Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
572c466d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
572c466d
编写于
1月 19, 2021
作者:
W
WangXi
提交者:
GitHub
1月 19, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Prepare for MultiProcess xpu] unified gen nccl id, refine imperative reducer (#30455)
上级
549855ac
变更
17
隐藏空白更改
内联
并排
Showing
17 changed file
with
599 addition
and
444 deletion
+599
-444
paddle/fluid/imperative/all_reduce.cc
paddle/fluid/imperative/all_reduce.cc
+16
-0
paddle/fluid/imperative/all_reduce.h
paddle/fluid/imperative/all_reduce.h
+0
-15
paddle/fluid/imperative/nccl_context.cc
paddle/fluid/imperative/nccl_context.cc
+79
-151
paddle/fluid/imperative/nccl_context.h
paddle/fluid/imperative/nccl_context.h
+14
-63
paddle/fluid/imperative/parallel_context.h
paddle/fluid/imperative/parallel_context.h
+75
-0
paddle/fluid/imperative/reducer.cc
paddle/fluid/imperative/reducer.cc
+143
-71
paddle/fluid/imperative/reducer.h
paddle/fluid/imperative/reducer.h
+16
-56
paddle/fluid/imperative/tests/nccl_context_test.cc
paddle/fluid/imperative/tests/nccl_context_test.cc
+2
-0
paddle/fluid/imperative/tests/test_group.cc
paddle/fluid/imperative/tests/test_group.cc
+103
-0
paddle/fluid/operators/collective/CMakeLists.txt
paddle/fluid/operators/collective/CMakeLists.txt
+2
-3
paddle/fluid/operators/collective/c_gen_nccl_id_op.cc
paddle/fluid/operators/collective/c_gen_nccl_id_op.cc
+30
-3
paddle/fluid/operators/collective/gen_nccl_id_op.cc
paddle/fluid/operators/collective/gen_nccl_id_op.cc
+42
-9
paddle/fluid/platform/CMakeLists.txt
paddle/fluid/platform/CMakeLists.txt
+1
-1
paddle/fluid/platform/gen_comm_id_helper.cc
paddle/fluid/platform/gen_comm_id_helper.cc
+48
-45
paddle/fluid/platform/gen_comm_id_helper.h
paddle/fluid/platform/gen_comm_id_helper.h
+14
-18
paddle/fluid/platform/nccl_helper.h
paddle/fluid/platform/nccl_helper.h
+1
-1
python/paddle/fluid/tests/unittests/test_gen_nccl_id_op.py
python/paddle/fluid/tests/unittests/test_gen_nccl_id_op.py
+13
-8
未找到文件。
paddle/fluid/imperative/all_reduce.cc
浏览文件 @
572c466d
...
...
@@ -16,8 +16,24 @@
#include "paddle/fluid/imperative/all_reduce.h"
#include <cuda.h>
#include <cuda_runtime.h>
#include <nccl.h>
#include <string>
#include <utility>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/imperative/nccl_context.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/nccl_helper.h"
#include "paddle/fluid/string/string_helper.h"
namespace
paddle
{
namespace
imperative
{
static
const
platform
::
Place
&
GetVarPlace
(
const
framework
::
Variable
&
src
)
{
if
(
src
.
IsType
<
framework
::
LoDTensor
>
())
{
return
src
.
Get
<
framework
::
LoDTensor
>
().
place
();
...
...
paddle/fluid/imperative/all_reduce.h
浏览文件 @
572c466d
...
...
@@ -16,21 +16,6 @@
#ifdef PADDLE_WITH_NCCL
#include <cuda.h>
#include <cuda_runtime.h>
#include <nccl.h>
#include <string>
#include <utility>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/imperative/nccl_context.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/nccl_helper.h"
#include "paddle/fluid/string/string_helper.h"
namespace
paddle
{
namespace
framework
{
class
Variable
;
...
...
paddle/fluid/imperative/nccl_context.cc
浏览文件 @
572c466d
...
...
@@ -14,175 +14,54 @@
#include "paddle/fluid/imperative/nccl_context.h"
namespace
paddle
{
namespace
imperative
{
#if defined(PADDLE_WITH_NCCL)
void
NCCLParallelContext
::
RecvNCCLID
(
const
std
::
string
&
ep
,
std
::
vector
<
ncclUniqueId
>
&
nccl_ids
)
{
// NOLINT
int
nrings
=
nccl_ids
.
size
();
auto
addr
=
paddle
::
string
::
Split
(
ep
,
':'
);
PADDLE_ENFORCE_EQ
(
addr
.
size
(),
2UL
,
platform
::
errors
::
InvalidArgument
(
"The endpoint should contain host and port, but got %s."
,
ep
));
std
::
string
host
=
addr
[
0
];
int
port
=
std
::
stoi
(
addr
[
1
]);
int
server_fd
,
new_socket
;
struct
sockaddr_in
address
;
int
addrlen
=
sizeof
(
address
);
char
buffer
[
1024
]
=
{
0
};
int
opt
=
0
;
// creating socket fd
if
((
server_fd
=
socket
(
AF_INET
,
SOCK_STREAM
,
0
))
==
0
)
{
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Create server file descriptor failed."
));
}
#include <string>
#include <utility>
#include <vector>
if
(
setsockopt
(
server_fd
,
SOL_SOCKET
,
SO_REUSEADDR
,
&
opt
,
sizeof
(
opt
)))
{
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Set socket options failed."
));
}
address
.
sin_family
=
AF_INET
;
address
.
sin_addr
.
s_addr
=
INADDR_ANY
;
address
.
sin_port
=
htons
(
port
);
int
try_times
=
0
;
int
retry_time
=
0
;
while
(
true
)
{
if
(
bind
(
server_fd
,
(
struct
sockaddr
*
)
&
address
,
sizeof
(
address
))
<
0
)
{
retry_time
=
3
*
(
try_times
+
1
);
LOG
(
WARNING
)
<<
"Socket bind worker "
<<
ep
<<
(
try_times
<
9
?
" failed, try again after "
+
std
::
to_string
(
retry_time
)
+
" seconds."
:
" failed, try again after "
+
std
::
to_string
(
retry_time
)
+
" seconds. Bind on endpoint "
+
ep
+
" failed. Please confirm whether the "
"communication port or GPU card is occupied."
