data_transfer.cc 23.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/new_executor/data_transfer.h"
16

17
#include "paddle/fluid/framework/convert_utils.h"
18 19 20 21 22 23 24 25 26 27

namespace paddle {
namespace framework {
namespace interpreter {

bool DataTranferHelper::apply(const OpKernelType& kernel_type_for_var,
                              const OpKernelType& expected_kernel_key,
                              const std::string& var_name,
                              std::string* new_var_name,
                              std::vector<OpFuncNode>* op_func_nodes,
L
Leo Chen 已提交
28
                              bool use_local_scope, bool is_fetch_v2) {
29 30 31 32 33 34 35 36 37 38
  bool is_transferred = false;
  auto* src_var_name = &var_name;

  Scope* local_scope = use_local_scope ? var_scope_->GetMutableLocalScope()
                                       : var_scope_->GetMutableScope();

  // 1. layout transform
  if (need_layout_transform(kernel_type_for_var, expected_kernel_key)) {
    auto op = TransferLayout(
        *src_var_name, new_var_name, kernel_type_for_var.data_layout_,
L
Leo Chen 已提交
39 40 41 42 43
        expected_kernel_key.data_layout_, var_scope_, local_scope, is_fetch_v2);
    if (op) {
      RunAndConstructOpFuncNode(op, *src_var_name, *new_var_name,
                                op_func_nodes);
    }
44 45 46 47 48 49 50 51 52
    // update src_var_name
    src_var_name = new_var_name;
    is_transferred = true;
  }
  // 2. dype transform
  if (need_dtype_transform(kernel_type_for_var, expected_kernel_key)) {
    auto op = TransferDtype(
        *src_var_name, new_var_name, kernel_type_for_var.data_type_,
        expected_kernel_key.data_type_, var_scope_, local_scope);
L
Leo Chen 已提交
53 54 55 56
    if (op) {
      RunAndConstructOpFuncNode(op, *src_var_name, *new_var_name,
                                op_func_nodes);
    }
57 58 59 60 61 62 63 64
    // update src_var_name
    src_var_name = new_var_name;
    is_transferred = true;
  }
  // 3. device transform
  if (need_device_transform(kernel_type_for_var, expected_kernel_key)) {
    auto src_place = kernel_type_for_var.place_;
    auto dst_place = expected_kernel_key.place_;
L
Leo Chen 已提交
65

66 67
    auto op = TransferDevice(*src_var_name, new_var_name, src_place, dst_place,
                             var_scope_, local_scope);
L
Leo Chen 已提交
68 69 70 71
    if (op) {
      RunAndConstructOpFuncNode(op, *src_var_name, *new_var_name,
                                op_func_nodes);
    }
72 73 74 75 76
    is_transferred = true;
  }
  return is_transferred;
}

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
void DataTranferHelper::RunAndConstructShareNode(
    const std::string& src_var_name, const std::string& dst_var_name,
    std::vector<OpFuncNode>* op_func_nodes) {
  VariableNameMap in_name_map = {{"X", {src_var_name}}};
  VariableNameMap out_name_map = {{"Out", {dst_var_name}}};
  AttributeMap attr_map;

  std::string op_type("share_data");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

  VLOG(3) << string::Sprintf("Insert %s with %s -> %s.", op_type, src_var_name,
                             dst_var_name);

  RunAndConstructOpFuncNode(op, src_var_name, dst_var_name, op_func_nodes);
}

95 96 97 98 99 100 101 102 103 104 105 106 107 108
void DataTranferHelper::RunAndConstructOpFuncNode(
    const std::shared_ptr<OperatorBase>& op, const std::string& var_name,
    const std::string& new_var_name,
    std::vector<OpFuncNode>* new_op_func_nodes) {
  auto& op_type = op->Type();

  // 1. Construct RuntimeContext
  RuntimeContext runtime_context({}, {});
  runtime_context.inputs["X"] = {var_scope_->Var(var_name)};
  runtime_context.outputs["Out"] = {var_scope_->Var(new_var_name)};
  InterpretercoreInferShapeContext infer_shape_ctx(*op, runtime_context);

