reducer.cc 43.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/reducer.h"

17 18
#include <iostream>

19
#include "paddle/fluid/framework/tensor_util.h"
20
#include "paddle/fluid/imperative/layer.h"
21
#include "paddle/fluid/imperative/parallel_context.h"
22
#include "paddle/fluid/operators/math/concat_and_split.h"
23
#include "paddle/phi/kernels/funcs/strided_memcpy.h"
24
#ifdef PADDLE_WITH_XPU
25 26
#include "paddle/fluid/platform/device/xpu/enforce_xpu.h"
#endif
27
#include "paddle/fluid/string/string_helper.h"
28
#include "paddle/phi/core/dense_tensor.h"
29 30 31
namespace paddle {
namespace imperative {

32 33 34
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) ||     \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO) || \
    defined(PADDLE_WITH_CUSTOM_DEVICE)
35 36
// div the nranks
void Group::DivNRanks(const platform::DeviceContext &context, int64_t nranks) {
37
  phi::DenseTensor *tensor =
38
      is_sparse_
39
          ? sparse_contents_->GetMutable<phi::SelectedRows>()->mutable_value()
40
          : dense_contents_.GetMutable<phi::DenseTensor>();
41 42

  if (platform::is_gpu_place(tensor->place())) {
43
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
44 45 46
    DivNRanks(tensor, nranks, context);
#endif
  } else if (platform::is_cpu_place(tensor->place())) {
47 48
    VLOG(4) << "before div 2" << *tensor;
    VLOG(4) << "NDiv for cpu devices : rank = " << nranks;
49 50 51 52 53 54
#ifdef PADDLE_WITH_HIP
    if (dtype_ == paddle::framework::proto::VarType_Type_BF16) {
      PADDLE_THROW(paddle::platform::errors::Fatal(
          "Unsupport BF16 in DataParallel for now"));
    }
    framework::VisitDataTypeForHIP(
55
        dtype_,
L
Leo Chen 已提交
56
        DivNRanksForAllReduce<phi::CPUContext>(tensor, nranks, context));
57
#else
L
Leo Chen 已提交
58 59 60
    framework::VisitDataType(
        dtype_,
        DivNRanksForAllReduce<phi::CPUContext>(tensor, nranks, context));
61
#endif
62
    VLOG(4) << "after div 2" << *tensor;
63 64
  } else if (platform::is_xpu_place(tensor->place())) {
#ifdef PADDLE_WITH_XPU_BKCL
65 66 67
    PADDLE_THROW(
        platform::errors::Unimplemented("DivNRanks is not supported on XPU / "
                                        "XPU_BKCL, use EagerReducer instead."));
68 69 70 71
#endif
  }
}

72 73 74
template <typename DeviceContext, typename T>
static void ConcatTensorsForAllReduce(
    const DeviceContext &context,
75
    const std::vector<phi::DenseTensor> &dense_tensors_,
76 77
    framework::Variable *p_dense_contents) {
  operators::math::ConcatFunctor<DeviceContext, T> concat_functor_;
78 79 80
  concat_functor_(context,
                  dense_tensors_,
                  0,
81
                  p_dense_contents->GetMutable<phi::DenseTensor>());
82 83 84 85
}

template <typename DeviceContext, typename T>
static void SplitTensorsForAllReduce(
86 87
    const DeviceContext &context,
    framework::Variable *p_dense_contents,
88
    std::vector<phi::DenseTensor> *p_dense_tensors) {
89
  auto *in = p_dense_contents->GetMutable<phi::DenseTensor>();
90 91
  std::vector<phi::DenseTensor *> outs;
  std::vector<const phi::DenseTensor *> shape_refer;
92 93 94

  outs.reserve(p_dense_tensors->size());
  shape_refer.reserve(p_dense_tensors->size());
95

96 97 98 99 100 101
  for (auto &tensor : *p_dense_tensors) {
    outs.emplace_back(&tensor);
    shape_refer.emplace_back(&tensor);
  }
  // Sometimes direct copies will be faster
  if (p_dense_tensors->size() < 10) {
102 103
    phi::funcs::StridedMemcpyWithAxis0<T, DeviceContext>(
        context, *in, shape_refer, &outs);
104 105 106 107 108 109 110 111 112 113
  } else {
    operators::math::SplitFunctor<DeviceContext, T> split_functor_;
    split_functor_(context, *in, shape_refer, 0, &outs);
  }
}

// context is used to select the stream for concat
template <typename DeviceContext>
static void ConcatTensorsWithType(
    const DeviceContext &context,
114
    const std::vector<phi::DenseTensor> &dense_tensors_,
115 116 117
    framework::Variable *p_dense_contents,
    framework::proto::VarType::Type type) {
  switch (type) {
118
    case framework::proto::VarType::FP16:
119 120
      ConcatTensorsForAllReduce<DeviceContext, platform::float16>(
          context, dense_tensors_, p_dense_contents);
121 122
      break;
    case framework::proto::VarType::FP32:
123 124
      ConcatTensorsForAllReduce<DeviceContext, float>(
          context, dense_tensors_, p_dense_contents);
125 126
      break;
    case framework::proto::VarType::FP64:
127 128
      ConcatTensorsForAllReduce<DeviceContext, double>(
          context, dense_tensors_, p_dense_contents);
129 130 131 132 133
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
134
          framework::DataTypeToString(type)));
135 136 137 138
  }
}