);
std
::
this_thread
::
sleep_for
(
std
::
chrono
::
seconds
(
retry_time
));
++
try_times
;
continue
;
}
break
;
}
VLOG
(
3
)
<<
"listening on: "
<<
ep
;
if
(
listen
(
server_fd
,
3
)
<
0
)
{
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Listen on server file descriptor failed."
));
}
if
((
new_socket
=
accept
(
server_fd
,
reinterpret_cast
<
struct
sockaddr
*>
(
&
address
),
reinterpret_cast
<
socklen_t
*>
(
&
addrlen
)))
<
0
)
{
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Accept the new socket file descriptor failed."
));
}
if
(
read
(
new_socket
,
buffer
,
1024
)
<
0
)
{
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Read from socket failed."
));
}
VLOG
(
3
)
<<
"recevived the ncclUniqueId"
;
memcpy
(
&
nccl_ids
[
0
],
buffer
,
nrings
*
NCCL_UNIQUE_ID_BYTES
);
VLOG
(
3
)
<<
"closing the socket server: "
<<
ep
;
close
(
server_fd
);
}
void
NCCLParallelContext
::
SendNCCLID
(
const
std
::
string
&
ep
,
const
std
::
vector
<
ncclUniqueId
>
&
nccl_ids
)
{
int
nrings
=
nccl_ids
.
size
();
auto
addr
=
paddle
::
string
::
Split
(
ep
,
':'
);
PADDLE_ENFORCE_EQ
(
addr
.
size
(),
2UL
,
platform
::
errors
::
InvalidArgument
(
"The endpoint should contain host and port, but got %s."
,
ep
));
std
::
string
host
=
addr
[
0
];
int
port
=
std
::
stoi
(
addr
[
1
]);
int
sock
=
0
;
struct
sockaddr_in
serv_addr
;
char
buffer
[
1024
]
=
{
0
};
memcpy
(
buffer
,
&
nccl_ids
[
0
],
nrings
*
NCCL_UNIQUE_ID_BYTES
);
if
((
sock
=
socket
(
AF_INET
,
SOCK_STREAM
,
0
))
<
0
)
{
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Create socket failed."
));
}
memset
(
&
serv_addr
,
'0'
,
sizeof
(
serv_addr
));
serv_addr
.
sin_family
=
AF_INET
;
serv_addr
.
sin_port
=
htons
(
port
);
#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/imperative/all_reduce.h"
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/dynload/nccl.h"
#include "paddle/fluid/platform/gen_comm_id_helper.h"
#endif
char
*
ip
=
NULL
;
struct
hostent
*
hp
;
if
((
hp
=
gethostbyname
(
host
.
c_str
()))
==
NULL
)
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Fail to get host by name %s."
,
host
));
}
int
i
=
0
;
while
(
hp
->
h_addr_list
[
i
]
!=
NULL
)
{
ip
=
inet_ntoa
(
*
(
struct
in_addr
*
)
hp
->
h_addr_list
[
i
]);
VLOG
(
3
)
<<
"gethostbyname host:"
<<
host
<<
" ->ip: "
<<
ip
;
break
;
}
if
(
inet_pton
(
AF_INET
,
ip
,
&
serv_addr
.
sin_addr
)
<=
0
)
{
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Open address %s failed."
,
ep
));
}
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/string/split.h"
#include "paddle/fluid/string/string_helper.h"
int
try_times
=
0
;
int
retry_time
=
0
;
while
(
true
)
{
if
(
connect
(
sock
,
(
struct
sockaddr
*
)
&
serv_addr
,
sizeof
(
serv_addr
))
<
0
)
{
retry_time
=
3
*
(
try_times
+
1
);
LOG
(
WARNING
)
<<
"Socket connect worker "
<<
ep
<<
(
try_times
<
9
?
" failed, try again after "
+
std
::
to_string
(
retry_time
)
+
" seconds."
:
" failed, try again after "
+
std
::
to_string
(
retry_time
)
+
" seconds. Maybe that some process is occupied the "
"GPUs of this node now, and you should kill those "
"process manually."
);
std
::
this_thread
::
sleep_for
(
std
::
chrono
::
seconds
(
retry_time
));
++
try_times
;
continue
;
}
VLOG
(
3
)
<<
"sending the ncclUniqueId to "
<<
ep
;
send
(
sock
,
buffer
,
NCCL_UNIQUE_ID_BYTES
*
nrings
,
0
);
break
;
}
close
(
sock
);
}
namespace
paddle
{
namespace
imperative
{
#if defined(PADDLE_WITH_NCCL)
void
NCCLParallelContext
::
BcastNCCLId
(
std
::
vector
<
ncclUniqueId
>
&
nccl_ids
,
// NOLINT
int
root
)
{
if
(
strategy_
.
local_rank_
==
root
)
{
for
(
auto
ep
:
strategy_
.
trainer_endpoints_
)
{
if
(
ep
!=
strategy_
.
current_endpoint_
)
SendNCCLID
(
ep
,
nccl_ids
);
std
::
vector
<
std
::
string
>
other_trainers
;
for
(
auto
&
ep
:
strategy_
.
trainer_endpoints_
)
{
if
(
ep
!=
strategy_
.
current_endpoint_
)
{
other_trainers
.
push_back
(
ep
);
}
}
platform
::
SendBroadCastCommID
(
other_trainers
,
&
nccl_ids
);
}
else
{
RecvNCCLID
(
strategy_
.
current_endpoint_
,
nccl_ids
);
platform
::
RecvBroadCastCommID
(
strategy_
.
current_endpoint_
,
&
nccl_ids
);
}
}
void
NCCLParallelContext
::
Init
()
{
std
::
vector
<
ncclUniqueId
>
nccl_ids
;
nccl_ids
.
resize
(
strategy_
.
nrings_
);
if
(
strategy_
.
local_rank_
==
0
)
{
// generate the unique ncclid on the root worker
for
(
size_t
i
=
0
;
i
<
nccl_ids
.
size
();
++
i
)
{
platform
::
dynload
::
ncclGetUniqueId
(
&
nccl_ids
[
i
]);
}
BcastNCCLId
(
nccl_ids
,
0
);
}
else
{
BcastNCCLId
(
nccl_ids
,
0
);
}
BcastNCCLId
(
nccl_ids
,
0
);
int
gpu_id
=
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
place_
).
device
;
for
(
int
ring_id
=
0
;
ring_id
<
strategy_
.
nrings_
;
ring_id
++
)
{
...
