reducer.cc 29.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/reducer.h"

17 18 19 20 21 22 23 24 25 26
#include <iostream>

#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/string/string_helper.h"

#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"

#include "paddle/fluid/imperative/parallel_context.h"

27 28 29
namespace paddle {
namespace imperative {

30
#if (defined PADDLE_WITH_NCCL) || (defined PADDLE_WITH_XPU_BKCL)
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
template <typename DeviceContext, typename T>
static void ConcatTensorsForAllReduce(
    const DeviceContext &context,
    const std::vector<framework::Tensor> &dense_tensors_,
    framework::Variable *p_dense_contents) {
  operators::math::ConcatFunctor<DeviceContext, T> concat_functor_;
  concat_functor_(context, dense_tensors_, 0,
                  p_dense_contents->GetMutable<framework::LoDTensor>());
}

template <typename DeviceContext, typename T>
static void SplitTensorsForAllReduce(
    const DeviceContext &context, framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors) {
  auto *in = p_dense_contents->GetMutable<framework::LoDTensor>();
  std::vector<framework::Tensor *> outs;
  std::vector<const framework::Tensor *> shape_refer;

  outs.reserve(p_dense_tensors->size());
  shape_refer.reserve(p_dense_tensors->size());
51

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
  for (auto &tensor : *p_dense_tensors) {
    outs.emplace_back(&tensor);
    shape_refer.emplace_back(&tensor);
  }
  // Sometimes direct copies will be faster
  if (p_dense_tensors->size() < 10) {
    operators::StridedMemcpyWithAxis0<T>(context, *in, shape_refer, &outs);
  } else {
    operators::math::SplitFunctor<DeviceContext, T> split_functor_;
    split_functor_(context, *in, shape_refer, 0, &outs);
  }
}

// context is used to select the stream for concat
template <typename DeviceContext>
static void ConcatTensorsWithType(
    const DeviceContext &context,
    const std::vector<framework::Tensor> &dense_tensors_,
    framework::Variable *p_dense_contents,
    framework::proto::VarType::Type type) {
  switch (type) {
73
    case framework::proto::VarType::FP16:
74 75
      ConcatTensorsForAllReduce<DeviceContext, platform::float16>(
          context, dense_tensors_, p_dense_contents);
76 77
      break;
    case framework::proto::VarType::FP32:
78 79
      ConcatTensorsForAllReduce<DeviceContext, float>(context, dense_tensors_,
                                                      p_dense_contents);
80 81
      break;
    case framework::proto::VarType::FP64:
82 83
      ConcatTensorsForAllReduce<DeviceContext, double>(context, dense_tensors_,
                                                       p_dense_contents);
84 85 86 87 88
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
89
          framework::DataTypeToString(type)));
90 91 92 93
  }
}

// context is used to select the stream for split
94 95 96 97 98 99
template <typename DeviceContext>
static void SplitTensorsWithType(
    const DeviceContext &context, framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors,
    framework::proto::VarType::Type type) {
  switch (type) {
100
    case framework::proto::VarType::FP16:
101 102
      SplitTensorsForAllReduce<DeviceContext, platform::float16>(
          context, p_dense_contents, p_dense_tensors);
103 104
      break;
    case framework::proto::VarType::FP32:
105 106
      SplitTensorsForAllReduce<DeviceContext, float>(context, p_dense_contents,
                                                     p_dense_tensors);
107 108
      break;
    case framework::proto::VarType::FP64:
109 110
      SplitTensorsForAllReduce<DeviceContext, double>(context, p_dense_contents,
                                                      p_dense_tensors);
111 112 113 114 115
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
116 117 118 119
          framework::DataTypeToString(type)));
  }
}

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
#ifdef PADDLE_WITH_XPU_BKCL
template <>
void SplitTensorsForAllReduce<platform::XPUDeviceContext, float>(
    const platform::XPUDeviceContext &context,
    framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors) {
  auto *in = p_dense_contents->GetMutable<framework::LoDTensor>();
  std::vector<framework::Tensor *> outs;
  std::vector<const framework::Tensor *> shape_refer;

  outs.reserve(p_dense_tensors->size());
  shape_refer.reserve(p_dense_tensors->size());

  for (auto &tensor : *p_dense_tensors) {
    outs.emplace_back(&tensor);
    shape_refer.emplace_back(&tensor);
  }
  operators::math::SplitFunctor<platform::XPUDeviceContext, float>
      split_functor_;
  split_functor_(context, *in, shape_refer, 0, &outs);
}