// context is used to select the stream for split
139
template <typename DeviceContext>
140 141 142 143
static void SplitTensorsWithType(const DeviceContext &context,
                                 framework::Variable *p_dense_contents,
                                 std::vector<phi::DenseTensor> *p_dense_tensors,
                                 framework::proto::VarType::Type type) {
144
  switch (type) {
145
    case framework::proto::VarType::FP16:
146 147
      SplitTensorsForAllReduce<DeviceContext, platform::float16>(
          context, p_dense_contents, p_dense_tensors);
148 149
      break;
    case framework::proto::VarType::FP32:
150 151
      SplitTensorsForAllReduce<DeviceContext, float>(
          context, p_dense_contents, p_dense_tensors);
152 153
      break;
    case framework::proto::VarType::FP64:
154 155
      SplitTensorsForAllReduce<DeviceContext, double>(
          context, p_dense_contents, p_dense_tensors);
156 157 158 159 160
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
161 162 163 164
          framework::DataTypeToString(type)));
  }
}

165 166 167 168 169
#ifdef PADDLE_WITH_XPU_BKCL
template <>
void SplitTensorsForAllReduce<platform::XPUDeviceContext, float>(
    const platform::XPUDeviceContext &context,
    framework::Variable *p_dense_contents,
170
    std::vector<phi::DenseTensor> *p_dense_tensors) {
171
  auto *in = p_dense_contents->GetMutable<phi::DenseTensor>();
172 173
  std::vector<phi::DenseTensor *> outs;
  std::vector<const phi::DenseTensor *> shape_refer;
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

  outs.reserve(p_dense_tensors->size());
  shape_refer.reserve(p_dense_tensors->size());

  for (auto &tensor : *p_dense_tensors) {
    outs.emplace_back(&tensor);
    shape_refer.emplace_back(&tensor);
  }
  operators::math::SplitFunctor<platform::XPUDeviceContext, float>
      split_functor_;
  split_functor_(context, *in, shape_refer, 0, &outs);
}

// context is used to select the stream for concat
template <>
void ConcatTensorsWithType<platform::XPUDeviceContext>(
    const platform::XPUDeviceContext &context,
191
    const std::vector<phi::DenseTensor> &dense_tensors_,
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    framework::Variable *p_dense_contents,
    framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType::FP32:
      ConcatTensorsForAllReduce<platform::XPUDeviceContext, float>(
          context, dense_tensors_, p_dense_contents);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
          framework::DataTypeToString(type)));
  }
}

// context is used to select the stream for split
template <>
void SplitTensorsWithType<platform::XPUDeviceContext>(
    const platform::XPUDeviceContext &context,
    framework::Variable *p_dense_contents,
212
    std::vector<phi::DenseTensor> *p_dense_tensors,
213 214 215 216 217 218
    framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType::FP32:
      SplitTensorsForAllReduce<platform::XPUDeviceContext, float>(
          context, p_dense_contents, p_dense_tensors);
      break;
K
kuizhiqing 已提交
219 220 221 222 223 224 225 226 227
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
          framework::DataTypeToString(type)));
  }
}
#endif

228 229 230
void Group::ConcatTensors(const platform::DeviceContext &context) {
  auto place = context.GetPlace();
  if (platform::is_gpu_place(place)) {
231
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
L
Leo Chen 已提交
232 233 234 235
    ConcatTensorsWithType(static_cast<const phi::GPUContext &>(context),
                          dense_tensors_,
                          &dense_contents_,
                          dtype_);
236 237 238 239
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
240 241 242 243 244
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU_BKCL
    ConcatTensorsWithType(
        static_cast<const platform::XPUDeviceContext &>(context),
245 246 247
        dense_tensors_,
        &dense_contents_,
        dtype_);
248 249 250 251
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat xpu grads since it's not compiled with BKCL,"
        "Please recompile or reinstall Paddle with BKCL support."));
252
#endif
253
  } else if (platform::is_cpu_place(place)) {
L
Leo Chen 已提交
254 255 256 257
    ConcatTensorsWithType(static_cast<const phi::CPUContext &>(context),
                          dense_tensors_,
                          &dense_contents_,
                          dtype_);
258 259 260 261 262 263 264 265 266
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Concat grad tensor not supported on place (%s)", place));
  }
}

void Group::SplitTensors(const platform::DeviceContext &context) {
  auto place = context.GetPlace();
  if (platform::is_gpu_place(place)) {
267
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
L
Leo Chen 已提交
268 269 270 271
    SplitTensorsWithType(static_cast<const phi::GPUContext &>(context),
                         &dense_contents_,
                         &dense_tensors_,
                         dtype_);
272 273 274 275
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split grad tensor since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
276 277 278 279 280
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU_BKCL
    SplitTensorsWithType(
        static_cast<const platform::XPUDeviceContext &>(context),
281 282 283
        &dense_contents_,
        &dense_tensors_,
        dtype_);
284 285 286 287
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split xpu grad since it's not compiled with BKCL,"
        "Please recompile or reinstall Paddle with BKCL support."));
288
#endif
289
  } else if (platform::is_cpu_place(place)) {
L
Leo Chen 已提交
290 291 292 293
    SplitTensorsWithType(static_cast<const phi::CPUContext &>(context),
                         &dense_contents_,
                         &dense_tensors_,
                         dtype_);
294 295 296
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Split grad tensor not supported on place (%s)", place));
297 298 299 300 301
  }
}

std::ostream &operator<<(std::ostream &out, const Group &group) {
  const auto &vars = group.variable_indices_;
302
  out << "numel: " << group.all_length_ << " ;is_sparse: " << group.is_sparse_
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
      << " ;var number: " << vars.size() << "\n";
  auto begin = vars.begin();
  auto end = vars.end();
  out << "[";
  for (int i = 0; begin != end && i < 100; ++i, ++begin) {
    if (i > 0) out << ' ';
    out << *begin;
  }
  if (begin != end) {
    out << " ...";
  }
  out << "]\n";
  return out;
}