...
@@ -193,6 +72,12 @@ void NCCLParallelContext::Init() {
platform
::
NCCLCommContext
::
Instance
().
CreateNCCLComm
(
&
nccl_ids
[
ring_id
],
strategy_
.
nranks_
,
strategy_
.
local_rank_
,
gpu_id
,
ring_id
);
compute_events_
.
emplace_back
(
platform
::
CudaEventResourcePool
::
Instance
().
New
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
place_
).
device
));
comm_events_
.
emplace_back
(
platform
::
CudaEventResourcePool
::
Instance
().
New
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
place_
).
device
));
}
}
...
...
@@ -206,11 +91,54 @@ void NCCLParallelContext::AllReduceByStream(const framework::Variable &src,
AllReduce
(
src
,
dst
,
strategy_
,
ring_id
,
use_calc_stream
);
}
paddle
::
platform
::
CUDA
DeviceContext
*
NCCLParallelContext
::
GetDeviceContext
(
paddle
::
platform
::
DeviceContext
*
NCCLParallelContext
::
GetDeviceContext
(
int
ring_id
)
{
return
platform
::
NCCLCommContext
::
Instance
()
.
Get
(
ring_id
,
place_
)
->
dev_context
();
return
static_cast
<
platform
::
DeviceContext
*>
(
platform
::
NCCLCommContext
::
Instance
()
.
Get
(
ring_id
,
place_
)
->
dev_context
());
}
void
NCCLParallelContext
::
WaitCompute
(
int
ring_id
)
{
PADDLE_ENFORCE_GE
(
ring_id
,
0
,
platform
::
errors
::
OutOfRange
(
"ring id must >= 0, but got %d"
,
ring_id
));
PADDLE_ENFORCE_LT
(
ring_id
,
compute_events_
.
size
(),
platform
::
errors
::
OutOfRange
(
"ring id must < compute events size,"
"but got ring id = %d, compute events size = %d"
,
ring_id
,
compute_events_
.
size
()));
auto
compute_stream
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
))
->
stream
();
auto
comm_stream
=
platform
::
NCCLCommContext
::
Instance
().
Get
(
ring_id
,
place_
)
->
stream
();
auto
event
=
compute_events_
[
ring_id
].
get
();
// compute_stream-->event-->comm_stream
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaEventRecord
(
event
,
compute_stream
));
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaStreamWaitEvent
(
comm_stream
,
event
,
0
));
}
void
NCCLParallelContext
::
WaitComm
(
int
ring_id
)
{
PADDLE_ENFORCE_GE
(
ring_id
,
0
,
platform
::
errors
::
OutOfRange
(
"ring id must >= 0, but got %d"
,
ring_id
));
PADDLE_ENFORCE_LT
(
ring_id
,
comm_events_
.
size
(),
platform
::
errors
::
OutOfRange
(
"ring id must < comm events size,"
"but got ring id = %d, comm events size = %d"
,
ring_id
,
comm_events_
.
size
()));
auto
compute_stream
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
))
->
stream
();
auto
comm_stream
=
platform
::
NCCLCommContext
::
Instance
().
Get
(
ring_id
,
place_
)
->
stream
();
auto
event
=
comm_events_
[
ring_id
].
get
();
// comm_stream-->event-->compute_stream
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaEventRecord
(
event
,
comm_stream
));
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaStreamWaitEvent
(
compute_stream
,
event
,
0
));
}
#endif
...
...
paddle/fluid/imperative/nccl_context.h
浏览文件 @
572c466d
...
...
@@ -13,73 +13,20 @@
// limitations under the License.
#pragma once
// network header files
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
#include <arpa/inet.h>
#include <netdb.h>
#include <netinet/in.h>
#include <stdlib.h>
#include <sys/socket.h>
#endif
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/platform/device_context.h"
#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/
imperative/all_reduce
.h"
#include "paddle/fluid/
platform/cuda_resource_pool
.h"
#include "paddle/fluid/platform/dynload/nccl.h"
#include "paddle/fluid/platform/nccl_helper.h"
#endif
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/string/split.h"
#include "paddle/fluid/string/string_helper.h"
#include "paddle/fluid/imperative/parallel_context.h"
namespace
paddle
{
namespace
imperative
{
struct
ParallelStrategy
{
int
nranks_
{
1
};
int
local_rank_
{
0
};
std
::
vector
<
std
::
string
>
trainer_endpoints_
{};
std
::
string
current_endpoint_
{
""
};
// TODO(shenliang03): support multi stream communication
int
nrings_
{
1
};
};
class
ParallelContext
{
public:
explicit
ParallelContext
(
const
ParallelStrategy
&
strategy
,
const
platform
::
Place
&
place
)
:
strategy_
(
strategy
),
place_
(
place
)
{}
virtual
~
ParallelContext
()
{}
virtual
void
Init
()
=
0
;
virtual
void
AllReduceByStream
(
const
framework
::
Variable
&
src
,
framework
::
Variable
*
dst
,
int
ring_id
=
0
,
bool
use_calc_stream
=
false
)
=
0
;
#if defined(PADDLE_WITH_NCCL)
virtual
paddle
::
platform
::
CUDADeviceContext
*
GetDeviceContext
(
int
ring_id
)
=
0
;
#endif
inline
int
GetNRings
()
{
return
strategy_
.
nrings_
;
}
protected:
ParallelStrategy
strategy_
;
platform
::
Place
place_
;
};
#if defined(PADDLE_WITH_NCCL)
class
NCCLParallelContext
:
public
ParallelContext
{
public:
...
...
@@ -87,7 +34,7 @@ class NCCLParallelContext : public ParallelContext {
const
platform
::
Place
&
place
)
:
ParallelContext
(
strategy
,
place
)
{}
~
NCCLParallelContext
()
{}
~
NCCLParallelContext
()
override
=
default
;
void
BcastNCCLId
(
std
::
vector
<
ncclUniqueId
>&
nccl_ids
,
int
root
);
// NOLINT
...
...