// context is used to select the stream for concat
template <>
void ConcatTensorsWithType<platform::XPUDeviceContext>(
    const platform::XPUDeviceContext &context,
    const std::vector<framework::Tensor> &dense_tensors_,
    framework::Variable *p_dense_contents,
    framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType::FP32:
      ConcatTensorsForAllReduce<platform::XPUDeviceContext, float>(
          context, dense_tensors_, p_dense_contents);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
          framework::DataTypeToString(type)));
  }
}

// context is used to select the stream for split
template <>
void SplitTensorsWithType<platform::XPUDeviceContext>(
    const platform::XPUDeviceContext &context,
    framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors,
    framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType::FP32:
      SplitTensorsForAllReduce<platform::XPUDeviceContext, float>(
          context, p_dense_contents, p_dense_tensors);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
          framework::DataTypeToString(type)));
  }
}
#endif

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
void Group::ConcatTensors(const platform::DeviceContext &context) {
  VLOG(3) << "Before concat, set output tensor size is " << all_length_;
  auto tensor = dense_contents_.GetMutable<framework::LoDTensor>();
  tensor->Resize(framework::make_ddim({all_length_}))
      .mutable_data(context.GetPlace(), dtype_);

  auto place = context.GetPlace();
  if (platform::is_gpu_place(place)) {
#ifdef PADDLE_WITH_NCCL
    ConcatTensorsWithType(
        static_cast<const platform::CUDADeviceContext &>(context),
        dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
199 200 201 202 203 204 205 206 207 208
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU_BKCL
    ConcatTensorsWithType(
        static_cast<const platform::XPUDeviceContext &>(context),
        dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat xpu grads since it's not compiled with BKCL,"
        "Please recompile or reinstall Paddle with BKCL support."));
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
#endif
  } else if (platform::is_cpu_place(place)) {
    ConcatTensorsWithType(
        static_cast<const platform::CPUDeviceContext &>(context),
        dense_tensors_, &dense_contents_, dtype_);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Concat grad tensor not supported on place (%s)", place));
  }
}

void Group::SplitTensors(const platform::DeviceContext &context) {
  auto place = context.GetPlace();
  if (platform::is_gpu_place(place)) {
#ifdef PADDLE_WITH_NCCL
    SplitTensorsWithType(
        static_cast<const platform::CUDADeviceContext &>(context),
        &dense_contents_, &dense_tensors_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split grad tensor since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
231 232 233 234 235 236 237 238 239 240
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU_BKCL
    SplitTensorsWithType(
        static_cast<const platform::XPUDeviceContext &>(context),
        &dense_contents_, &dense_tensors_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split xpu grad since it's not compiled with BKCL,"
        "Please recompile or reinstall Paddle with BKCL support."));
241 242 243 244 245 246 247 248
#endif
  } else if (platform::is_cpu_place(place)) {
    SplitTensorsWithType(
        static_cast<const platform::CPUDeviceContext &>(context),
        &dense_contents_, &dense_tensors_, dtype_);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Split grad tensor not supported on place (%s)", place));
249 250 251 252 253
  }
}

std::ostream &operator<<(std::ostream &out, const Group &group) {
  const auto &vars = group.variable_indices_;
254
  out << "numel: " << group.all_length_ << " ;is_sparse: " << group.is_sparse_
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
      << " ;var number: " << vars.size() << "\n";
  auto begin = vars.begin();
  auto end = vars.end();
  out << "[";
  for (int i = 0; begin != end && i < 100; ++i, ++begin) {
    if (i > 0) out << ' ';
    out << *begin;
  }
  if (begin != end) {
    out << " ...";
  }
  out << "]\n";
  return out;
}

