conv_mkldnn_op.cc 36.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

21 22 23 24 25 26 27 28
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

29 30 31 32 33 34 35 36 37 38
class ConvMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

56
  size_t GetDstMemorySize() const {
57 58 59
    return conv_pd_->dst_primitive_desc().get_size();
  }

60
  size_t GetDiffWeightsMemorySize() const {
61 62 63
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

64
  size_t GetDiffSourceMemorySize() const {
65 66 67
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

68 69
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
70
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
71 72 73 74 75 76 77 78
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
79
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
95
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
96 97 98 99 100 101 102 103
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
G
gongweibao 已提交
104
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
105 106 107 108 109 110 111 112 113 114 115 116
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

117 118 119 120 121 122 123
  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
124
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
125 126 127 128 129 130 131 132
    auto src_pd = conv_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
K
Krzysztof Binias 已提交
133
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
X
xiaolil1 已提交
134 135 136 137
      bool is_persistent = false,
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) { 
138 139 140 141
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
    return this->AcquireMemory(weights_pd, user_weights_pd,
                               user_weights_memory_p, "@weights_mem_p",
X
xiaolil1 已提交
142 143
                               pipeline, is_persistent,
                               is_INT8, scale_data, mask);
144 145
  }

146 147
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
X
xiaolil1 已提交
148 149 150 151
      std::vector<mkldnn::primitive>& pipeline,
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
152 153 154
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
X
xiaolil1 已提交
155 156
                               "@bias_mem_p", pipeline, 
                               false, is_INT8, scale_data, mask);
157 158
  }

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(bias_memory_p.get()), *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
  std::shared_ptr<mkldnn::convolution_backward_weights>
  AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p =
        std::static_pointer_cast<mkldnn::convolution_backward_weights>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_weights_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd weights primitive in device context");
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p =
          std::make_shared<mkldnn::convolution_backward_weights>(
              *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
              *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<mkldnn::convolution_backward_data>
  AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<mkldnn::convolution_backward_data>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_data_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd data primitive in device context");
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<mkldnn::convolution_backward_data>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_data_p;
  }

250 251
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
G
gongweibao 已提交
252 253 254 255 256 257
  static std::string GetHash(memory::dims& input_dims,     // NOLINT
                             memory::dims& weights_dims,   // NOLINT
                             std::vector<int>& strides,    // NOLINT
                             std::vector<int>& paddings,   // NOLINT
                             std::vector<int>& dilations,  // NOLINT
                             int groups, const std::string& suffix) {
258 259 260 261 262 263 264
    return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
           dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
           suffix;
  }

 private:
  std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd_;
265 266 267 268
  std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
      conv_bwd_data_pd_;
269 270
};

271
template <typename T>
272
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
273 274 275 276 277
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

K
Krzysztof Binias 已提交
278 279
    const bool is_test = ctx.Attr<bool>("is_test");

280 281
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
282 283 284 285
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
286
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
287 288
    auto* output = ctx.Output<Tensor>("Output");

289
    bool is_INT8 = ctx.HasInput("Scale_in")? true : false;
290 291 292 293
    auto* scale_in = ctx.HasInput("Scale_in") ? ctx.Input<Tensor>("Scale_in") : nullptr;
    auto* scale_in_eltwise = ctx.HasInput("Scale_in_eltwise")? ctx.Input<Tensor>("Scale_in_eltwise") : nullptr;
    auto* scale_weights = ctx.HasInput("Scale_weights")? ctx.Input<Tensor>("Scale_weights") : nullptr;
    auto* scale_out = ctx.HasInput("Scale_out")? ctx.Input<Tensor>("Scale_out") : nullptr;
X
xiaolil1 已提交
294
    bool is_multi_channel = (is_INT8 && scale_weights->memory_size() > 1) ? true : false;
295

296 297 298 299 300 301
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
302 303 304 305 306 307 308 309 310 311 312
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
313 314 315 316

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
M
Michal Gallus 已提交
317
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
Z
Zhang, Guoming 已提交
318
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
319 320
    int groups = ctx.Attr<int>("groups");