@@ -97,14 +44,18 @@ class NCCLParallelContext : public ParallelContext {
framework
::
Variable
*
dst
,
int
ring_id
,
bool
use_calc_stream
)
override
;
paddle
::
platform
::
CUDADeviceContext
*
GetDeviceContext
(
int
ring_id
)
override
;
paddle
::
platform
::
DeviceContext
*
GetDeviceContext
(
int
ring_id
)
override
;
void
WaitCompute
(
int
ring_id
)
override
;
void
WaitComm
(
int
ring_id
)
override
;
pr
otected
:
void
RecvNCCLID
(
const
std
::
string
&
endpoint
,
std
::
vector
<
ncclUniqueId
>&
nccl_ids
);
// NOLINT
pr
ivate
:
// used for comm wait compute, compute_stream-->event-->comm_stream[ring_id]
std
::
vector
<
std
::
shared_ptr
<
platform
::
CudaEventObject
>>
compute_events_
;
void
SendNCCLID
(
const
std
::
string
&
endpoint
,
const
std
::
vector
<
ncclUniqueId
>&
nccl_ids
)
;
// used for compute wait comm, comm_stream[ring_id]-->event-->compute_stream
std
::
vector
<
std
::
shared_ptr
<
platform
::
CudaEventObject
>>
comm_events_
;
};
#endif
...
...
paddle/fluid/imperative/parallel_context.h
0 → 100644
浏览文件 @
572c466d
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
namespace
platform
{
class
DeviceContext
;
}
// namespace platform
namespace
framework
{
class
Variable
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
imperative
{
struct
ParallelStrategy
{
int
nranks_
{
1
};
int
local_rank_
{
0
};
std
::
vector
<
std
::
string
>
trainer_endpoints_
{};
std
::
string
current_endpoint_
{
""
};
int
nrings_
{
1
};
};
class
ParallelContext
{
public:
explicit
ParallelContext
(
const
ParallelStrategy
&
strategy
,
const
platform
::
Place
&
place
)
:
strategy_
(
strategy
),
place_
(
place
)
{}
virtual
~
ParallelContext
()
=
default
;
virtual
void
Init
()
=
0
;
virtual
void
AllReduceByStream
(
const
framework
::
Variable
&
src
,
framework
::
Variable
*
dst
,
int
ring_id
,
bool
use_calc_stream
)
=
0
;
virtual
paddle
::
platform
::
DeviceContext
*
GetDeviceContext
(
int
ring_id
)
=
0
;
// comm_stream[ring_id] wait compute_stream.
// if CPU, should do nothing.
virtual
void
WaitCompute
(
int
ring_id
)
=
0
;
// compute_stream wait comm_stream[ring_id]
// if CPU, should do nothing.
virtual
void
WaitComm
(
int
ring_id
)
=
0
;
inline
int
GetNRings
()
const
{
return
strategy_
.
nrings_
;
}
protected:
ParallelStrategy
strategy_
;
platform
::
Place
place_
;
};
}
// namespace imperative
}
// namespace paddle
paddle/fluid/imperative/reducer.cc
浏览文件 @
572c466d
...
...
@@ -14,60 +14,170 @@
#include "paddle/fluid/imperative/reducer.h"
#include <algorithm>
#include <iostream>
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/op_base.h"
#include "paddle/fluid/imperative/variable_wrapper.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/string/string_helper.h"
#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"
#endif
#include "paddle/fluid/imperative/parallel_context.h"
namespace
paddle
{
namespace
imperative
{
#if defined(PADDLE_WITH_NCCL)
std
::
shared_ptr
<
Reducer
>
Reducer
::
s_instance_
=
NULL
;
// context is used to select the stream for concat
void
Group
::
ConcatTensors
(
const
platform
::
CUDADeviceContext
&
context
)
{
VLOG
(
3
)
<<
"Before concat, set output tensor size is "
<<
all_length_
;
auto
tensor
=
dense_contents_
.
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
(
framework
::
make_ddim
({
all_length_
}))
.
mutable_data
(
context
.
GetPlace
(),
dtype_
);
template
<
typename
DeviceContext
,
typename
T
>
static
void
ConcatTensorsForAllReduce
(
const
DeviceContext
&
context
,
const
std
::
vector
<
framework
::
Tensor
>
&
dense_tensors_
,
framework
::
Variable
*
p_dense_contents
)
{
operators
::
math
::
ConcatFunctor
<
DeviceContext
,
T
>
concat_functor_
;
concat_functor_
(
context
,
dense_tensors_
,
0
,
p_dense_contents
->
GetMutable
<
framework
::
LoDTensor
>
());
}
template
<
typename
DeviceContext
,
typename
T
>
static
void
SplitTensorsForAllReduce
(
const
DeviceContext
&
context
,
framework
::
Variable
*
p_dense_contents
,
std
::
vector
<
framework
::
Tensor
>
*
p_dense_tensors
)
{
auto
*
in
=
p_dense_contents
->
GetMutable
<
framework
::
LoDTensor
>
();
std
::
vector
<
framework
::
Tensor
*>
outs
;
std
::
vector
<
const
framework
::
Tensor
*>
shape_refer
;
switch
(
dtype_
)
{
outs
.
reserve
(
p_dense_tensors
->
size
());
shape_refer
.
reserve
(
p_dense_tensors
->
size
());
for
(
auto
&
tensor
:
*
p_dense_tensors
)
{
outs
.
emplace_back
(
&
tensor
);
shape_refer
.
