreInferShapeContext infer_shape_ctx(*op, runtime_context);
115
  op.get()->Info().infer_shape_(&infer_shape_ctx);
116 117 118 119 120 121 122 123 124 125 126

  // 2. choose kernel

  // prepare a ptr to OperatorWithKernel
  OperatorBase* op_ptr = op.get();
  if (dynamic_cast<framework::OperatorWithKernel*>(op_ptr) == nullptr) {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "%s should be OperatorWithKernel type.", op_ptr->Type()));
  }
  auto op_with_kernel = static_cast<framework::OperatorWithKernel*>(op_ptr);

127 128
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place_);
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
  auto exec_ctx = ExecutionContext(*op, Scope(), *dev_ctx, runtime_context);
  auto expected_kernel_key = op_with_kernel->GetExpectedKernelType(exec_ctx);

  VLOG(6) << "expected_kernel_key " << expected_kernel_key << "\n";
  VLOG(6) << "op_with_kernel Type() " << op_with_kernel->Type() << "\n";

  bool run_phi_kernel = false;

  // check if phi kernel exists
  auto phi_kernel_map =
      phi::KernelFactory::Instance().SelectKernelMap(op_with_kernel->Type());
  if (phi_kernel_map.size() > 0) {
    auto phi_kernel_key = op_with_kernel->ChoosePhiKernel(exec_ctx);
    VLOG(6) << "phi_kernel_key " << phi_kernel_key << "\n";

    // this function is used to construct data transfer op
    // we expect that it always has a valid phi kernel
    // so no need to fallback to cpu kernel
    PADDLE_ENFORCE_EQ(
        op_with_kernel->PhiKernel()->IsValid(),
        true,
        platform::errors::PreconditionNotMet(
            "the %s op has no valid phi kernel.", op_with_kernel->Type()));
    run_phi_kernel = true;
  }
154 155 156 157 158

  // 3. Execute transfer op and construct OpFuncNode
  OpFuncNode new_op_func_node;
  new_op_func_node.input_index["X"] = {var_scope_->VarId(var_name)};
  new_op_func_node.output_index["Out"] = {var_scope_->VarId(new_var_name)};
159 160 161 162 163 164 165 166 167 168 169 170 171

  if (!run_phi_kernel) {
    op_with_kernel->ChooseKernel(exec_ctx);
    new_op_func_node.kernel_func_ = *op_with_kernel->kernel_func();
    new_op_func_node.kernel_func_(exec_ctx);
  } else {
    new_op_func_node.phi_kernel_ = op_with_kernel->PhiKernel();
    phi::KernelContext phi_kernel_context;
    op_with_kernel->BuildPhiKernelContext(
        runtime_context, dev_ctx, &phi_kernel_context);
    (*new_op_func_node.phi_kernel_)(&phi_kernel_context);
  }

172 173 174 175 176 177 178
  // NOTE(winter-wang): in npu device, D2H kernel is asynchronous. need to
  // explicit synchronization.
#ifdef PADDLE_WITH_ASCEND_CL
  if (op_type == kMemcpyD2H) {
    dev_ctx->Wait();
  }
#endif
179 180 181 182 183 184 185 186 187 188
  // NOTE(Aurelius84): data_transform_op is expensive operation, so we tag them
  // as kQueueSync and execute them in thread pool.
  new_op_func_node.type_ = OpFuncType::kQueueSync;
  new_op_func_node.dev_ctx_ = dev_ctx;
  new_op_func_node.operator_base_ = op;
  VLOG(3) << "Run " << op_type << " done.";

  new_op_func_nodes->emplace_back(std::move(new_op_func_node));
}

L
Leo Chen 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201
// Var is initialized && var contains tensor && tensor is initialized
bool IsTensorOfVarInitialized(Variable* var) {
  if (var->IsInitialized()) {
    if (var->IsType<LoDTensor>() || var->IsType<phi::SelectedRows>()) {
      return GetLoDTensorOrSelectedRowsValueFromVar(*var)->IsInitialized();
    } else if (var->IsType<LoDTensorArray>()) {
      return static_cast<const Tensor*>(&(var->Get<LoDTensorArray>()[0]))
          ->IsInitialized();
    }
  }
  return false;
}