270 271 272
Reducer::Reducer(const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
                 const std::vector<std::vector<size_t>> &group_indices,
                 const std::vector<bool> &is_sparse_gradient,
273
                 std::shared_ptr<imperative::ParallelContext> parallel_ctx,
274 275
                 const std::vector<size_t> &group_size_limits,
                 bool find_unused_vars)
276 277 278
    : vars_(vars),
      group_indices_(group_indices),
      is_sparse_gradient_(is_sparse_gradient),
279
      parallel_ctx_(parallel_ctx),
280 281
      group_size_limits_(group_size_limits),
      find_unused_vars_(find_unused_vars) {
282
  VLOG(3) << "Start construct the Reducer ...";
283
  nrings_ = parallel_ctx->GetNRings();
284 285
  // initialize groups
  InitializeGroups(group_indices);
286 287
  for (size_t global_var_index = 0; global_var_index < vars_.size();
       ++global_var_index) {
288 289
    auto var = vars_[global_var_index];
    var->SharedVar()->AddGradVarLeafBackwardHook(
290 291
        std::unique_ptr<LambdaGradAccumulatorPostHook>(
            new LambdaGradAccumulatorPostHook([=](VariableWrapper *grad) {
292
              this->AddDistHook(global_var_index);
293
            })));
294
    var_index_map_[var->GradVarBase()->SharedVar().get()] = global_var_index;
295 296 297
  }
}

298
void Reducer::InitializeDenseGroups(
299 300 301 302 303 304 305 306
    const std::vector<size_t> &variable_indices_, Group *p_group) {
  int64_t all_length = 0;
  for (size_t index = 0; index < variable_indices_.size(); ++index) {
    const auto variable_index = variable_indices_[index];
    const auto &var = vars_[variable_index];
    const auto var_name = var->Name();
    PADDLE_ENFORCE_EQ(is_sparse_gradient_[variable_index], false,
                      platform::errors::PreconditionNotMet(
307
                          "Tensor %s's GRAD must be LoDTensor, but received "
308 309 310 311 312 313
                          "GRAD is SelectedRows",
                          var_name));

    auto lod_tensor = var->MutableVar()->GetMutable<framework::LoDTensor>();
    PADDLE_ENFORCE_EQ(lod_tensor->IsInitialized(), true,
                      platform::errors::PreconditionNotMet(
314
                          "Tensor %s is not initialized.", var_name));
315 316 317
    auto size = lod_tensor->numel();
    PADDLE_ENFORCE_GT(
        size, 0, platform::errors::PreconditionNotMet(
318
                     "The number of tensor %s's elements is 0.", var_name));
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    all_length += size;

    p_group->length_.push_back(size);

    // check the dtype and place, it must be same.
    auto dtype = var->DataType();
    auto place = var->Place();
    if (index > 0) {
      PADDLE_ENFORCE_EQ(
          dtype, p_group->dtype_,
          platform::errors::PreconditionNotMet(
              "Tensor %s has different dtype. Expected dtype is %s, but actual "
              "dtype is %s",
              var_name, framework::DataTypeToString(p_group->dtype_),
              framework::DataTypeToString(dtype)));
      PADDLE_ENFORCE_EQ(place, place_,
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different place. Expected place is "
                            "%s, but actual place is %s",
                            var_name, place_, place));
    } else {
      p_group->dtype_ = dtype;
      place_ = place;
    }
  }
}

// Each parameter will be initialized according to the group information.
// For the sparse parameter, sparse_contents_ in the group directly points
// to the parameter. For dense parameters, first construct an empty Tensor().
349
// Then specify the actual memory in MarkDenseVarReady.
350 351 352 353 354 355
void Reducer::InitializeGroups(
    const std::vector<std::vector<size_t>> &group_indices) {
  VLOG(3) << "Start initialize groups ..";
  // clear the group
  groups_.clear();
  groups_.reserve(group_indices.size());
356 357
  variable_locators_.clear();
  variable_locators_.resize(vars_.size());
358 359 360 361 362 363 364

  auto group_nums = group_indices.size();
  for (size_t group_index = 0; group_index < group_nums; ++group_index) {
    const auto &variable_indices_ = group_indices[group_index];
    PADDLE_ENFORCE_GT(
        variable_indices_.size(), 0,
        platform::errors::PreconditionNotMet(
365
            "The number of group[%d]'s elements is 0.", group_index));
366 367 368 369 370 371 372 373 374 375 376
    Group group;

    // It's just for check the sparse or dense
    auto first_varbase = vars_[variable_indices_.front()];
    if (variable_indices_.size() == 1 &&
        is_sparse_gradient_[variable_indices_.front()]) {
      // process the sparse gradient. one sparse, one group
      group.dtype_ = first_varbase->DataType();
      group.is_sparse_ = true;
    } else {
      // process the dense gradient.
377
      InitializeDenseGroups(variable_indices_, &group);
378
    }
379 380 381