emplace_back
(
&
tensor
);
}
// Sometimes direct copies will be faster
if
(
p_dense_tensors
->
size
()
<
10
)
{
operators
::
StridedMemcpyWithAxis0
<
T
>
(
context
,
*
in
,
shape_refer
,
&
outs
);
}
else
{
operators
::
math
::
SplitFunctor
<
DeviceContext
,
T
>
split_functor_
;
split_functor_
(
context
,
*
in
,
shape_refer
,
0
,
&
outs
);
}
}
// context is used to select the stream for concat
template
<
typename
DeviceContext
>
static
void
ConcatTensorsWithType
(
const
DeviceContext
&
context
,
const
std
::
vector
<
framework
::
Tensor
>
&
dense_tensors_
,
framework
::
Variable
*
p_dense_contents
,
framework
::
proto
::
VarType
::
Type
type
)
{
switch
(
type
)
{
case
framework
::
proto
::
VarType
::
FP16
:
ConcatTensorsForAllReduce
<
platform
::
float16
>
(
context
,
dense_tensors_
,
&
dense_contents_
);
ConcatTensorsForAllReduce
<
DeviceContext
,
platform
::
float16
>
(
context
,
dense_tensors_
,
p_dense_contents
);
break
;
case
framework
::
proto
::
VarType
::
FP32
:
ConcatTensorsForAllReduce
<
float
>
(
context
,
dense_tensors_
,
&
dense_contents_
);
ConcatTensorsForAllReduce
<
DeviceContext
,
float
>
(
context
,
dense_tensors_
,
p_dense_contents
);
break
;
case
framework
::
proto
::
VarType
::
FP64
:
ConcatTensorsForAllReduce
<
double
>
(
context
,
dense_tensors_
,
&
dense_contents_
);
ConcatTensorsForAllReduce
<
DeviceContext
,
double
>
(
context
,
dense_tensors_
,
p_dense_contents
);
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Data type (%s) is not supported when it concats tensors for "
"allreduce."
,
framework
::
DataTypeToString
(
dtype_
)));
framework
::
DataTypeToString
(
type
)));
}
}
// context is used to select the stream for split
void
Group
::
SplitTensors
(
const
platform
::
CUDADeviceContext
&
context
)
{
switch
(
dtype_
)
{
template
<
typename
DeviceContext
>
static
void
SplitTensorsWithType
(
const
DeviceContext
&
context
,
framework
::
Variable
*
p_dense_contents
,
std
::
vector
<
framework
::
Tensor
>
*
p_dense_tensors
,
framework
::
proto
::
VarType
::
Type
type
)
{
switch
(
type
)
{
case
framework
::
proto
::
VarType
::
FP16
:
SplitTensorsForAllReduce
<
platform
::
float16
>
(
context
,
&
dense_contents_
,
&
dense_tensors_
);
SplitTensorsForAllReduce
<
DeviceContext
,
platform
::
float16
>
(
context
,
p_dense_contents
,
p_dense_tensors
);
break
;
case
framework
::
proto
::
VarType
::
FP32
:
SplitTensorsForAllReduce
<
float
>
(
context
,
&
dense_contents_
,
&
dense_tensors_
);
SplitTensorsForAllReduce
<
DeviceContext
,
float
>
(
context
,
p_dense_contents
,
p_dense_tensors
);
break
;
case
framework
::
proto
::
VarType
::
FP64
:
SplitTensorsForAllReduce
<
double
>
(
context
,
&
dense_contents_
,
&
dense_tensors_
);
SplitTensorsForAllReduce
<
DeviceContext
,
double
>
(
context
,
p_dense_contents
,
p_dense_tensors
);
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Data type (%s) is not supported when it splits tensors for "
"allreduce."
,
framework
::
DataTypeToString
(
dtype_
)));
framework
::
DataTypeToString
(
type
)));
}
}
void
Group
::
ConcatTensors
(
const
platform
::
DeviceContext
&
context
)
{
VLOG
(
3
)
<<
"Before concat, set output tensor size is "
<<
all_length_
;
auto
tensor
=
dense_contents_
.
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
(
framework
::
make_ddim
({
all_length_
}))
.
mutable_data
(
context
.
GetPlace
(),
dtype_
);
auto
place
=
context
.
GetPlace
();
if
(
platform
::
is_gpu_place
(
place
))
{
#ifdef PADDLE_WITH_NCCL
ConcatTensorsWithType
(
static_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
),
dense_tensors_
,
&
dense_contents_
,
dtype_
);
#else
PADDLE_THROW
(
platform
::
errors
::
PermissionDenied
(
"Paddle can't concat grad tensors since it's not compiled with NCCL,"
"Please recompile or reinstall Paddle with NCCL support."
));
#endif
}
else
if
(
platform
::
is_cpu_place
(
place
))
{
ConcatTensorsWithType
(
static_cast
<
const
platform
::
CPUDeviceContext
&>
(
context
),
dense_tensors_
,
&
dense_contents_
,
dtype_
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Concat grad tensor not supported on place (%s)"
,
place
));
}
}
void
Group
::
SplitTensors
(
const
platform
::
DeviceContext
&
context
)
{
auto
place
=
context
.
GetPlace
();
if
(
platform
::
is_gpu_place
(
place
))
{
#ifdef PADDLE_WITH_NCCL
SplitTensorsWithType
(
static_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
),
&
dense_contents_
,
&
dense_tensors_
,
dtype_
);
#else
PADDLE_THROW
(
platform
::
errors
::
PermissionDenied
(
"Paddle can't split grad tensor since it's not compiled with NCCL,"
"Please recompile or reinstall Paddle with NCCL support."
));
#endif
}
else
if
(
platform
::
is_cpu_place
(
place
))
{
SplitTensorsWithType
(
static_cast
<
const
platform
::
CPUDeviceContext
&>
(
context
),
&
dense_contents_
,
&
dense_tensors_
,
dtype_
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Split grad tensor not supported on place (%s)"
,
place
));
}
}
...
...
@@ -115,44 +225,13 @@ Reducer::Reducer(const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
})));
var_index_map_
[
var
->
GradVarBase
()
->
SharedVar
().
get
()]
=
global_var_index
;
}
// create streams
compute_stream_
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
))
->
stream
();
for
(
int
i
=
0
;
i
<
nrings_
;
++
i
)
{
comm_streams_
.
emplace_back
(
platform
::
NCCLCommContext
::
Instance
().
Get
(
i
,
place_
)
->
stream
());
comm_events_
.
emplace_back
(
platform
::
CudaEventResourcePool
::
Instance
().
New
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
place_
).
device
));
}
CreateGroupEvents
(
group_indices
.
size
());
std
::
call_once
(
once_flag_
,
[]()
{
std
::
atexit
([]()
{
Reducer
::
GetInstance
()
->
ReleaseReducer
();
});
});
}
void
Reducer
::
ReleaseReducer
()
{
for
(
auto
&
event
:
group_events_
)
{
event
.
reset
();
}
for
(
auto
&
event
:
comm_events_
)
{
event
.
reset
();
}
}
void
Reducer
::
CreateGroupEvents
(
int
group_num
)
{
// release old events
for
(
auto
&
event
:
group_events_
)
{
event
.
reset
();
}
group_events_
.
clear
();
group_events_
.
resize
(
group_num
);
for
(
auto
&
event
:
group_events_
)
{
event
=
platform
::
CudaEventResourcePool
::
Instance
().