Z
Zhang, Guoming 已提交
321
    // TODO(tpatejko): add support for dilation
322 323 324 325 326 327 328 329 330 331
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
332 333 334 335 336 337 338 339 340 341 342 343 344
    int g = std::max(groups, 1);
    if (g > 1) {
      int o = weights_tz[0];
      int i = weights_tz[1];
      int h = weights_tz[2];
      int w = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = g;
      weights_tz[1] = o / g;
      weights_tz[2] = i;
      weights_tz[3] = h;
      weights_tz[4] = w;
    }
345 346
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

347 348 349
    std::vector<T> output_shift_scale;
    T sum_scale = 1.0f;
    if(is_INT8){
X
xiaolil1 已提交
350
        int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1; 
351 352 353 354
        T scale_in_data = *(scale_in->data<T>());
        T scale_in_eltwise_data = *(scale_in_eltwise->data<T>());
        std::vector<T> scale_weights_data(count);
        for(int i=0; i<count; i++){
X
xiaolil1 已提交
355
            scale_weights_data[i] =*(scale_weights->data<T>() + i);
356 357 358 359 360 361 362 363 364 365 366 367 368 369
        }
        T scale_out_data = *(scale_out->data<T>());

        output_shift_scale.resize(count);
        for(int i=0; i<count; i++){
            if(scale_weights_data[i] == 0.0)
                output_shift_scale[i] = scale_out_data;
            else 
                output_shift_scale[i] = scale_out_data / (scale_in_data * scale_weights_data[i]);
        }

        sum_scale = scale_out_data / scale_in_eltwise_data;
    }

370 371 372 373 374 375 376 377 378 379 380
    // Get unique name for storing MKLDNN primitives
    const std::string key = ConvMKLDNNHandler::GetHash(
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Output("Output"));
    const std::string key_conv_pd = key + "@conv_pd";

    std::vector<primitive> pipeline;

    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
381 382
        {weights_tz}, platform::MKLDNNGetDataType<T>(),
        (g == 1) ? filter->format() : mkldnn::memory::format::goihw);
383 384 385 386 387

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
388 389 390 391
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

392
    auto src_md = platform::MKLDNNMemDesc(
393
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
394
    auto weights_md = platform::MKLDNNMemDesc(
395 396
        weights_tz, platform::MKLDNNGetDataType<T>(),
        (g == 1) ? chosen_memory_format : mkldnn::memory::format::goihw);
397 398
    std::vector<int> bias_tz;  // TODO(mgallus): avoid empty vector creation.
                               // Currently used whenever bias is != nullptr.
399
    auto dst_md = platform::MKLDNNMemDesc(
400
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
401 402

    // create a conv primitive descriptor and save it for usage in backward
403 404 405 406 407
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
    if (bias) {
      bias_tz = paddle::framework::vectorize2int(bias->dims());
      auto bias_md = platform::MKLDNNMemDesc(
          bias_tz, platform::MKLDNNGetDataType<T>(), memory::format::x);
408 409 410
      if(is_INT8){
          conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                         strides, paddings, mkldnn_engine,
Z
Zhang, Guoming 已提交
411
                                         fuse_relu, fuse_residual_conn, 
412 413 414 415
                                         output_shift_scale, sum_scale);
      } else{
          conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                         strides, paddings, mkldnn_engine,
Z
Zhang, Guoming 已提交
416
                                         fuse_relu, fuse_residual_conn);
417
      }
418
    } else {
419 420 421
      if(is_INT8){
          conv_pd =
              ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
Z
Zhang, Guoming 已提交
422
                                   mkldnn_engine, fuse_relu, fuse_residual_conn,
423 424 425 426
                                   output_shift_scale, sum_scale);
      } else{
          conv_pd =
              ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
Z
Zhang, Guoming 已提交
427
                                   mkldnn_engine, fuse_relu, fuse_residual_conn);
428
      }
429
    }
430 431
    // Save conv_pd/src_memory/weights_memory for backward pass
    dev_ctx.SetBlob(key_conv_pd, conv_pd);
432