    // map variables to this group by VariableLocator
    size_t inside_group_index = 0;
382
    for (const auto var_index : variable_indices_) {
383 384 385 386 387 388
      variable_locators_[var_index] = VariableLocator{
          .group_index = group_index,
          .inside_group_index = inside_group_index++,
      };
    }
    group.variable_indices_ = std::move(variable_indices_);
389
    groups_.emplace_back(std::move(group));
390 391 392
    // Debug Message For Reducer
    VLOG(3) << "The Group[" << group_index << "]:";
    VLOG(3) << groups_.back();
393 394 395
  }
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
void Reducer::PrepareDeps(const std::unordered_set<GradOpNode *> &init_nodes) {
  PADDLE_ENFORCE_EQ(
      node_deps_.empty(), true,
      platform::errors::AlreadyExists("Op deps must be initialized here"));

  std::queue<GradOpNode *> q;
  std::unordered_set<GradOpNode *> visited;

  for (auto pos = init_nodes.begin(); pos != init_nodes.end(); pos++) {
    q.push(*pos);
    visited.insert(*pos);
  }

  while (!q.empty()) {
    auto *cur_node = q.front();
    q.pop();

    for (auto &cur_op : *cur_node) {
      cur_op.EnforceHasInOut();
    }

    const auto &grad_pending_nodes = cur_node->GradPendingNodes();
    for (auto &grad_pending_node : grad_pending_nodes) {
      PADDLE_ENFORCE_NOT_NULL(
          grad_pending_node,
          platform::errors::NotFound("Grad pending node should not be null"));
      ++node_deps_[grad_pending_node.get()];
      if (visited.count(grad_pending_node.get()) == 0) {
        visited.insert(grad_pending_node.get());
        q.push(grad_pending_node.get());
      }
    }
  }
}

431 432
// After each batch is calculated, the counter of each group(group.pending_)
// and allreudce sequence counter(next_group_) will be cleaned up again.
433 434
void Reducer::PrepareForBackward(
    const std::vector<std::shared_ptr<imperative::VarBase>> &outputs) {
435 436 437 438
  VLOG(3) << "start reseting count..";
  next_group_ = 0;
  std::for_each(groups_.begin(), groups_.end(), [](Group &group) {
    group.pending_ = group.variable_indices_.size();
439 440 441 442
    group.all_length_ = 0;
    group.dense_tensors_.clear();
    group.dense_tensors_.reserve(group.pending_);
    group.sparse_contents_ = nullptr;
443
  });
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527

  PADDLE_ENFORCE_EQ(
      all_group_ready_, false,
      platform::errors::PreconditionNotMet(
          "Please note that all ``forward`` outputs derived from the module "
          "parameters must participate in the calculation of losses and "
          "subsequent gradient calculations. If not, the wrapper will hang, "
          "waiting for autograd to generate gradients for these parameters. "
          "you can use detach or stop_gradient to make the unused parameters "
          "detached from the autograd graph."));

  // The first var to trigger the unused parameter
  has_marked_unused_vars_ = false;
  if (!find_unused_vars_) {
    return;
  }

  // TODO(shenliang03) "find_unused_vars" interface will be exposed in the
  // future to handle control flow to process unused parameters
  find_unused_vars_ = false;

  unused_vars_.clear();
  node_deps_.clear();
  std::queue<std::shared_ptr<GradOpNode>> q;
  std::unordered_set<VariableWrapper *> var_visited;
  std::unordered_set<GradOpNode *> init_nodes;

  for (const auto &output : outputs) {
    const auto &grad_node = output->GradVarBase()->GradNode();
    if (grad_node == nullptr || output->OverridedStopGradient()) {
      VLOG(3) << "Skip auto grad since there is no grad op or output is "
                 "stop_gradient=True: "
              << output->Name();
      continue;
    } else {
      init_nodes.insert(grad_node.get());
      var_visited.insert(output->SharedVar().get());
      q.push(grad_node);
    }
  }