318 319 320
Reducer::Reducer(const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
                 const std::vector<std::vector<size_t>> &group_indices,
                 const std::vector<bool> &is_sparse_gradient,
321
                 std::shared_ptr<imperative::ParallelContext> parallel_ctx,
322 323
                 const std::vector<size_t> &group_size_limits,
                 bool find_unused_vars)
324 325 326
    : vars_(vars),
      group_indices_(group_indices),
      is_sparse_gradient_(is_sparse_gradient),
327
      parallel_ctx_(parallel_ctx),
328
      group_size_limits_(group_size_limits),
329
      find_unused_vars_each_step_(find_unused_vars) {
330
  VLOG(3) << "Start construct the Reducer ...";
331
  nrings_ = parallel_ctx->GetNRings();
332
  nranks_ = parallel_ctx->GetNRanks();
333 334
  // initialize groups
  InitializeGroups(group_indices);
335 336
  for (size_t global_var_index = 0; global_var_index < vars_.size();
       ++global_var_index) {
337
    auto var = vars_[global_var_index];
338 339
    var->GradVarBase()->AddVoidHook(std::make_shared<std::function<void()>>(
        [=]() { this->AddDistHook(global_var_index); }));
340
    var_index_map_[var->GradVarBase()->SharedVar().get()] = global_var_index;
341
  }
342 343 344 345 346 347

  // for checking var is ready once
  vars_marked_ready_.resize(vars_.size(), false);

  // Initialize local used vars
  local_used_vars_.resize(vars_.size(), 0);
348 349
}

350
void Reducer::InitializeDenseGroups(
351 352 353 354 355
    const std::vector<size_t> &variable_indices_, Group *p_group) {
  int64_t all_length = 0;
  for (size_t index = 0; index < variable_indices_.size(); ++index) {
    const auto variable_index = variable_indices_[index];
    const auto &var = vars_[variable_index];
356
    const auto &var_name = var->Name();
357 358
    PADDLE_ENFORCE_EQ(is_sparse_gradient_[variable_index],
                      false,
359
                      platform::errors::PreconditionNotMet(
360
                          "Tensor %s's GRAD must be LoDTensor, but received "
361 362 363
                          "GRAD is SelectedRows",
                          var_name));

364
    auto lod_tensor = var->MutableVar()->GetMutable<phi::DenseTensor>();
365 366
    PADDLE_ENFORCE_EQ(lod_tensor->IsInitialized(),
                      true,
367
                      platform::errors::PreconditionNotMet(
368
                          "Tensor %s is not initialized.", var_name));
369
    const auto size = lod_tensor->numel();
370
    PADDLE_ENFORCE_GT(
371 372
        size,
        0,
373 374
        platform::errors::PreconditionNotMet(
            "The number of tensor %s's elements is 0.", var_name));
375 376 377 378
    all_length += size;

    p_group->length_.push_back(size);

379
    // for concat operator
380
    p_group->dense_tensors_.push_back(phi::DenseTensor());
381

382
    // check the dtype and place, it must be same.
383 384
    const auto &dtype = var->DataType();
    const auto &place = var->Place();
385 386
    if (index > 0) {
      PADDLE_ENFORCE_EQ(
387 388
          dtype,
          p_group->dtype_,
389 390 391
          platform::errors::PreconditionNotMet(
              "Tensor %s has different dtype. Expected dtype is %s, but actual "
              "dtype is %s",
392 393
              var_name,
              framework::DataTypeToString(p_group->dtype_),
394
              framework::DataTypeToString(dtype)));
395 396
      PADDLE_ENFORCE_EQ(place,
                        place_,
397 398 399
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different place. Expected place is "
                            "%s, but actual place is %s",
400 401 402
                            var_name,
                            place_,
                            place));
403 404 405 406 407
    } else {
      p_group->dtype_ = dtype;
      place_ = place;
    }
  }
408
  p_group->all_length_ = all_length;
409 410 411 412 413
}

// Each parameter will be initialized according to the group information.
// For the sparse parameter, sparse_contents_ in the group directly points
// to the parameter. For dense parameters, first construct an empty Tensor().
414
// Then specify the actual memory in MarkDenseVarReady.
415 416 417 418 419 420
void Reducer::InitializeGroups(
    const std::vector<std::vector<size_t>> &group_indices) {
  VLOG(3) << "Start initialize groups ..";
  // clear the group
  groups_.clear();
  groups_.reserve(group_indices.size());
421 422
  variable_locators_.clear();
  variable_locators_.resize(vars_.size());
423 424 425 426 427

  auto group_nums = group_indices.size();
  for (size_t group_index = 0; group_index < group_nums; ++group_index) {
    const auto &variable_indices_ = group_indices[group_index];
    PADDLE_ENFORCE_GT(
428 429
        variable_indices_.size(),
        0,
430
        platform::errors::PreconditionNotMet(
431
            "The number of group[%d]'s elements is 0.", group_index));
432 433 434 435 436 437 438 439 440 441 442
    Group group;

    // It's just for check the sparse or dense
    auto first_varbase = vars_[variable_indices_.front()];
    if (variable_indices_.size() == 1 &&
        is_sparse_gradient_[variable_indices_.front()]) {
      // process the sparse gradient. one sparse, one group
      group.dtype_ = first_varbase->DataType();
      group.is_sparse_ = true;
    } else {
      // process the dense gradient.
443
      InitializeDenseGroups(variable_indices_, &group);
444
    }
445 446 447

    // map variables to this group by VariableLocator
    size_t inside_group_index = 0;
448
    for (const auto var_index : variable_indices_) {
449 450 451 452 453 454
      variable_locators_[var_index] = VariableLocator{
          .group_index = group_index,
          .inside_group_index = inside_group_index++,
      };
    }
    group.variable_indices_ = std::move(variable_indices_);
455
    groups_.emplace_back(std::move(group));
456
    // Debug Message For Reducer
457
    VLOG(3) << "The Group[" << group_index << "]:" << groups_.back();
458 459 460
  }
}