  // 2. Execute infer shape and choose kernel
  auto& all_op_kernels = OperatorWithKernel::AllOpKernels();
109
  op.get()->Info().infer_shape_(&infer_shape_ctx);
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
  auto kernels_iter = all_op_kernels.find(op_type);
  PADDLE_ENFORCE_NE(kernels_iter, all_op_kernels.end(),
                    platform::errors::Unavailable(
                        "There are no kernels which are registered in "
                        "the %s operator.",
                        op_type));
  OpKernelMap& kernels = kernels_iter->second;
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place_);
  Scope scope;
  auto exec_ctx = ExecutionContext(*op, scope, *dev_ctx, runtime_context);
  auto expected_kernel_key =
      dynamic_cast<const framework::OperatorWithKernel*>(op.get())
          ->GetExpectedKernelType(exec_ctx);
  auto kernel_iter = kernels.find(expected_kernel_key);

  // 3. Execute transfer op and construct OpFuncNode
  OpFuncNode new_op_func_node;
  new_op_func_node.input_index["X"] = {var_scope_->VarId(var_name)};
  new_op_func_node.output_index["Out"] = {var_scope_->VarId(new_var_name)};
  new_op_func_node.kernel_func_ = OpKernelComputeFunc(kernel_iter->second);
  new_op_func_node.kernel_func_(exec_ctx);
  // NOTE(Aurelius84): data_transform_op is expensive operation, so we tag them
  // as kQueueSync and execute them in thread pool.
  new_op_func_node.type_ = OpFuncType::kQueueSync;
  new_op_func_node.dev_ctx_ = dev_ctx;
  new_op_func_node.operator_base_ = op;
  VLOG(3) << "Run " << op_type << " done.";

  new_op_func_nodes->emplace_back(std::move(new_op_func_node));
}

L
Leo Chen 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
// Var is initialized && var contains tensor && tensor is initialized
bool IsTensorOfVarInitialized(Variable* var) {
  if (var->IsInitialized()) {
    if (var->IsType<LoDTensor>() || var->IsType<phi::SelectedRows>()) {
      return GetLoDTensorOrSelectedRowsValueFromVar(*var)->IsInitialized();
    } else if (var->IsType<LoDTensorArray>()) {
      return static_cast<const Tensor*>(&(var->Get<LoDTensorArray>()[0]))
          ->IsInitialized();
    }
  }
  return false;
}

std::shared_ptr<OperatorBase> TransferLayout(
    const std::string& var_name, std::string* new_var_name,
    DataLayout in_layout, DataLayout out_layout, VariableScope* var_scope,
    framework::Scope* local_scope, bool is_fetch_v2) {
#ifdef PADDLE_WITH_MKLDNN
  // NOTE(zhiqiu): hot fix, follow the same logic in DataCopy() in fetch_op.cc
  if (in_layout == framework::DataLayout::kMKLDNN &&
      var_name == framework::GradVarName("Filter") && is_fetch_v2) {
    out_layout = framework::DataLayout::kNCHW;
  }
#endif

167
  // 1. Generate new_var_name and Initialize it
L
Leo Chen 已提交
168 169 170 171 172 173 174 175 176 177
  *new_var_name = var_name + "_layout_" +
                  std::to_string(static_cast<int>(in_layout)) + "_" +
                  std::to_string(static_cast<int>(out_layout));

  if (var_scope->HasVar(*new_var_name) &&
      IsTensorOfVarInitialized(var_scope->Var(*new_var_name))) {
    // already has same var
    VLOG(4) << "Use cached variable: " << *new_var_name;
    return nullptr;
  }
178

L
Leo Chen 已提交
179
  auto* ptr = local_scope->Var(*new_var_name);
180 181
  auto var_type = var_scope->Var(var_name)->Type();
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
182 183 184 185
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
  var_scope->SetVarDesc(*new_var_name, nullptr);
186 187 188 189

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};
190 191
  AttributeMap attr_map = {{"src_layout", static_cast<int>(in_layout)},
                           {"dst_layout", static_cast<int>(out_layout)}};
192

193
  // 3. Create transfer_layout_op
194 195 196 197 198
  std::string op_type("transfer_layout");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