  PrepareDeps(init_nodes);
  // Traverse the autograd graph starting at the specified output
  while (!q.empty()) {
    auto cur_node = q.front();
    q.pop();

    for (const auto &cur_op : *cur_node) {
      cur_op.EnforceHasInOut();
      auto &bwd_outs = cur_op.GetOutsMap();
      for (const auto &pair : bwd_outs) {
        if (!pair.second.IsGrad()) {
          continue;
        }
        for (auto &var : pair.second) {
          if (!var || var->OverridedStopGradient()) {
            continue;
          } else {
            var_visited.insert(var.get());
          }
        }
      }
    }
    for (const auto &grad_pending_node : cur_node->GradPendingNodes()) {
      PADDLE_ENFORCE_NOT_NULL(grad_pending_node,
                              platform::errors::NotFound(
                                  "Grad pending node should not be nullptr"));
      auto iter = node_deps_.find(grad_pending_node.get());
      if (iter == node_deps_.end()) {
        continue;
      }
      if (--(iter->second) == 0) {
        q.push(grad_pending_node);
      }
    }
  }

  for (const auto &it : var_index_map_) {
    if (var_visited.count(it.first) == 0) {
      unused_vars_.push_back(it.second);
      VLOG(3) << "Var[" << it.second << "] [" << it.first->Name()
              << "] is not used";
    }
  }
528 529 530 531 532
}

// Add hook function to each leaf node. When the gradient of a leaf node is
// generated, if it is the sparse parameter, it will directly execute allreduce,
// if it is the dense parameter, it will execute three steps: 1,
533
// MarkDenseVarReady. Find the position of the corresponding group
534 535 536 537 538
// through var_index, share the gradient memory and the group dense_tensors,
// the group counter is reduced by 1. 2, MarkGroupReady: When the group
// counter is 0, it means that allreduce can be emitted, and
// concat + allreduce + split is emitted in turn according to next_group_.
// 3, FinalizeBackward: after the end, synchronize each stream.
539 540 541 542 543 544 545 546 547 548 549 550 551 552
void Reducer::AddDistHook(size_t var_index) {
  VLOG(3) << "Var[" << var_index << "] ["
          << vars_[var_index]->GradVarBase()->Name()
          << "] arrived and triggered disthook";
  if (!has_marked_unused_vars_) {
    has_marked_unused_vars_ = true;
    for (auto unused_index : unused_vars_) {
      if (NeedRebuildGroup()) {
        rebuild_vars_.push_back(vars_[unused_index]);
        rebuild_var_indices_.push_back(unused_index);
      }
      MarkVarReady(unused_index, false);
    }
  }
553

554
  if (NeedRebuildGroup()) {
555 556 557
    rebuild_vars_.push_back(vars_[var_index]);
    rebuild_var_indices_.push_back(var_index);
  }
558 559
  MarkVarReady(var_index, true);
}
560

561 562 563 564 565
void Reducer::MarkVarReady(const size_t var_index, const bool is_used_var) {
  all_group_ready_ = true;
  const auto &var_locator = variable_locators_[var_index];
  auto group_index = var_locator.group_index;
  auto &group = groups_[group_index];
566

567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
  if (is_used_var) {
    auto var_warpper = vars_[var_index]->GradVarBase()->SharedVar();
    if (!group.is_sparse_) {
      auto grad = var_warpper->MutableVar();
      auto inside_group_index = var_locator.inside_group_index;
      auto length = group.length_[inside_group_index];

      auto tensor = grad->GetMutable<framework::LoDTensor>();
      framework::Tensor tmp;
      tmp.ShareDataWith(*tensor).Resize({static_cast<int64_t>(length)});
      group.dense_tensors_.push_back(std::move(tmp));
      group.all_length_ += length;
    } else {
      group.sparse_contents_ = var_warpper->MutableVar();
    }
  }
583 584 585 586 587 588 589 590 591 592 593 594
  if (--group.pending_ == 0) {
    // can start allreduce
    MarkGroupReady(group_index);
  }

  if (next_group_ == groups_.size()) {
    FinalizeBackward();
  }
}

void Reducer::MarkGroupReady(size_t group_index) {
  if (group_index > next_group_) {
595
    VLOG(3) << "It will adjust the order of group in next batch automatically";
596 597 598 599 600 601
    return;
  }

  for (; next_group_ < groups_.size() && groups_[next_group_].pending_ == 0;
       ++next_group_) {
    auto &group = groups_[next_group_];
602
    int run_order = next_group_ % nrings_;
603 604 605 606 607 608 609 610