202 203 204 205 206 207 208
std::shared_ptr<OperatorBase> TransferLayout(const std::string& var_name,
                                             std::string* new_var_name,
                                             DataLayout in_layout,
                                             DataLayout out_layout,
                                             VariableScope* var_scope,
                                             framework::Scope* local_scope,
                                             bool is_fetch_v2) {
L
Leo Chen 已提交
209 210 211 212 213 214 215 216
#ifdef PADDLE_WITH_MKLDNN
  // NOTE(zhiqiu): hot fix, follow the same logic in DataCopy() in fetch_op.cc
  if (in_layout == framework::DataLayout::kMKLDNN &&
      var_name == framework::GradVarName("Filter") && is_fetch_v2) {
    out_layout = framework::DataLayout::kNCHW;
  }
#endif

217
  // 1. Generate new_var_name and Initialize it
L
Leo Chen 已提交
218 219 220 221 222
  *new_var_name = var_name + "_layout_" +
                  std::to_string(static_cast<int>(in_layout)) + "_" +
                  std::to_string(static_cast<int>(out_layout));

  if (var_scope->HasVar(*new_var_name) &&
223
      IsTensorOfVarInitialized(local_scope->FindVar(*new_var_name))) {
L
Leo Chen 已提交
224 225 226 227
    // already has same var
    VLOG(4) << "Use cached variable: " << *new_var_name;
    return nullptr;
  }
228

L
Leo Chen 已提交
229
  auto* ptr = local_scope->Var(*new_var_name);
230
  auto var_type = local_scope->FindVar(var_name)->Type();
231
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
232 233 234
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
235
  var_scope->AddVar(*new_var_name, nullptr);
236 237 238 239

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};
240 241
  AttributeMap attr_map = {{"src_layout", static_cast<int>(in_layout)},
                           {"dst_layout", static_cast<int>(out_layout)}};
242

243
  // 3. Create transfer_layout_op
244 245 246 247 248
  std::string op_type("transfer_layout");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

249
  VLOG(3) << string::Sprintf("Insert %s for variable %s(%s) -> %s(%s).",
250 251 252 253
                             op_type,
                             var_name,
                             in_layout,
                             *new_var_name,
254
                             out_layout);
255 256 257 258 259 260 261
  return op;
}

std::shared_ptr<OperatorBase> TransferDtype(const std::string& var_name,
                                            std::string* new_var_name,
                                            proto::VarType::Type in_dtype,
                                            proto::VarType::Type out_dtype,
262
                                            framework::VariableScope* var_scope,
263 264
                                            framework::Scope* local_scope) {
  // 1. Generate new_var_name and Initialize it
L
Leo Chen 已提交
265 266 267 268
  *new_var_name = var_name + "_dtype_" +
                  std::to_string(static_cast<int>(in_dtype)) + "_" +
                  std::to_string(static_cast<int>(out_dtype));
  if (var_scope->HasVar(*new_var_name) &&
269
      IsTensorOfVarInitialized(local_scope->FindVar(*new_var_name))) {
L
Leo Chen 已提交
270 271 272 273
    // already has same var
    VLOG(4) << "Use cached variable: " << *new_var_name;
    return nullptr;
  }
274

L
Leo Chen 已提交
275
  auto* ptr = local_scope->Var(*new_var_name);
276
  auto var_type = local_scope->FindVar(var_name)->Type();
277
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
278

279 280 281
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
282
  var_scope->AddVar(*new_var_name, nullptr);
283 284 285 286 287 288 289 290 291 292

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};
  AttributeMap attr_map;
  attr_map["in_dtype"] = static_cast<int>(in_dtype);
  attr_map["out_dtype"] = static_cast<int>(out_dtype);
  // NOTE(Aurelius84): In whice case use_mkldnn = true?
  attr_map["use_mkldnn"] = false;

293
  // 3. Create transfer_dtype_op
294 295 296 297 298
  std::string op_type("transfer_dtype");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