199 200 201
  VLOG(3) << string::Sprintf("Insert %s for variable %s(%s) -> %s(%s).",
                             op_type, var_name, in_layout, *new_var_name,
                             out_layout);
202 203 204 205 206 207 208 209 210 211
  return op;
}

std::shared_ptr<OperatorBase> TransferDtype(const std::string& var_name,
                                            std::string* new_var_name,
                                            proto::VarType::Type in_dtype,
                                            proto::VarType::Type out_dtype,
                                            VariableScope* var_scope,
                                            framework::Scope* local_scope) {
  // 1. Generate new_var_name and Initialize it
L
Leo Chen 已提交
212 213 214 215 216 217 218 219 220
  *new_var_name = var_name + "_dtype_" +
                  std::to_string(static_cast<int>(in_dtype)) + "_" +
                  std::to_string(static_cast<int>(out_dtype));
  if (var_scope->HasVar(*new_var_name) &&
      IsTensorOfVarInitialized(var_scope->Var(*new_var_name))) {
    // already has same var
    VLOG(4) << "Use cached variable: " << *new_var_name;
    return nullptr;
  }
221

L
Leo Chen 已提交
222
  auto* ptr = local_scope->Var(*new_var_name);
223 224
  auto var_type = var_scope->Var(var_name)->Type();
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
225

226 227 228 229
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
  var_scope->SetVarDesc(*new_var_name, nullptr);
230 231 232 233 234 235 236 237 238 239

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};
  AttributeMap attr_map;
  attr_map["in_dtype"] = static_cast<int>(in_dtype);
  attr_map["out_dtype"] = static_cast<int>(out_dtype);
  // NOTE(Aurelius84): In whice case use_mkldnn = true?
  attr_map["use_mkldnn"] = false;

240
  // 3. Create transfer_dtype_op
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
  std::string op_type("transfer_dtype");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

  VLOG(3) << string::Sprintf("Insert %s with %s(%s) -> %s(%s).", op_type,
                             var_name, DataTypeToString(in_dtype),
                             *new_var_name, DataTypeToString(out_dtype));
  return op;
}

std::shared_ptr<OperatorBase> TransferDevice(const std::string& var_name,
                                             std::string* new_var_name,
                                             const platform::Place& src_place,
                                             const platform::Place& dst_place,
                                             VariableScope* var_scope,
                                             framework::Scope* local_scope) {
  // 1. Generate new_var_name and Initialize it
L
Leo Chen 已提交
259 260 261 262 263 264 265 266 267
  *new_var_name = var_name + "_device_" + src_place.DebugString() + "_" +
                  dst_place.DebugString();

  if (var_scope->HasVar(*new_var_name) &&
      IsTensorOfVarInitialized(var_scope->Var(*new_var_name))) {
    // already has same var
    VLOG(4) << "Use cached variable: " << *new_var_name;
    return nullptr;
  }
268

L
Leo Chen 已提交
269
  auto* ptr = local_scope->Var(*new_var_name);
270 271
  auto var_type = var_scope->Var(var_name)->Type();
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
272 273 274 275
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
  var_scope->SetVarDesc(*new_var_name, nullptr);
276 277 278 279

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};
280 281 282
  int dst_place_type = platform::is_cpu_place(dst_place)   ? 0
                       : platform::is_gpu_place(dst_place) ? 1
                                                           : -1;
283 284
  AttributeMap attr_map = {{"dst_place_type", dst_place_type}};

285
  // 3. Create memcpy_d2h_op or memcpy_h2d_op
286 287 288 289 290 291 292 293 294 295 296 297 298
  std::string op_type = get_memcpy_type(src_place, dst_place);
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

  VLOG(3) << string::Sprintf("Insert %s with %s(%s) -> %s(%s).", op_type,
                             var_name, src_place, *new_var_name, dst_place);
  return op;
}

void ApplyDataTransform(const OpKernelType& expected_kernel_key,
                        const platform::Place& place,
                        VariableValueMap* ins_map_temp,
299
                        VariableValueMap* outs_map_temp,
300 301 302 303 304 305 306 307 308
                        VariableScope* var_scope, OpFuncNode* op_func_node,
                        std::vector<OpFuncNode>* new_op_func_nodes,
                        bool use_local_scope) {
  auto op_base = op_func_node->operator_base_.get();
  PADDLE_ENFORCE_NOT_NULL(op_base, platform::errors::PreconditionNotMet(
                                       "op_base is null, please pass a valid "
                                       "op_base in apply_data_transform."));