433
    ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
434

435 436 437 438 439 440
    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));

Z
Zhang, Guoming 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
    T* output_data = nullptr;

    if (fuse_residual_conn) {
      auto residual_param = ctx.Input<Tensor>("ResidualData");
      auto residual_param_data = residual_param->data<T>();

      PADDLE_ENFORCE(
          residual_param_data != nullptr,
          "Provide data if you want MKLDNN conv+elementwise_add fusion");
      PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                        "Output and elementwise parameter need to have the "
                        "same dimension sizes");

      output->ShareDataWith(*residual_param);
      output_data = output->mutable_data<T>(ctx.GetPlace());
    } else {
      output_data =
          output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
    }

461 462 463 464
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
K
Krzysztof Binias 已提交
465
        user_weights_memory_p, pipeline, is_test);
X
xiaolil1 已提交
466 467 468 469 470 471 472 473 474 475
    if(is_INT8){
        int mask_reorder = is_multi_channel? 0 : ((g!= 1) ? (1<<1)+(1<<0) : 1<<0);
        int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1;
        std::vector<T> scale_weights_data(count);
        for(int i=0; i<count; i++){
            scale_weights_data[i] = *(scale_weights->data<T>() + i);
        }
        auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
            user_weights_memory_p, pipeline, is_test, is_INT8, scale_weights_data, mask_reorder);
    }
476 477
    auto dst_memory_p =
        handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
478 479

    // create convolution op primitive
480 481 482 483 484 485 486 487 488
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    if (bias) {
      const T* bias_data = bias->data<T>();
      auto user_bias_md = platform::MKLDNNMemDesc(
          {bias_tz}, platform::MKLDNNGetDataType<T>(), memory::format::x);
      auto user_bias_memory_p =
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));
      auto bias_memory_p =
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
X
xiaolil1 已提交
489 490 491 492 493 494 495 496 497 498
      if(is_INT8){
          int mask_reorder = is_multi_channel? 0 : 1<<0;
          int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1;
          std::vector<T> scale_bias_data(count);
          for(int i=0; i<count; i++){
              scale_bias_data[i] = (*scale_in->data<T>()) * (*(scale_weights->data<T>() + i));
          }
          auto bias_memory_p =
              handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline, is_INT8, scale_bias_data, mask_reorder);
      }
499 500 501 502 503 504
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
505 506

    // push primitive to stream and wait until it's executed
507
    pipeline.push_back(*conv_p);
508 509 510
    stream(stream::kind::eager).submit(pipeline).wait();

    output->set_layout(DataLayout::kMKLDNN);
511
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
512
  }
513

514
 private:
Z
Zhang, Guoming 已提交
515
    mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn,
516 517 518
                          const std::vector<T> output_shift_scale, T sum_scale) const {
      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
519
    // Fusion with Elementwise layer relies on adding a sum post-operation with
Z
Zhang, Guoming 已提交
520 521 522 523
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
524
      int mask = output_shift_scale.size() > 1 ? 1<<1 : 0;
525
      conv_attr.set_output_scales(mask, output_shift_scale);
Z
Zhang, Guoming 已提交
526
      if (fuse_residual_conn) {
527 528 529 530 531
        post_operations.append_sum(sum_scale);
      }
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
532
        constexpr float placeholder = 0.0f; //beta
533 534 535 536 537
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
538
    }
539

X
xiaolil1 已提交
540
      mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn) const {
541 542 543 544

      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
      // Fusion with Elementwise layer relies on adding a sum post-operation with
X
xiaolil1 已提交
545
      // the scale parameter. It is assumed that when fuse_residual_conn is true, the
546 547 548
      // Output tensor contains the data coming from residual connection. The
      // result of this post_op is: Output = scale * Output + Conv_Out.