New
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
place_
).
device
);
}
}
void
Reducer
::
ReleaseReducer
()
{
parallel_ctx_
.
reset
();
}
void
Reducer
::
InitializeDenseGroups
(
const
std
::
vector
<
size_t
>
&
variable_indices_
,
Group
*
p_group
)
{
...
...
@@ -455,18 +534,18 @@ void Reducer::MarkGroupReady(size_t group_index) {
return
;
}
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaEventRecord
(
group_events_
[
group_index
].
get
(),
compute_stream_
));
for
(
int
i
=
0
;
i
<
nrings_
;
++
i
)
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaStreamWaitEvent
(
comm_streams_
[
i
],
group_events_
[
group_index
].
get
(),
0
));
}
for
(;
next_group_
<
groups_
.
size
()
&&
groups_
[
next_group_
].
pending_
==
0
;
++
next_group_
)
{
auto
&
group
=
groups_
[
next_group_
];
int
run_order
=
next_group_
%
nrings_
;
// For CUDA or XPU, compute_stream --> comm_stream.
// For CPU, do nothing.
// NOTE. Because concat uses the comm_stream,
// so we expose WaitCompute() interface and call
// it here.
parallel_ctx_
->
WaitCompute
(
run_order
);
if
(
group
.
is_sparse_
)
{
if
(
group
.
sparse_contents_
!=
nullptr
)
{
VLOG
(
3
)
<<
"sparse group ["
<<
next_group_
...
...
@@ -526,20 +605,13 @@ void Reducer::FinalizeBackward() {
all_group_ready_
=
false
;
// Must prevent compute_stream_ starting until all comm streams have finished
for
(
int
i
=
0
;
i
<
nrings_
;
++
i
)
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaEventRecord
(
comm_events_
[
i
].
get
(),
comm_streams_
[
i
]));
}
for
(
int
i
=
0
;
i
<
nrings_
;
++
i
)
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaStreamWaitEvent
(
compute_stream_
,
comm_events_
[
i
].
get
(),
0
));
parallel_ctx_
->
WaitComm
(
i
);
}
if
(
NeedRebuildGroup
())
{
VLOG
(
3
)
<<
"Start rebuilding the groups"
;
auto
rebuild_group_indices
=
RebuildGruops
();
auto
rebuild_group_number
=
rebuild_group_indices
.
size
();
group_indices_
=
std
::
move
(
rebuild_group_indices
);
CreateGroupEvents
(
rebuild_group_number
);
InitializeGroups
(
group_indices_
);
}
...
...
paddle/fluid/imperative/reducer.h
浏览文件 @
572c466d
...
...
@@ -24,60 +24,27 @@
#include <unordered_set>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/op_base.h"
#include "paddle/fluid/imperative/variable_wrapper.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/string/string_helper.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/variable.h"
#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/imperative/all_reduce.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"
#include "paddle/fluid/platform/cuda_resource_pool.h"
#endif
namespace
paddle
{
namespace
platform
{
class
DeviceContext
;
}
// namespace platform
namespace
imperative
{
class
ParallelContext
;
class
VarBase
;
class
VariableWrapper
;
}
// namespace imperative
}
// namespace paddle
namespace
paddle
{
namespace
imperative
{
#if defined(PADDLE_WITH_NCCL)
template
<
typename
T
>
void
ConcatTensorsForAllReduce
(
const
platform
::
CUDADeviceContext
&
context
,
const
std
::
vector
<
framework
::
Tensor
>&
dense_tensors_
,
framework
::
Variable
*
p_dense_contents
)
{
operators
::
math
::
ConcatFunctor
<
platform
::
CUDADeviceContext
,
T
>
concat_functor_
;
concat_functor_
(
context
,
dense_tensors_
,
0
,
p_dense_contents
->
GetMutable
<
framework
::
LoDTensor
>
());
}
template
<
typename
T
>
void
SplitTensorsForAllReduce
(
const
platform
::
CUDADeviceContext
&
context
,
framework
::
Variable
*
p_dense_contents
,
std
::
vector
<
framework
::
Tensor
>*
p_dense_tensors
)
{
auto
*
in
=
p_dense_contents
->
GetMutable
<
framework
::
LoDTensor
>
();
std
::
vector
<
framework
::
Tensor
*>
outs
;
std
::
vector
<
const
framework
::
Tensor
*>
shape_refer
;
outs
.
reserve
(
p_dense_tensors
->
size
());
shape_refer
.
reserve
(
p_dense_tensors
->
size
());
for
(
auto
&
tensor
:
*
p_dense_tensors
)
{
outs
.
emplace_back
(
&
tensor
);
shape_refer
.
emplace_back
(
&
tensor
);
}
// Sometimes direct copies will be faster
if
(
p_dense_tensors
->
size
()
<
10
)
{
operators
::
StridedMemcpyWithAxis0
<
T
>
(
context
,
*
in
,
shape_refer
,
&
outs
);
}
else
{
operators
::
math
::
SplitFunctor
<
platform
::
CUDADeviceContext
,
T
>
split_functor_
;
split_functor_
(
context
,
*
in
,
shape_refer
,
0
,
&
outs
);
}
}
class
Group
{
public:
// Here, we use dense_contents_ & sparse_contents_ to
...
...
@@ -104,10 +71,10 @@ class Group {
framework
::
proto
::
VarType
::
Type
dtype_
;
// context is used to select the stream for concat
void
ConcatTensors
(
const
platform
::
CUDA
DeviceContext
&
context
);
void
ConcatTensors
(
const
platform
::
DeviceContext
&
context
);
// context is used to select the stream for split
void
SplitTensors
(
const
platform
::
CUDA
DeviceContext
&
context
);
void
SplitTensors
(
const
platform
::
DeviceContext
&
context
);
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
,
const
Group
&
);
};
...
...