  VariableNameMap new_ins(op_base->Inputs());
309
  VariableNameMap new_outs(op_base->Outputs());
310 311 312
  // record the no need transform variable index.
  std::unordered_set<int> no_data_transform_index;

L
Leo Chen 已提交
313 314 315 316 317 318 319 320 321 322
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
  auto& no_buffer_inferer = op_base->Info().NoNeedBufferVarsInferer();
  if (no_buffer_inferer) {
    no_buffer_ins = &(no_buffer_inferer(op_base->Inputs(), op_base->Outputs(),
                                        op_base->Attrs()));
    if (no_buffer_ins->empty()) {
      no_buffer_ins = nullptr;
    }
  }

323
  bool transfered = false;
324 325
  DataTranferHelper data_transfer_helper(place, var_scope);
  for (auto& var_name_item : *ins_map_temp) {
L
Leo Chen 已提交
326 327 328
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

329 330
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto var = var_name_item.second[i];
331
      auto var_name = new_ins[var_name_item.first].at(i);
332
      const Tensor* tensor_in;
L
Leo Chen 已提交
333 334 335
      std::string new_var_name;
      bool is_transferred = false;

336
      if (var->IsType<LoDTensor>() || var->IsType<phi::SelectedRows>()) {
337 338
        tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      } else if (var->IsType<LoDTensorArray>()) {
339 340 341
        if (var->Get<LoDTensorArray>().size() == 0) {
          continue;
        }
342 343 344
        tensor_in =
            static_cast<const Tensor*>(&(var->Get<LoDTensorArray>()[0]));
      } else {
345
        continue;
346
      }
L
Leo Chen 已提交
347
      // special case
348
      if (!tensor_in->IsInitialized()) {
L
Leo Chen 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
        if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
          // Var without buffer may be needed
          // for some situation like InferShape().
          // In this situation We cannot skip Var analysis, as
          // MKL-DNN shape of Var may differ from kNHWC Var
          // In such situation corressponding resized Var
          // has to be created and registered
          if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
              (var->IsType<LoDTensor>() == true) &&
              (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
              (paddle::platform::MKLDNNDeviceContext::tls()
                   .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
            VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                       "but kNHWC layout"
                    << var_name_item.first << " in Operator "
                    << op_base->Type();
            Scope* local_scope = use_local_scope
                                     ? var_scope->GetMutableLocalScope()
                                     : var_scope->GetMutableScope();
            auto op = TransferLayout(
                var_name, &new_var_name, tensor_in->layout(), DataLayout::kNHWC,
                var_scope, local_scope, op_base->Type() == "fetch_v2");
            if (op) {
              data_transfer_helper.RunAndConstructOpFuncNode(
                  op, var_name, new_var_name, new_op_func_nodes);
            }
            is_transferred = true;
          } else {
            VLOG(7) << "Skip scanning input " << var_name_item.first
                    << " in Operator " << op_base->Type();
          }
#endif
        } else {
          continue;
        }
      } else {
        auto kernel_type_for_var =
            static_cast<const framework::OperatorWithKernel*>(op_base)
                ->GetKernelTypeForVar(var_name_item.first, *tensor_in,
                                      expected_kernel_key);
        // apply data transform
        is_transferred = data_transfer_helper.apply(
            kernel_type_for_var, expected_kernel_key, var_name, &new_var_name,
            new_op_func_nodes, use_local_scope, op_base->Type() == "fetch_v2");
394 395 396
      }