X
xiaolil1 已提交
549
      if (fuse_residual_conn) {
550 551 552 553 554 555 556 557 558 559 560 561 562
        post_operations.append_sum(1.0f);
      }
      // Fusion with ReLU layer is executed through the PostOps feature. Create a
      // PostOps object and configure it to execute an eltwise relu operation.
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
        constexpr float placeholder = 0.0f;
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
563
    }
M
Michal Gallus 已提交
564

Z
Zhang, Guoming 已提交
565
    std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
566 567 568 569
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
570
                         const bool fuse_residual_conn,
571 572 573 574 575 576 577 578 579 580
                         const std::vector<T> output_shift_scale, const T sum_scale) const {
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

      auto conv_desc = mkldnn::convolution_forward::desc(
          mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr =
Z
Zhang, Guoming 已提交
581
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
582 583 584 585 586 587

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
588
    }
M
Michal Gallus 已提交
589

590
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
591 592 593 594
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
595
                         const bool fuse_residual_conn) const{
596 597 598 599 600 601 602 603
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};
  
      auto conv_desc = mkldnn::convolution_forward::desc(
          mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);
  
Z
Zhang, Guoming 已提交
604
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
605 606 607 608 609 610 611
  
      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);
  
      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }
612 613

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
614 615 616 617 618
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
619
                         const bool fuse_residual_conn,
620 621 622 623 624 625 626 627 628 629
                         const std::vector<T> output_shift_scale, const T sum_scale) const {
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

      auto conv_desc = mkldnn::convolution_forward::desc(
          mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr = 
Z
Zhang, Guoming 已提交
630
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
631 632 633 634 635 636 637 638 639 640 641 642 643 644

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
645
                         const bool fuse_residual_conn) const{
646 647 648 649 650 651 652 653
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

      auto conv_desc = mkldnn::convolution_forward::desc(
          mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

Z
Zhang, Guoming 已提交
654
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
655 656 657 658 659 660 661 662

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

663 664 665
};

template <typename T>
666
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
667 668 669 670 671
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

672 673
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
674 675 676 677 678 679 680 681 682 683
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

684 685 686 687 688 689 690 691 692 693 694 695 696
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

697 698 699 700
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
701 702
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
703 704 705 706 707 708 709 710 711 712 713 714

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

715
    // Get an unique name from "argument" name of "Output" variable
J
Jacek Czaja 已提交
716
    // as well as attributes of primitive to be created
717 718 719 720 721 722
    // This name will be used as key when saving info into device context
    const std::string key =
        ConvMKLDNNHandler::GetHash(src_tz, weights_tz, strides, paddings,
                                   dilations, groups, ctx.op().Input("Output"));

    const std::string key_conv_pd = key + "@conv_pd";
723
    std::vector<primitive> pipeline;
724

725 726 727 728 729 730 731
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
732 733 734 735 736

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
737 738 739 740
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

741
    auto src_md = platform::MKLDNNMemDesc(
742
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
743
    auto diff_src_md = platform::MKLDNNMemDesc(
744
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
745
    auto weights_md = platform::MKLDNNMemDesc(
746
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
747
    auto diff_weights_md = platform::MKLDNNMemDesc(
748
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
749
    auto diff_dst_md = platform::MKLDNNMemDesc(
750
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
751

752
    // Retrieve conv_pd from device context
753 754 755
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
756 757 758
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

    ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd, conv_bwd_weights_pd,
                              dev_ctx, mkldnn_engine, key);

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));

786 787
    // create backward conv primitive for weights
    if (filter_grad) {
788 789
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
790

791 792 793 794
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

795
      const size_t size = handler.GetDiffWeightsMemorySize();
796 797
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);

798 799 800 801 802 803 804 805 806
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
807 808

      filter_grad->set_layout(DataLayout::kMKLDNN);
809
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
810 811 812
    }

    if (input_grad) {
813 814 815 816 817 818 819
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

820
      const size_t size = handler.GetDiffSourceMemorySize();
821 822
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);

823 824 825 826 827 828 829
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
830 831

      input_grad->set_layout(DataLayout::kMKLDNN);
832
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
833
    }
834
    stream(stream::kind::eager).submit(pipeline).wait();
835 836 837 838 839 840 841 842 843
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
844
                   ops::ConvMKLDNNOpKernel<float>);
845 846

REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
847
                   ops::ConvMKLDNNGradOpKernel<float>);