461 462
void Reducer::PrepareDeps(const std::unordered_set<GradOpNode *> &init_nodes) {
  PADDLE_ENFORCE_EQ(
463 464
      node_deps_.empty(),
      true,
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
      platform::errors::AlreadyExists("Op deps must be initialized here"));

  std::queue<GradOpNode *> q;
  std::unordered_set<GradOpNode *> visited;

  for (auto pos = init_nodes.begin(); pos != init_nodes.end(); pos++) {
    q.push(*pos);
    visited.insert(*pos);
  }

  while (!q.empty()) {
    auto *cur_node = q.front();
    q.pop();

    const auto &grad_pending_nodes = cur_node->GradPendingNodes();
    for (auto &grad_pending_node : grad_pending_nodes) {
      PADDLE_ENFORCE_NOT_NULL(
          grad_pending_node,
          platform::errors::NotFound("Grad pending node should not be null"));
484 485 486 487 488
      // py_layer is not supported in DataParallel
      auto begin = grad_pending_node->begin();
      auto end = grad_pending_node->end();
      for (auto op_base = begin; op_base != end; op_base++) {
        PADDLE_ENFORCE_EQ(
489 490
            op_base->Type() != "py_layer",
            true,
491 492 493 494 495 496 497 498 499
            platform::errors::PreconditionNotMet(
                "Note: Currently PyLayer is not supported in DataParallel. For "
                "using PyLayer in a DataParallel model, you can skip gradient "
                "synchronization among multiple cards by 'no_sync', and "
                "manually implement 'all_reduce' before model optimization. "
                "There is an example showing specific implemetation processing "
                "in offical docs: https://www.paddlepaddle.org.cn/documentation"
                "/docs/api/paddle/DataParallel_cn.html"));
      }
500 501 502 503 504 505 506 507 508
      ++node_deps_[grad_pending_node.get()];
      if (visited.count(grad_pending_node.get()) == 0) {
        visited.insert(grad_pending_node.get());
        q.push(grad_pending_node.get());
      }
    }
  }
}

509
void Reducer::TraverseBackwardGraph(
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
    const std::vector<std::shared_ptr<imperative::VarBase>> &outputs) {
  node_deps_.clear();
  std::queue<std::shared_ptr<GradOpNode>> q;
  std::unordered_set<VariableWrapper *> var_visited;
  std::unordered_set<GradOpNode *> init_nodes;

  for (const auto &output : outputs) {
    const auto &grad_node = output->GradVarBase()->GradNode();
    if (grad_node == nullptr || output->OverridedStopGradient()) {
      VLOG(3) << "Skip auto grad since there is no grad op or output is "
                 "stop_gradient=True: "
              << output->Name();
      continue;
    } else {
      init_nodes.insert(grad_node.get());
      var_visited.insert(output->SharedVar().get());
      q.push(grad_node);
    }
  }

  PrepareDeps(init_nodes);
  // Traverse the autograd graph starting at the specified output
  while (!q.empty()) {
    auto cur_node = q.front();
    q.pop();

    for (const auto &cur_op : *cur_node) {
      auto &bwd_outs = cur_op.GetOutsMap();
      for (const auto &pair : bwd_outs) {
        if (!pair.second.IsGrad()) {
          continue;
        }
        for (auto &var : pair.second) {
          if (!var || var->OverridedStopGradient()) {
            continue;
          } else {
            var_visited.insert(var.get());
          }
        }
      }
    }
    for (const auto &grad_pending_node : cur_node->GradPendingNodes()) {
      PADDLE_ENFORCE_NOT_NULL(grad_pending_node,
                              platform::errors::NotFound(
                                  "Grad pending node should not be nullptr"));
      auto iter = node_deps_.find(grad_pending_node.get());
      if (iter == node_deps_.end()) {
        continue;
      }
      if (--(iter->second) == 0) {
        q.push(grad_pending_node);
      }
    }
  }

  for (const auto &it : var_index_map_) {
    if (var_visited.count(it.first) == 0) {
      unused_vars_.push_back(it.second);
      VLOG(3) << "Var[" << it.second << "] [" << it.first->Name()
              << "] is not used";
    }
  }
572
}
573

574 575 576
// After each batch is calculated, the counter of each group(group.pending_)
// and allreudce sequence counter(next_group_) will be cleaned up again.
void Reducer::PrepareForBackward(
577
    const std::vector<std::shared_ptr<imperative::VarBase>> &outputs) {
578
  VLOG(3) << "after forward, then reset count for backward.";
579
  grad_need_hooks_ = true;
580 581 582 583 584 585 586 587 588 589 590
  next_group_ = 0;
  std::for_each(groups_.begin(), groups_.end(), [](Group &group) {
    group.pending_ = group.variable_indices_.size();
    group.sparse_contents_ = nullptr;
  });

  // reinitialize vars_marked_ready_ for next iteration
  vars_marked_ready_.clear();
  vars_marked_ready_.resize(vars_.size(), false);

  PADDLE_ENFORCE_EQ(
591 592
      groups_need_finalize_,
      false,
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
      platform::errors::PreconditionNotMet(
          "A serious error has occurred here. Please "
          "set find_unused_parameters=True to traverse backward graph "
          "in each step to prepare reduce in advance. If you have "
          "set, There may be several reasons for this error: "
          "1) Please note that all forward outputs derived from the module "
          "parameters must participate in the calculation of losses and "
          "subsequent gradient calculations. If not, the wrapper will hang, "
          "waiting for autograd to generate gradients for these parameters. "
          "you can use detach or stop_gradient to make the unused parameters "
          "detached from the autograd graph. "
          "2) Used multiple forwards and one backward. You may be able to wrap "
          "multiple forwards in a model."));