@@ -155,8 +122,6 @@ class Reducer {
std
::
vector
<
std
::
vector
<
size_t
>>
RebuildGruops
();
void
CreateGroupEvents
(
int
group_num
);
inline
bool
NeedRebuildGroup
()
{
return
!
has_rebuilt_group_
;
}
// Reducer Singleton
...
...
@@ -193,11 +158,6 @@ class Reducer {
std
::
shared_ptr
<
imperative
::
ParallelContext
>
parallel_ctx_
;
std
::
vector
<
VariableLocator
>
variable_locators_
;
// Following variables are to help sync stream
std
::
vector
<
std
::
shared_ptr
<
platform
::
CudaEventObject
>>
group_events_
;
std
::
vector
<
std
::
shared_ptr
<
platform
::
CudaEventObject
>>
comm_events_
;
cudaStream_t
compute_stream_
;
std
::
vector
<
cudaStream_t
>
comm_streams_
;
int
nrings_
=
1
;
// Following variables are to help rebuild group
...
...
paddle/fluid/imperative/tests/nccl_context_test.cc
浏览文件 @
572c466d
...
...
@@ -12,6 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <thread> // NOLINT
#include "paddle/fluid/imperative/nccl_context.h"
#include "gtest/gtest.h"
...
...
paddle/fluid/imperative/tests/test_group.cc
浏览文件 @
572c466d
...
...
@@ -60,6 +60,109 @@ TEST(TestGroup, TestPrintGroupMessage) {
ASSERT_STREQ
(
stream2
.
str
().
c_str
(),
head
.
c_str
());
}
template
<
typename
T
,
typename
Place
>
void
GroupConcatSplit
(
Place
place
,
size_t
size
)
{
platform
::
CPUPlace
cpu_place
;
Group
group
;
// [[0.0], [0.0, 1.0], [0.0, 1.0, 2.0] .. ]
std
::
vector
<
framework
::
Variable
>
vars
;
vars
.
resize
(
size
);
for
(
size_t
i
=
0
;
i
<
size
;
++
i
)
{
auto
len
=
i
+
1
;
auto
*
tensor
=
vars
[
i
].
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
({
static_cast
<
int64_t
>
(
len
)});
auto
*
data
=
tensor
->
mutable_data
<
T
>
(
place
);
std
::
vector
<
T
>
value
;
for
(
size_t
j
=
0
;
j
<
len
;
++
j
)
{
value
.
push_back
(
static_cast
<
T
>
(
1.0
*
j
));
}
if
(
std
::
is_same
<
Place
,
platform
::
CUDAPlace
>::
value
)
{
paddle
::
memory
::
Copy
(
place
,
data
,
cpu_place
,
value
.
data
(),
sizeof
(
T
)
*
value
.
size
(),
0
);
}
else
{
paddle
::
memory
::
Copy
(
place
,
data
,
cpu_place
,
value
.
data
(),
sizeof
(
T
)
*
value
.
size
());
}
framework
::
Tensor
tmp
;
tmp
.
ShareDataWith
(
*
tensor
).
Resize
({
static_cast
<
int64_t
>
(
len
)});
group
.
dense_tensors_
.
push_back
(
std
::
move
(
tmp
));
group
.
all_length_
+=
len
;
group
.
dtype_
=
tensor
->
type
();
}
paddle
::
platform
::
DeviceContextPool
&
pool
=
paddle
::
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
pool
.
Get
(
place
);
{
// concat
group
.
ConcatTensors
(
*
dev_ctx
);
auto
*
tensor
=
group
.
dense_contents_
.
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
Tensor
tmp
;
framework
::
TensorCopySync
(
*
tensor
,
cpu_place
,
&
tmp
);
auto
*
data
=
tmp
.
data
<
T
>
();
size_t
offset
=
0
;
for
(
size_t
i
=
0
;
i
<
size
;
++
i
)
{
auto
len
=
i
+
1
;
for
(
size_t
j
=
0
;
j
<
len
;
++
j
)
{
EXPECT_EQ
(
data
[
offset
+
j
],
static_cast
<
T
>
(
1.0
*
j
));
// [[-0.0], [-0.0, -1.0], [-0.0, -1.0, -2.0] .. ]
data
[
offset
+
j
]
=
-
data
[
offset
+
j
];
}
offset
+=
len
;
}
framework
::
TensorCopySync
(
tmp
,
place
,
tensor
);
}
{
// split
group
.
SplitTensors
(
*
dev_ctx
);
for
(
size_t
i
=
0
;
i
<
size
;
++
i
)
{
auto
len
=
i
+
1
;
auto
&
tensor
=
group
.
dense_tensors_
[
i
];
framework
::
Tensor
tmp
;
framework
::
TensorCopySync
(
tensor
,
cpu_place
,
&
tmp
);
auto
*
data
=
tmp
.
data
<
T
>
();
for
(
size_t
j
=
0
;
j
<
len
;
++
j
)
{
EXPECT_EQ
(
data
[
j
],
static_cast
<
T
>
(
-
1.0
*
j
));
}
}
}
}
TEST
(
TestGroup
,
TestConcatSplit
)
{
platform
::
CUDAPlace
cuda_place
(
0
);
platform
::
CPUPlace
cpu_place
;
int
size
=
3
;
GroupConcatSplit
<
float
>
(
cpu_place
,
size
);
GroupConcatSplit
<
double
>
(
cpu_place
,
size
);
GroupConcatSplit
<
platform
::
float16
>
(
cpu_place
,
size
);
GroupConcatSplit
<
float
>
(
cuda_place
,
size
);
GroupConcatSplit
<
double
>
(
cuda_place
,
size
);
GroupConcatSplit
<
platform
::
float16
>
(
cuda_place
,
size
);
size
=
15
;
GroupConcatSplit
<
float
>
(
cpu_place
,
size
);
GroupConcatSplit
<
double
>
(
cpu_place
,
size
);
GroupConcatSplit
<
platform
::
float16
>
(
cpu_place
,
size
);
GroupConcatSplit
<
float
>
(
cuda_place
,
size
);
GroupConcatSplit
<
double
>
(
cuda_place
,
size
);
GroupConcatSplit
<
platform
::
float16
>
(
cuda_place
,
size
);
}
TEST
(
TestGroup
,
TestConcatSplitException
)
{
platform
::
CUDAPinnedPlace
place
;
int
size
=
3
;
ASSERT_ANY_THROW
(
GroupConcatSplit
<
float
>
(
place
,
size
));
}
#endif
}
// namespace imperative
...