    // For CUDA or XPU, compute_stream --> comm_stream.
    // For CPU, do nothing.
    // NOTE. Because concat uses the comm_stream,
    // so we expose WaitCompute() interface and call
    // it here.
    parallel_ctx_->WaitCompute(run_order);

611
    if (group.is_sparse_) {
612 613 614 615 616 617 618 619 620
      if (group.sparse_contents_ != nullptr) {
        VLOG(3) << "sparse group [" << next_group_
                << "] start allreduce in ring[" << run_order << "]";
        parallel_ctx_->AllReduceByStream(
            *group.sparse_contents_, group.sparse_contents_, run_order, false);
      } else {
        VLOG(3) << "The sparse group[" << next_group_
                << "] has no var to allreduce";
      }
621
    } else {
622 623 624 625 626 627 628
      if (!group.dense_tensors_.empty()) {
        VLOG(3) << "dense group [" << next_group_
                << "] start allreduce in ring[" << run_order << "]";
        // Select common commstream to concat tensors
        // group.dense_tensors ---> group.dense_contents_
        group.ConcatTensors(*parallel_ctx_->GetDeviceContext(run_order));

629 630 631 632 633 634 635 636 637 638 639 640
// NOTE(liuyuhui): ConcatTensors use communication stream, but BKCL only support
// default stream for communicating,
// so there exist some problems in synchronization. And need to add a WaitComm
// there.
// TODO(liuyuhui): If BKCL support events, it should be fixed as non-blocking
// communication.
#ifdef PADDLE_WITH_XPU_BKCL
        if (platform::is_xpu_place(group.dense_tensors_[0].place())) {
          parallel_ctx_->WaitComm(run_order);
        }
#endif

641 642 643 644 645 646 647 648 649 650 651
        // Start allreduce
        parallel_ctx_->AllReduceByStream(
            group.dense_contents_, &(group.dense_contents_), run_order, false);

        // Select common commstream to split tensors
        // group.dense_contents_ ---> group.dense_tensors
        group.SplitTensors(*parallel_ctx_->GetDeviceContext(run_order));
      } else {
        VLOG(3) << "The dense group[" << next_group_
                << "] has no var to allreduce";
      }
652 653 654 655
    }
  }
}

656
std::vector<std::vector<size_t>> Reducer::RebuildGruops() {
657 658 659 660 661 662 663 664 665
  VLOG(3) << "The order of parameter arrival: "
          << string::join_strings(rebuild_var_indices_, ',');

  PADDLE_ENFORCE_EQ(
      rebuild_vars_.size(), vars_.size(),
      platform::errors::PreconditionNotMet(
          "Rebuild vars's number should be equal to original vars'number, "
          "expect it to be %d, but got %d.",
          vars_.size(), rebuild_vars_.size()));
666 667 668 669 670 671 672 673 674 675 676 677
  std::reverse(rebuild_vars_.begin(), rebuild_vars_.end());
  std::reverse(rebuild_var_indices_.begin(), rebuild_var_indices_.end());
  auto rebuild_group_indices =
      AssignGroupBySize(rebuild_vars_, is_sparse_gradient_, group_size_limits_,
                        rebuild_var_indices_);
  has_rebuilt_group_ = true;
  rebuild_vars_.clear();
  rebuild_var_indices_.clear();
  std::reverse(rebuild_group_indices.begin(), rebuild_group_indices.end());
  return rebuild_group_indices;
}

678
void Reducer::FinalizeBackward() {
679
  all_group_ready_ = false;
680 681
  // Must prevent compute_stream_ starting until all comm streams have finished
  for (int i = 0; i < nrings_; ++i) {
682
    parallel_ctx_->WaitComm(i);
683 684
  }

685
  if (NeedRebuildGroup()) {
686 687 688 689 690
    VLOG(3) << "Start rebuilding the groups";
    auto rebuild_group_indices = RebuildGruops();
    group_indices_ = std::move(rebuild_group_indices);
    InitializeGroups(group_indices_);
  }
691

692 693 694 695 696 697 698 699 700 701 702 703 704
  VLOG(3) << "In the batch, Reducer is finished...";
}