299 300 301 302 303 304
  VLOG(3) << string::Sprintf("Insert %s with %s(%s) -> %s(%s).",
                             op_type,
                             var_name,
                             DataTypeToString(in_dtype),
                             *new_var_name,
                             DataTypeToString(out_dtype));
305 306 307 308 309 310 311 312 313 314
  return op;
}

std::shared_ptr<OperatorBase> TransferDevice(const std::string& var_name,
                                             std::string* new_var_name,
                                             const platform::Place& src_place,
                                             const platform::Place& dst_place,
                                             VariableScope* var_scope,
                                             framework::Scope* local_scope) {
  // 1. Generate new_var_name and Initialize it
L
Leo Chen 已提交
315 316 317
  *new_var_name = var_name + "_device_" + src_place.DebugString() + "_" +
                  dst_place.DebugString();

318 319
  if (local_scope->FindVar(*new_var_name) &&
      IsTensorOfVarInitialized(local_scope->FindVar(*new_var_name))) {
L
Leo Chen 已提交
320 321 322 323
    // already has same var
    VLOG(4) << "Use cached variable: " << *new_var_name;
    return nullptr;
  }
324

L
Leo Chen 已提交
325
  auto* ptr = local_scope->Var(*new_var_name);
326
  auto var_type = local_scope->FindVar(var_name)->Type();
327
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
328 329 330
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
331
  var_scope->AddVar(*new_var_name, nullptr);
332 333 334 335 336

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};

337
  // 3. Create memcpy_d2h_op or memcpy_h2d_op
338 339
  std::string op_type;
  AttributeMap attr_map;
340 341
  PADDLE_ENFORCE_EQ(platform::is_same_place(src_place, dst_place),
                    false,
342 343 344 345 346 347 348 349
                    platform::errors::PreconditionNotMet(
                        "Required src_place shall be different with dst_place, "
                        "but received same place: %s",
                        src_place));
  if (IsSupportedHetePlace(dst_place)) {
    op_type = kMemcpyH2D;
    int dst_place_type = platform::is_gpu_place(dst_place)   ? 0
                         : platform::is_npu_place(dst_place) ? 1
350
                         : platform::is_ipu_place(dst_place) ? 3
351 352 353 354 355 356 357 358 359 360 361 362 363 364
                         : platform::is_xpu_place(dst_place) ? 2
                                                             : -1;
    attr_map = {{"dst_place_type", dst_place_type}};
  } else if (IsSupportedHetePlace(src_place)) {
    op_type = kMemcpyD2H;
    int dst_place_type = platform::is_cpu_place(dst_place)           ? 0
                         : platform::is_cuda_pinned_place(dst_place) ? 1
                                                                     : -1;
    attr_map = {{"dst_place_type", dst_place_type}};
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Not support Memcpy typ : %s -> %s", src_place, dst_place));
  }

365 366 367 368
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

369 370 371 372 373 374
  VLOG(3) << string::Sprintf("Insert %s with %s(%s) -> %s(%s).",
                             op_type,
                             var_name,
                             src_place,
                             *new_var_name,
                             dst_place);
375 376 377 378 379 380
  return op;
}

void ApplyDataTransform(const OpKernelType& expected_kernel_key,
                        const platform::Place& place,
                        VariableValueMap* ins_map_temp,
381
                        VariableValueMap* outs_map_temp,
382 383
                        VariableScope* var_scope,
                        OpFuncNode* op_func_node,
384 385
                        std::vector<OpFuncNode>* new_op_func_nodes,
                        bool use_local_scope) {
386 387 388
  Scope* local_scope = use_local_scope ? var_scope->GetMutableLocalScope()
                                       : var_scope->GetMutableScope();

389
  auto op_base = op_func_node->operator_base_.get();
390 391 392 393
  PADDLE_ENFORCE_NOT_NULL(op_base,
                          platform::errors::PreconditionNotMet(
                              "op_base is null, please pass a valid "
                              "op_base in apply_data_transform."));
394 395