  // The first var to trigger the unused parameter
  has_marked_unused_vars_ = false;

  if (find_unused_vars_once_ || find_unused_vars_each_step_) {
    unused_vars_.clear();
612
    TraverseBackwardGraph(outputs);
613 614 615 616 617
    // only check once in first step
    find_unused_vars_once_ = false;
  }

  if (find_unused_vars_each_step_ && unused_vars_.empty()) {
618 619 620 621 622 623 624 625
    LOG_FIRST_N(WARNING, 1)
        << "All parameters are involved in the backward pass. "
           "It is recommended to set find_unused_parameters to False "
           "to improve performance. However, if unused parameters "
           "appear in subsequent iterative training, then an error "
           "will occur. Please make it clear that in the subsequent "
           "training, there will be no parameters that are not used "
           "in the backward pass, and then set find_unused_parameters";
626 627 628
  }

  if (unused_vars_.size() == vars_.size()) {
629 630 631 632 633 634
    LOG_FIRST_N(WARNING, 1)
        << "There is no parameter in the device involved "
           "in the backward calculation. If there are "
           "parameters on other devices involved in the "
           "backward, then a serious error will occur here.";
  }
635 636 637 638 639
}

// Add hook function to each leaf node. When the gradient of a leaf node is
// generated, if it is the sparse parameter, it will directly execute allreduce,
// if it is the dense parameter, it will execute three steps: 1,
640
// MarkDenseVarReady. Find the position of the corresponding group
641 642 643 644 645
// through var_index, share the gradient memory and the group dense_tensors,
// the group counter is reduced by 1. 2, MarkGroupReady: When the group
// counter is 0, it means that allreduce can be emitted, and
// concat + allreduce + split is emitted in turn according to next_group_.
// 3, FinalizeBackward: after the end, synchronize each stream.
646
void Reducer::AddDistHook(size_t var_index) {
647 648
  PADDLE_ENFORCE_LT(var_index,
                    variable_locators_.size(),
649 650 651
                    platform::errors::OutOfRange(
                        "Out of bounds variable index. it must be less"
                        "than %d, but it is %d",
652 653
                        variable_locators_.size(),
                        var_index));
654

655 656 657 658 659
  // gradient synchronization is not required when grad_need_hooks_ is false.
  if (!grad_need_hooks_) {
    return;
  }

660 661 662
  VLOG(3) << "Var[" << var_index << "] ["
          << vars_[var_index]->GradVarBase()->Name()
          << "] arrived and triggered disthook";
663

664 665
  local_used_vars_[var_index] = 1;

666
  // rebuild group when find_unused_vars_each_step_ is false
667
  if (NeedRebuildGroup()) {
668 669 670
    rebuild_vars_.push_back(vars_[var_index]);
    rebuild_var_indices_.push_back(var_index);
  }
671

672
  if (!has_marked_unused_vars_) {
673 674 675 676 677 678
    has_marked_unused_vars_ = true;
    for (const auto &unused_index : unused_vars_) {
      MarkVarReady(unused_index, false);
    }
  }

679 680
  MarkVarReady(var_index, true);
}
681

682
void Reducer::MarkVarReady(const size_t var_index, const bool is_used_var) {
683 684
  groups_need_finalize_ = true;

685
  const auto &var_locator = variable_locators_[var_index];
686
  const auto group_index = var_locator.group_index;
687
  auto &group = groups_[group_index];
688

689 690 691 692
  // error happened, if the var is ready before.
  if (vars_marked_ready_[var_index]) {
    auto error_info = string::Sprintf(
        "Error happened, when parameter[%d][%s] has been ready before. "
693 694 695
        "Please set find_unused_parameters=True to traverse backward graph "
        "in each step to prepare reduce in advance. If you have set, "
        "there may be several reasons for this error: "
696 697 698 699
        "1) In multiple reentrant backward phase, some parameters are reused."
        "2) Using model parameters outside of forward function. Please "
        "make sure that model parameters are not shared in concurrent "
        "forward-backward passes.",
700 701
        var_index,
        vars_[var_index]->GradVarBase()->Name());
702

703 704
    PADDLE_ENFORCE_EQ(has_marked_unused_vars_,
                      false,
705 706 707 708 709 710 711 712 713 714 715 716 717 718
                      platform::errors::PreconditionNotMet(error_info));

    error_info +=
        "3) Unused parameters retrieval is incorrect. "
        "The return value of forward will be used to retrieve"
        " the unused parameters of the entire model. These "
        "gradients of unused parameters will not be synchronized "
        "between multiple cards. However, if the unused "
        "parameters participate in the backward calculation "
        "again at a later time (e.g. after the forward function, "
        "the loss calculation uses the unused "
        "paramters of the forward and trigger backward), "
        "its gradient will be wrong.";

719 720
    PADDLE_ENFORCE_EQ(has_marked_unused_vars_,
                      true,
721 722 723 724 725
                      platform::errors::PreconditionNotMet(error_info));
  } else {
    vars_marked_ready_[var_index] = true;
  }

726 727
  if (!group.is_sparse_) {
    // process dense group
728 729
    const auto inside_group_index = var_locator.inside_group_index;
    const auto length = group.length_[inside_group_index];
730
    auto &group_tensor = group.dense_tensors_[inside_group_index];
731

732
    if (is_used_var) {
733
      auto var_base = vars_[var_index]->GradVarBase();
734
      auto tensor = var_base->MutableVar()->GetMutable<phi::DenseTensor>();
735 736
      group_tensor.ShareDataWith(*tensor).Resize(
          {static_cast<int64_t>(length)});
737
    } else {
738 739
      // TODO(shenliang03): maybe save the memory
      // by avoiding tensor construction
740 741
      if (!group_tensor.IsInitialized()) {
        group_tensor.Resize({static_cast<int64_t>(length)});
742
        group_tensor.mutable_data(place_,
743
                                  framework::TransToPhiDataType(group.dtype_));
744 745
      }