// According to the size of each parameter, it is allocated to different groups.
// The sparse parameter occupies a group exclusively. The dense parameters of
// the same data type are assigned to the same group. When dividing groups, the
// size of each group will be limited according to each value in
// group_size_limits in turn. When it is not enough, it will be divided
// by the last value of group_size_limits. The limit value is 0, which
// means that the parameter will monopolize the group.
std::vector<std::vector<size_t>> AssignGroupBySize(
    const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
    const std::vector<bool> &is_sparse_gradient,
705 706
    const std::vector<size_t> &group_size_limits,
    const std::vector<int64_t> &tensor_indices) {
707 708 709 710 711
  PADDLE_ENFORCE_EQ(vars.size(), is_sparse_gradient.size(),
                    platform::errors::PreconditionNotMet(
                        "vars len must be equal to is_sparse_gradient len, but "
                        "[%lu] != [%lu]",
                        vars.size(), is_sparse_gradient.size()));
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
  auto check_perm = [](const std::vector<int64_t> &x) -> bool {
    size_t len = x.size();
    std::vector<size_t> cnt(len, 0);
    for (size_t i = 0; i < len; ++i) {
      if (x[i] >= static_cast<int64_t>(len) || x[i] < 0 || cnt[x[i]]) {
        return false;
      }
      cnt[x[i]]++;
    }
    return true;
  };
  PADDLE_ENFORCE_EQ(true, check_perm(tensor_indices),
                    platform::errors::PreconditionNotMet(
                        "tensor_indices must be a permutation from 0 to %lu",
                        tensor_indices.size()));
727 728 729 730 731 732 733 734 735 736 737 738 739 740
  // the return vector
  std::vector<std::vector<size_t>> res;

  // Key: the var type
  // Value: should use which index in group_size_limits for group size limit
  std::unordered_map<std::string, size_t> group_limit_index;

  // Key: the var type
  // Value: <the var index in input tensors, total numel in this group>
  std::unordered_map<std::string, std::pair<std::vector<size_t>, size_t>>
      next_group;

  for (size_t i = 0; i < vars.size(); ++i) {
    const auto &var = vars[i];
741 742 743 744 745 746 747

    size_t tensor_real_index = i;
    if (!tensor_indices.empty()) {
      tensor_real_index = tensor_indices[i];
    }

    if (is_sparse_gradient[tensor_real_index]) {
748
      // we keep sparse var a single group
749
      res.push_back({tensor_real_index});
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
      continue;
    }

    const auto &var_dtype = var->DataType();
    const auto var_dtype_str = framework::DataTypeToString(var_dtype);
    VLOG(3) << "var[" << var->GradVarName() << "] 's type is "
            << var->DataType();
    auto &group_info = next_group[var_dtype_str];
    int64_t var_size = -1;
    if (var->Var().IsType<framework::LoDTensor>()) {
      var_size = var->Var().Get<framework::LoDTensor>().numel();
    } else {
      VLOG(3) << "var " << var->Name()
              << " is not tensor or selected_rows, so skip it";
      continue;
    }
766
    group_info.first.push_back(tensor_real_index);
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
    group_info.second += framework::SizeOfType(var_dtype) * var_size;

    if (group_limit_index.find(var_dtype_str) == group_limit_index.end()) {
      // means it is the first var of var_dtype
      group_limit_index[var_dtype_str] = 0;
    }
    auto &cur_limit_index = group_limit_index[var_dtype_str];
    if (group_info.second >= group_size_limits[cur_limit_index]) {
      // exceed group capacity and create a new group
      res.emplace_back(std::move(group_info.first));
      group_info = std::pair<std::vector<size_t>, size_t>();
      cur_limit_index =
          (std::min)(cur_limit_index + 1, group_size_limits.size() - 1);
    }
  }

  // add the final groups
  for (auto &e : next_group) {
    auto &group_info = e.second;
    if (!group_info.first.empty()) {
      res.emplace_back(std::move(group_info.first));
    }
  }

  for (const auto &group_index : res) {
    PADDLE_ENFORCE_NE(
        group_index.empty(), true,
        platform::errors::PreconditionNotMet(
            "AssignGroupBySize construct empty group, please check."));
  }
797 798 799 800 801 802
  if (tensor_indices.empty()) {
    std::sort(res.begin(), res.end(),
              [](const std::vector<size_t> &x, const std::vector<size_t> &y) {
                return x.front() < y.front();
              });
  }
803 804 805 806 807 808
  return res;
}
#endif

}  // namespace imperative
}  // namespace paddle