  VariableNameMap new_ins(op_base->Inputs());
396
  VariableNameMap new_outs(op_base->Outputs());
397 398 399
  // record the no need transform variable index.
  std::unordered_set<int> no_data_transform_index;

L
Leo Chen 已提交
400 401 402
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
  auto& no_buffer_inferer = op_base->Info().NoNeedBufferVarsInferer();
  if (no_buffer_inferer) {
403 404
    no_buffer_ins = &(no_buffer_inferer(
        op_base->Inputs(), op_base->Outputs(), op_base->Attrs()));
L
Leo Chen 已提交
405 406 407 408 409
    if (no_buffer_ins->empty()) {
      no_buffer_ins = nullptr;
    }
  }

410
  bool transfered = false;
411
  DataTranferHelper data_transfer_helper(place, var_scope, local_scope);
412
  for (auto& var_name_item : *ins_map_temp) {
L
Leo Chen 已提交
413 414 415
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

416 417
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto var = var_name_item.second[i];
418
      auto var_name = new_ins[var_name_item.first].at(i);
419
      const Tensor* tensor_in;
L
Leo Chen 已提交
420 421 422
      std::string new_var_name;
      bool is_transferred = false;

423
      if (var->IsType<LoDTensor>() || var->IsType<phi::SelectedRows>()) {
424 425
        tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      } else if (var->IsType<LoDTensorArray>()) {
426 427 428
        if (var->Get<LoDTensorArray>().size() == 0) {
          continue;
        }
429 430 431
        tensor_in =
            static_cast<const Tensor*>(&(var->Get<LoDTensorArray>()[0]));
      } else {
432
        continue;
433
      }
L
Leo Chen 已提交
434
      // special case
435
      if (!tensor_in->IsInitialized()) {
L
Leo Chen 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
        if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
          // Var without buffer may be needed
          // for some situation like InferShape().
          // In this situation We cannot skip Var analysis, as
          // MKL-DNN shape of Var may differ from kNHWC Var
          // In such situation corressponding resized Var
          // has to be created and registered
          if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
              (var->IsType<LoDTensor>() == true) &&
              (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
              (paddle::platform::MKLDNNDeviceContext::tls()
                   .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
            VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                       "but kNHWC layout"
                    << var_name_item.first << " in Operator "
                    << op_base->Type();
453 454 455 456 457 458 459
            auto op = TransferLayout(var_name,
                                     &new_var_name,
                                     tensor_in->layout(),
                                     DataLayout::kNHWC,
                                     var_scope,
                                     local_scope,
                                     op_base->Type() == "fetch_v2");
L
Leo Chen 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
            if (op) {
              data_transfer_helper.RunAndConstructOpFuncNode(
                  op, var_name, new_var_name, new_op_func_nodes);
            }
            is_transferred = true;
          } else {
            VLOG(7) << "Skip scanning input " << var_name_item.first
                    << " in Operator " << op_base->Type();
          }
#endif
        } else {
          continue;
        }
      } else {
        auto kernel_type_for_var =
            static_cast<const framework::OperatorWithKernel*>(op_base)
476 477
                ->GetKernelTypeForVar(
                    var_name_item.first, *tensor_in, expected_kernel_key);
L
Leo Chen 已提交
478
        // apply data transform
479 480 481 482 483 484 485 486
        is_transferred =
            data_transfer_helper.apply(kernel_type_for_var,
                                       expected_kernel_key,
                                       var_name,
                                       &new_var_name,
                                       new_op_func_nodes,
                                       use_local_scope,
                                       op_base->Type() == "fetch_v2");
487 488 489
      }