746
#ifdef PADDLE_WITH_XPU_BKCL
747
      if (platform::is_xpu_place(group_tensor.place())) {
748 749 750 751
        auto dev_ctx = static_cast<platform::XPUDeviceContext *>(
            platform::DeviceContextPool::Instance().Get(place_));
        if (HasGrad(var_index)) {
          auto var_base = vars_[var_index]->GradVarBase();
752
          auto tensor = var_base->MutableVar()->GetMutable<phi::DenseTensor>();
753 754 755 756 757 758 759 760 761 762 763
          group_tensor.ShareDataWith(*tensor).Resize(
              {static_cast<int64_t>(length)});
        } else {
          group_tensor.Resize({static_cast<int64_t>(length)});
          int r = xpu::constant(dev_ctx->x_context(),
                                reinterpret_cast<float *>(group_tensor.data()),
                                group_tensor.numel(),
                                0.0f);
          PADDLE_ENFORCE_XDNN_SUCCESS(r, "constant");
          PADDLE_ENFORCE_XPU_SUCCESS(xpu_wait(dev_ctx->stream()));
        }
764
      }
765
#else
766 767 768
      auto *dev_ctx = platform::DeviceContextPool::Instance().Get(place_);
      if (HasGrad(var_index)) {
        auto var_base = vars_[var_index]->GradVarBase();
769
        auto tensor = var_base->MutableVar()->GetMutable<phi::DenseTensor>();
770 771
        group_tensor.ShareDataWith(*tensor).Resize(
            {static_cast<int64_t>(length)});
772 773
      } else {
        group_tensor.Resize({static_cast<int64_t>(length)});
774
        phi::funcs::set_constant(*dev_ctx, &group_tensor, 0.0);
775
      }
776
#endif
777 778 779
    }
  } else {
    // process sparse group
780
    PADDLE_ENFORCE_EQ(
781 782
        HasGrad(var_index),
        true,
783 784 785 786 787 788 789
        platform::errors::PreconditionNotMet(
            "The sparse parameter[%d][%s] should have gradient. "
            "Currently, DataParallel does not support sparse "
            "parameters without generating gradients during training. "
            "For example, if is_sparese=True is used in Embedding, "
            "the current step of this parameter cannot generate gradient "
            "because of stop_gradient/detatch, where error will occur.",
790 791
            var_index,
            vars_[var_index]->Name()));
792 793 794
    auto var_base = vars_[var_index]->GradVarBase();
    // need to check tensor type
    PADDLE_ENFORCE_EQ(
795 796
        var_base->Var().IsType<phi::SelectedRows>(),
        true,
797 798 799 800 801 802 803 804 805
        platform::errors::PreconditionNotMet(
            "The sparse parameter[%d][%s] must have a selectedrows gradient. "
            "Before forward pass, the parameter type is inferred to be "
            "SelectedRows, but after backward pass, its actual type becomes "
            "LodTensor. It is currently not supported by DataParallel. "
            "For example, if sparse embedding is used, and the weight of "
            "embedding is shared with subsequent dense parameters, then "
            "the parameter gradient of the embedding will be converted "
            "to dense parameters.",
806 807
            var_index,
            vars_[var_index]->Name()));
808 809

    group.sparse_contents_ = var_base->MutableVar();
810
  }
811

812 813 814 815 816 817 818 819 820 821
  if (--group.pending_ == 0) {
    // can start allreduce
    MarkGroupReady(group_index);
  }

  if (next_group_ == groups_.size()) {
    FinalizeBackward();
  }
}

822
// TODO(liuyuhui): If BKCL support non-blocking communication, it should be
823
// fixed as same as multi gpus card training.
824
void Reducer::MarkGroupReady(size_t group_index) {
825
  PADDLE_ENFORCE_GE(
826 827
      group_index,
      next_group_,
828 829 830 831
      platform::errors::PreconditionNotMet(
          "The index of the incoming group must be greater "
          "than or equal to the previously synchronized group index, "
          "expect it to greater than or equal to %d, but got %d.",
832 833
          next_group_,
          group_index));
834

835
  if (group_index > next_group_) {
836
    VLOG(3) << "It will adjust the order of group in next batch automatically";
837 838 839 840 841
    return;
  }

  for (; next_group_ < groups_.size() && groups_[next_group_].pending_ == 0;
       ++next_group_) {
842 843
    UNUSED auto &group = groups_[next_group_];
    UNUSED const int run_order = next_group_ % nrings_;
844

845
    auto *tensor = group.dense_contents_.GetMutable<phi::DenseTensor>();
846 847 848
    tensor->Resize(phi::make_ddim({group.all_length_}))
        .mutable_data(place_, framework::TransToPhiDataType(group.dtype_));

849 850 851 852 853 854
    // For CUDA or XPU, compute_stream --> comm_stream.
    // For CPU, do nothing.
    // NOTE. Because concat uses the comm_stream,
    // so we expose WaitCompute() interface and call
    // it here.
    parallel_ctx_->WaitCompute(run_order);
855
    FusedAllReduceSchedule(run_order, group, next_group_);
856 857 858
  }
}

859 860
void Reducer::FusedAllReduceSchedule(const int run_order,
                                     Group &group,
861 862 863 864
                                     const int curr_group_index) {
  // The overall timeline: concat > div_nranks > allreduce > split
  // dev_context is used to select different stream
  const auto &dev_context = *parallel_ctx_->GetDeviceContext(run_order);
865
  if (group.is_sparse_) {
866 867 868
    VLOG(3) << "sparse group [" << curr_group_index
            << "] start allreduce in ring[" << run_order << "]";
    group.DivNRanks(dev_context, nranks_);
869 870
    parallel_ctx_->AllReduceByStream(
        *group.sparse_contents_, group.sparse_contents_, run_order, false);
871
  } else {
872 873
    VLOG(3) << "dense group [" << curr_group_index
            << "] start allreduce in ring[" << run_order << "]";
874 875
    // Select common commstream to concat tensors
    // group.dense_tensors ---> group.dense_contents_
876
    group.ConcatTensors(dev_context);
877