      if (is_transferred) {
397
        transfered = true;
398 399 400 401 402
        // update RuntimeContext.inputs and original op_func_node inputs
        op_func_node->input_index[var_name_item.first][i] =
            var_scope->VarId(new_var_name);
        var_name_item.second[i] = var_scope->Var(new_var_name);
        new_ins[var_name_item.first][i] = new_var_name;
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
        for (auto& pair : new_outs) {
          for (size_t j = 0; j < pair.second.size(); ++j) {
            VLOG(4) << pair.second[j] << " " << var_name;
            if (pair.second[j] == var_name) {
              VLOG(4) << "Found inplace between input(" << var_name_item.first
                      << ") and output(" << pair.first
                      << "), the variable name is " << var_name;
              (*outs_map_temp)[pair.first][j] = var_scope->Var(new_var_name);
              new_outs[pair.first][j] = new_var_name;
              op_func_node
                  ->inplace_back_map[var_scope->GetIdByName(new_var_name)] =
                  var_scope->GetIdByName(var_name);
              op_func_node->output_index[pair.first][j] =
                  var_scope->VarId(new_var_name);
            }
          }
        }
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
        // NOTE(Aurelius84): avoid deepcopy twice if we already insert data
        // transfer op.
        if (op_base->Type() == "fetch_v2") {
          op_base->SetAttr("deepcopy", false);
        }
      } else {
        // record no need data transformer input var_id
        VLOG(3) << op_base->Type()
                << " found no data_transform var: " << var_name
                << " with id: " << var_scope->VarId(var_name);
        no_data_transform_index.emplace(var_scope->VarId(var_name));
      }
    }
  }

435 436 437 438 439 440 441
  if (transfered) {
    // NOTE(zhiqiu): UPDATE the corresponding OeratorBase to make it consistent
    // with instruction. (hot fix, it is not good design here)
    op_func_node->operator_base_ =
        std::shared_ptr<OperatorBase>(framework::OpRegistry::CreateOp(
            op_base->Type(), new_ins, new_outs, op_base->Attrs()));
  }
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
  op_func_node->no_data_transform_index = std::move(no_data_transform_index);
}

std::string get_memcpy_type(const platform::Place& src_place,
                            const platform::Place& dst_place) {
  PADDLE_ENFORCE_EQ(platform::is_same_place(src_place, dst_place), false,
                    platform::errors::PreconditionNotMet(
                        "Required src_place shall be different with dst_place, "
                        "but received same place: %s",
                        src_place));
  if (platform::is_gpu_place(dst_place)) {
    return kMemcpyH2D;
  } else if (platform::is_gpu_place(src_place)) {
    return kMemcpyD2H;
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Not support Memcpy typ : %s -> %s", src_place, dst_place));
  }
}

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
void HandleComplexGradToRealGrad(const OpFuncNode& op_func_node,
                                 const platform::Place& place,
                                 const VariableNameMap& out_names,
                                 VariableValueMap* out_vars,
                                 VariableScope* var_scope,
                                 std::vector<OpFuncNode>* op_func_nodes,
                                 framework::Scope* local_scope) {
  DataTranferHelper data_transfer_helper(place, var_scope);
  for (auto& var_name_item : out_names) {
    std::vector<Variable*>& vars = out_vars->at(var_name_item.first);
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = framework::GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        VLOG(3) << "skip " << var_name << " with same name as "
                << orig_var_name;
        continue;
      }
      auto* grad_var = vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        VLOG(3) << "skip grad_var with nullptr";
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!framework::VarIsTensor(*grad_var)) {
        VLOG(3) << "skip grad_var with LoDTensorArray type";
        continue;
      }
      auto* grad_tensor =
          framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        VLOG(3) << "skip with grad_tensor not IsInitialized";
        continue;
      }
      // only focus on complex dtype now
502
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
      if (!framework::IsComplexType(src_type)) {
        VLOG(3) << "skip grad_tensor with not complexType";
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = var_scope->FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        VLOG(3) << "skip " << orig_var_name << " with not found in var_scope";
        continue;
      }
      if (!framework::VarIsTensor(*var)) {
        VLOG(3) << "skip " << orig_var_name << " with LoDTensorArray.";
        continue;
      }
      const auto* tensor =
          framework::GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
526
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
      // only focus on real dtype and need casting
      if (framework::IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad inplacely
      VLOG(3) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";

      // NOTE(Aurelius84): Consider to define a complex2real op to deal this
      // case.
      std::string new_var_name;
      auto op = TransferDtype(var_name, &new_var_name, src_type, dst_type,
                              var_scope, local_scope);
      data_transfer_helper.RunAndConstructOpFuncNode(op, var_name, new_var_name,
                                                     op_func_nodes);
      data_transfer_helper.RunAndConstructShareNode(new_var_name, var_name,
                                                    op_func_nodes);
    }
  }
}

551 552 553
}  // namespace interpreter
}  // namespace framework
}  // namespace paddle