      if (is_transferred) {
490
        transfered = true;
491 492 493
        // update RuntimeContext.inputs and original op_func_node inputs
        op_func_node->input_index[var_name_item.first][i] =
            var_scope->VarId(new_var_name);
494
        var_name_item.second[i] = local_scope->FindVar(new_var_name);
495
        new_ins[var_name_item.first][i] = new_var_name;
496 497 498 499 500 501 502
        for (auto& pair : new_outs) {
          for (size_t j = 0; j < pair.second.size(); ++j) {
            VLOG(4) << pair.second[j] << " " << var_name;
            if (pair.second[j] == var_name) {
              VLOG(4) << "Found inplace between input(" << var_name_item.first
                      << ") and output(" << pair.first
                      << "), the variable name is " << var_name;
503 504
              (*outs_map_temp)[pair.first][j] =
                  local_scope->FindVar(new_var_name);
505 506 507 508 509 510 511 512 513
              new_outs[pair.first][j] = new_var_name;
              op_func_node
                  ->inplace_back_map[var_scope->GetIdByName(new_var_name)] =
                  var_scope->GetIdByName(var_name);
              op_func_node->output_index[pair.first][j] =
                  var_scope->VarId(new_var_name);
            }
          }
        }
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
        // NOTE(Aurelius84): avoid deepcopy twice if we already insert data
        // transfer op.
        if (op_base->Type() == "fetch_v2") {
          op_base->SetAttr("deepcopy", false);
        }
      } else {
        // record no need data transformer input var_id
        VLOG(3) << op_base->Type()
                << " found no data_transform var: " << var_name
                << " with id: " << var_scope->VarId(var_name);
        no_data_transform_index.emplace(var_scope->VarId(var_name));
      }
    }
  }

529 530
  if (transfered) {
    // NOTE(zhiqiu): UPDATE the corresponding OeratorBase to make it consistent
531 532 533
    // with instruction.
    op_base->Inputs() = new_ins;
    op_base->Outputs() = new_outs;
534
  }
535 536 537
  op_func_node->no_data_transform_index = std::move(no_data_transform_index);
}

538 539 540 541 542 543 544
void HandleComplexGradToRealGrad(const OpFuncNode& op_func_node,
                                 const platform::Place& place,
                                 const VariableNameMap& out_names,
                                 VariableValueMap* out_vars,
                                 VariableScope* var_scope,
                                 std::vector<OpFuncNode>* op_func_nodes,
                                 framework::Scope* local_scope) {
545
  DataTranferHelper data_transfer_helper(place, var_scope, local_scope);
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
  for (auto& var_name_item : out_names) {
    std::vector<Variable*>& vars = out_vars->at(var_name_item.first);
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = framework::GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        VLOG(3) << "skip " << var_name << " with same name as "
                << orig_var_name;
        continue;
      }
      auto* grad_var = vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        VLOG(3) << "skip grad_var with nullptr";
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!framework::VarIsTensor(*grad_var)) {
        VLOG(3) << "skip grad_var with LoDTensorArray type";
        continue;
      }
      auto* grad_tensor =
          framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        VLOG(3) << "skip with grad_tensor not IsInitialized";
        continue;
      }
      // only focus on complex dtype now
578
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
579 580 581 582 583 584
      if (!framework::IsComplexType(src_type)) {
        VLOG(3) << "skip grad_tensor with not complexType";
        continue;
      }

      // 2. find forward var & check whether need to cast
585
      auto* var = local_scope->FindVar(orig_var_name);
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
      // if forward var not exists, do nothing
      if (var == nullptr) {
        VLOG(3) << "skip " << orig_var_name << " with not found in var_scope";
        continue;
      }
      if (!framework::VarIsTensor(*var)) {
        VLOG(3) << "skip " << orig_var_name << " with LoDTensorArray.";
        continue;
      }
      const auto* tensor =
          framework::GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
602
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
603 604 605 606 607 608 609 610 611 612 613 614 615 616
      // only focus on real dtype and need casting
      if (framework::IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad inplacely
      VLOG(3) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";

      // NOTE(Aurelius84): Consider to define a complex2real op to deal this
      // case.
      std::string new_var_name;
617 618 619 620 621 622
      auto op = TransferDtype(
          var_name, &new_var_name, src_type, dst_type, var_scope, local_scope);
      data_transfer_helper.RunAndConstructOpFuncNode(
          op, var_name, new_var_name, op_func_nodes);
      data_transfer_helper.RunAndConstructShareNode(
          new_var_name, var_name, op_func_nodes);
623 624 625 626
    }
  }
}

627 628 629
}  // namespace interpreter
}  // namespace framework
}  // namespace paddle