878
    group.DivNRanks(dev_context, nranks_);
879 880 881
    // Start allreduce
    parallel_ctx_->AllReduceByStream(
        group.dense_contents_, &(group.dense_contents_), run_order, false);
882

883
    // Select communication stream to split tensors
884
    // group.dense_contents_ ---> group.dense_tensors
885
    group.SplitTensors(dev_context);
886 887 888
  }
}

889
std::vector<std::vector<size_t>> Reducer::RebuildGruops() {
890 891 892 893
  VLOG(3) << "The order of parameter arrival: "
          << string::join_strings(rebuild_var_indices_, ',');

  PADDLE_ENFORCE_EQ(
894 895
      rebuild_vars_.size(),
      vars_.size(),
896 897 898
      platform::errors::PreconditionNotMet(
          "Rebuild vars's number should be equal to original vars'number, "
          "expect it to be %d, but got %d.",
899 900
          vars_.size(),
          rebuild_vars_.size()));
901 902
  std::reverse(rebuild_vars_.begin(), rebuild_vars_.end());
  std::reverse(rebuild_var_indices_.begin(), rebuild_var_indices_.end());
903 904 905 906
  auto rebuild_group_indices = AssignGroupBySize(rebuild_vars_,
                                                 is_sparse_gradient_,
                                                 group_size_limits_,
                                                 rebuild_var_indices_);
907 908 909 910 911 912 913
  has_rebuilt_group_ = true;
  rebuild_vars_.clear();
  rebuild_var_indices_.clear();
  std::reverse(rebuild_group_indices.begin(), rebuild_group_indices.end());
  return rebuild_group_indices;
}

914 915 916 917 918 919 920
void Reducer::ProcessUnusedDenseVars() {
  // The calculation stream must be used here to
  // avoid conflicts with communication.
  VLOG(3) << "Local used vars : "
          << string::join_strings(local_used_vars_, ',');
  const auto *dev_ctx = platform::DeviceContextPool::Instance().Get(place_);
  // H2D is to allreduce the local_used_vars_
921
  auto *global_used_tensor = global_used_vars_.GetMutable<phi::DenseTensor>();
922 923 924 925 926 927
  framework::TensorFromVector<int>(
      local_used_vars_, *dev_ctx, global_used_tensor);
  parallel_ctx_->AllReduceByStream(
      global_used_vars_, &global_used_vars_, 0, true);
  framework::TensorToVector<int>(
      *global_used_tensor, *dev_ctx, &local_used_vars_);
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957

  // sync compute stream to get global used var message,
  // but maybe affect speed performance
  parallel_ctx_->SynchronizeCompute();
  VLOG(3) << "Global used vars : "
          << string::join_strings(local_used_vars_, ',');

  for (const auto var_index : unused_vars_) {
    const bool global_unused = (local_used_vars_[var_index] == 0);

    // global used but local unused, set grad
    VLOG(3) << "Var [" << var_index << "] [" << vars_[var_index]->Name()
            << "] global_unused:" << global_unused
            << "  has grad: " << HasGrad(var_index);

    if (!global_unused) {
      VLOG(3) << "Start process unused Var";
      // 1. source var base
      const auto &var_locator = variable_locators_[var_index];
      const auto group_index = var_locator.group_index;
      const auto &group = groups_[group_index];
      const auto inside_group_index = var_locator.inside_group_index;
      const auto &src_tensor = group.dense_tensors_[inside_group_index];
      // sparse no need to check and no support find_unused_parameters
      if (group.is_sparse_) {
        continue;
      }
      // 2. destination var base
      auto dest_var_base = vars_[var_index];
      auto *dest_tensor =
958
          dest_var_base->MutableVar()->GetMutable<phi::DenseTensor>();
959 960 961 962
      const auto &dest_dims = dest_tensor->dims();

      // 3. create grad var base or get grad var base
      auto grad_var_base_tmp = dest_var_base->MutableGradVarBase();
963 964 965 966
      // NOTE(haohongxiang): Calling SetIsEmpty here is to make sure that
      // gradient accumulation can continue normally after clear_gradients()
      // especiall in cases including complex control flow.
      grad_var_base_tmp->SharedVar()->SetIsEmpty(false);
967 968 969

      // 4. set grad tensor
      auto *dest_grad_tensor =
970
          grad_var_base_tmp->MutableVar()->GetMutable<phi::DenseTensor>();
971
      const auto *dev_ctx = platform::DeviceContextPool::Instance().Get(place_);
972 973
      paddle::framework::TensorCopy(
          src_tensor, place_, *dev_ctx, dest_grad_tensor);
974 975 976 977 978 979 980 981 982 983 984 985
      dest_grad_tensor->Resize(dest_dims);
    }
  }
}

bool Reducer::HasGrad(size_t var_index) {
  const auto grad_var = vars_[var_index]->GradVarBase();
  if (!grad_var || !grad_var->Var().IsInitialized()) {
    return false;
  }

  const auto &var = grad_var->Var();
986 987
  if (var.IsType<phi::DenseTensor>()) {
    if (var.Get<phi::DenseTensor>().IsInitialized()) {
988 989
      return true;
    }
990 991
  } else if (var.IsType<phi::SelectedRows>()) {
    if (var.Get<phi::SelectedRows>().value().IsInitialized()) {
992 993 994 995 996 997 998 999 1000
      return true;
    }
  } else {
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Only support LoDTensor and SelectedRows for gradient var"));
  }
  return false;
}

1001
void Reducer::FinalizeBackward() {
1002
  groups_need_finalize_ = false;
1003
  grad_need_hooks_ = false;
1004

1005 1006
  // Must prevent compute_stream_ starting until all comm streams have finished
  for (int i = 0; i < nrings_; ++i) {
1007
    parallel_ctx_->WaitComm(i);
1008 1009
  }

1010 1011 1012 1013 1014 1015
  for (auto &group : groups_) {
    if (!group.is_sparse_) {
      group.dense_contents_.Clear();
    }
  }

1016
  if (NeedRebuildGroup()) {
1017 1018 1019 1020 1021
    VLOG(3) << "Start rebuilding the groups";
    auto rebuild_group_indices = RebuildGruops();
    group_indices_ = std::move(rebuild_group_indices);
    InitializeGroups(group_indices_);
  }
1022

1023
  if (find_unused_vars_each_step_) {
1024
// TODO(liuyuhui) support xpu about Tensorcopy/TensorFromVector/TensorToVector
张春乔 已提交
1025
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
K
Kim Yann 已提交
1026
    defined(PADDLE_WITH_GLOO)
1027 1028 1029 1030 1031 1032 1033 1034 1035
    ProcessUnusedDenseVars();
#endif
    // Initialize local used vars
    local_used_vars_.clear();
    local_used_vars_.resize(vars_.size(), 0);
    VLOG(3) << "ProcessUnusedDenseVars is finished.";
  }

  VLOG(3) << "In the batch, Reducer is finished.";
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
}

// According to the size of each parameter, it is allocated to different groups.
// The sparse parameter occupies a group exclusively. The dense parameters of
// the same data type are assigned to the same group. When dividing groups, the
// size of each group will be limited according to each value in
// group_size_limits in turn. When it is not enough, it will be divided
// by the last value of group_size_limits. The limit value is 0, which
// means that the parameter will monopolize the group.
std::vector<std::vector<size_t>> AssignGroupBySize(
    const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
    const std::vector<bool> &is_sparse_gradient,
1048 1049
    const std::vector<size_t> &group_size_limits,
    const std::vector<int64_t> &tensor_indices) {
1050 1051
  PADDLE_ENFORCE_EQ(vars.size(),
                    is_sparse_gradient.size(),
1052 1053 1054
                    platform::errors::PreconditionNotMet(
                        "vars len must be equal to is_sparse_gradient len, but "
                        "[%lu] != [%lu]",
1055 1056
                        vars.size(),
                        is_sparse_gradient.size()));
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
  auto check_perm = [](const std::vector<int64_t> &x) -> bool {
    size_t len = x.size();
    std::vector<size_t> cnt(len, 0);
    for (size_t i = 0; i < len; ++i) {
      if (x[i] >= static_cast<int64_t>(len) || x[i] < 0 || cnt[x[i]]) {
        return false;
      }
      cnt[x[i]]++;
    }
    return true;
  };
1068 1069
  PADDLE_ENFORCE_EQ(true,
                    check_perm(tensor_indices),
1070 1071 1072
                    platform::errors::PreconditionNotMet(
                        "tensor_indices must be a permutation from 0 to %lu",
                        tensor_indices.size()));
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
  // the return vector
  std::vector<std::vector<size_t>> res;

  // Key: the var type
  // Value: should use which index in group_size_limits for group size limit
  std::unordered_map<std::string, size_t> group_limit_index;

  // Key: the var type
  // Value: <the var index in input tensors, total numel in this group>
  std::unordered_map<std::string, std::pair<std::vector<size_t>, size_t>>
      next_group;

  for (size_t i = 0; i < vars.size(); ++i) {
    const auto &var = vars[i];
1087 1088 1089 1090 1091 1092 1093

    size_t tensor_real_index = i;
    if (!tensor_indices.empty()) {
      tensor_real_index = tensor_indices[i];
    }

    if (is_sparse_gradient[tensor_real_index]) {
1094
      // we keep sparse var a single group
1095
      res.push_back({tensor_real_index});
1096 1097 1098 1099 1100 1101 1102 1103 1104
      continue;
    }

    const auto &var_dtype = var->DataType();
    const auto var_dtype_str = framework::DataTypeToString(var_dtype);
    VLOG(3) << "var[" << var->GradVarName() << "] 's type is "
            << var->DataType();
    auto &group_info = next_group[var_dtype_str];
    int64_t var_size = -1;
1105 1106
    if (var->Var().IsType<phi::DenseTensor>()) {
      var_size = var->Var().Get<phi::DenseTensor>().numel();
1107 1108 1109 1110 1111
    } else {
      VLOG(3) << "var " << var->Name()
              << " is not tensor or selected_rows, so skip it";
      continue;
    }
1112
    group_info.first.push_back(tensor_real_index);
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
    group_info.second += framework::SizeOfType(var_dtype) * var_size;

    if (group_limit_index.find(var_dtype_str) == group_limit_index.end()) {
      // means it is the first var of var_dtype
      group_limit_index[var_dtype_str] = 0;
    }
    auto &cur_limit_index = group_limit_index[var_dtype_str];
    if (group_info.second >= group_size_limits[cur_limit_index]) {
      // exceed group capacity and create a new group
      res.emplace_back(std::move(group_info.first));
      group_info = std::pair<std::vector<size_t>, size_t>();
      cur_limit_index =
          (std::min)(cur_limit_index + 1, group_size_limits.size() - 1);
    }
  }

  // add the final groups
  for (auto &e : next_group) {
    auto &group_info = e.second;
    if (!group_info.first.empty()) {
      res.emplace_back(std::move(group_info.first));
    }
  }

  for (const auto &group_index : res) {
    PADDLE_ENFORCE_NE(
1139 1140
        group_index.empty(),
        true,
1141 1142 1143
        platform::errors::PreconditionNotMet(
            "AssignGroupBySize construct empty group, please check."));
  }
1144
  if (tensor_indices.empty()) {
1145 1146
    std::sort(res.begin(),
              res.end(),
1147 1148 1149 1150
              [](const std::vector<size_t> &x, const std::vector<size_t> &y) {
                return x.front() < y.front();
              });
  }
1151 1152 1153 1154 1155 1156
  return res;
}
#endif

}  // namespace imperative
}  // namespace paddle