...
paddle/fluid/operators/collective/CMakeLists.txt
浏览文件 @
572c466d
...
...
@@ -15,9 +15,8 @@ register_operators(EXCLUDES c_gen_nccl_id_op gen_nccl_id_op DEPS ${COLLECTIVE_DE
if
(
WITH_NCCL
)
set
(
COLLECTIVE_DEPS
${
COLLECTIVE_DEPS
}
nccl_common collective_helper
)
cc_library
(
gen_nccl_id_op_helper SRCS gen_nccl_id_op_helper.cc DEPS nccl_common
)
op_library
(
c_gen_nccl_id_op DEPS
${
COLLECTIVE_DEPS
}
gen_nccl_id_op_helper
)
op_library
(
gen_nccl_id_op DEPS
${
COLLECTIVE_DEPS
}
gen_nccl_id_op_helper
)
op_library
(
c_gen_nccl_id_op DEPS
${
COLLECTIVE_DEPS
}
)
op_library
(
gen_nccl_id_op DEPS
${
COLLECTIVE_DEPS
}
)
endif
()
if
(
WITH_GLOO
)
...
...
paddle/fluid/operators/collective/c_gen_nccl_id_op.cc
浏览文件 @
572c466d
...
...
@@ -23,11 +23,32 @@ limitations under the License. */
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/
operators/collective/gen_nccl_id_op
_helper.h"
#include "paddle/fluid/
platform/gen_comm_id
_helper.h"
namespace
paddle
{
namespace
operators
{
static
void
GenNCCLID
(
std
::
vector
<
ncclUniqueId
>*
nccl_ids
)
{
for
(
size_t
i
=
0
;
i
<
nccl_ids
->
size
();
++
i
)
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
ncclGetUniqueId
(
&
(
*
nccl_ids
)[
i
]));
}
}
static
void
CopyNCCLIDToVar
(
const
std
::
vector
<
ncclUniqueId
>&
nccl_ids
,
std
::
function
<
std
::
string
(
size_t
)
>
func
,
const
framework
::
Scope
&
scope
)
{
for
(
size_t
i
=
0
;
i
<
nccl_ids
.
size
();
++
i
)
{
std
::
string
var_name
=
func
(
i
);
auto
var
=
scope
.
FindVar
(
var_name
);
PADDLE_ENFORCE_NOT_NULL
(
var
,
platform
::
errors
::
NotFound
(
"Variable with name %s is not found"
,
var_name
.
c_str
()));
auto
nccl_id
=
var
->
GetMutable
<
ncclUniqueId
>
();
memcpy
(
nccl_id
,
&
nccl_ids
[
i
],
sizeof
(
ncclUniqueId
));
}
}
class
CGenNCCLIdOp
:
public
framework
::
OperatorBase
{
public:
CGenNCCLIdOp
(
const
std
::
string
&
type
,
...
...
@@ -45,14 +66,20 @@ class CGenNCCLIdOp : public framework::OperatorBase {
return
Output
(
"Out"
);
};
std
::
vector
<
ncclUniqueId
>
nccl_ids
;
nccl_ids
.
resize
(
1
);
if
(
rank
==
0
)
{
GenNCCLID
(
&
nccl_ids
);
std
::
vector
<
std
::
string
>
endpoint_list
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"other_endpoints"
);
SendBroadCastNCCLID
(
endpoint_list
,
1
,
func
,
local_scope
);
platform
::
SendBroadCastCommID
(
endpoint_list
,
&
nccl_ids
);
}
else
{
std
::
string
endpoint
=
Attr
<
std
::
string
>
(
"endpoint"
);
RecvBroadCastNCCLID
(
endpoint
,
1
,
func
,
local_scope
);
platform
::
RecvBroadCastCommID
(
endpoint
,
&
nccl_ids
);
}
CopyNCCLIDToVar
(
nccl_ids
,
func
,
scope
);
scope
.
DeleteScope
(
&
local_scope
);
}
};
...
...
paddle/fluid/operators/collective/gen_nccl_id_op.cc
浏览文件 @
572c466d
...
...
@@ -27,11 +27,32 @@ limitations under the License. */
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/string/split.h"
#include "paddle/fluid/
operators/collective/gen_nccl_id_op
_helper.h"
#include "paddle/fluid/
platform/gen_comm_id
_helper.h"
namespace
paddle
{
namespace
operators
{
static
void
GenNCCLID
(
std
::
vector
<
ncclUniqueId
>*
nccl_ids
)
{
for
(
size_t
i
=
0
;
i
<
nccl_ids
->
size
();
++
i
)
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
ncclGetUniqueId
(
&
(
*
nccl_ids
)[
i
]));
}
}
static
void
CopyNCCLIDToVar
(
const
std
::
vector
<
ncclUniqueId
>&
nccl_ids
,
std
::
function
<
std
::
string
(
size_t
)
>
func
,
const
framework
::
Scope
&
scope
)
{
for
(
size_t
i
=
0
;
i
<
nccl_ids
.
size
();
++
i
)
{
std
::
string
var_name
=
func
(
i
);
auto
var
=
scope
.
FindVar
(
var_name
);
PADDLE_ENFORCE_NOT_NULL
(
var
,
platform
::
errors
::
NotFound
(
"Variable with name %s is not found"
,
var_name
.
c_str
()));
auto
nccl_id
=
var
->
GetMutable
<
ncclUniqueId
>
();
memcpy
(
nccl_id
,
&
nccl_ids
[
i
],
sizeof
(
ncclUniqueId
));
}
}
class
GenNCCLIdOp
:
public
framework
::
OperatorBase
{
public:
GenNCCLIdOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
...
...
@@ -98,19 +119,25 @@ class GenNCCLIdOp : public framework::OperatorBase {
<<
", trainers:"
<<
ss
.
str
();
int
server_fd
=
-
1
;
std
::
vector
<
ncclUniqueId
>
nccl_ids
;
nccl_ids
.
resize
(
nccl_comm_num
);
/// 1. init flat
std
::
function
<
std
::
string
(
size_t
)
>
func
=
platform
::
GetFlatNCCLVarName
;
// broadcast unique id
if
(
trainer_id
==
0
)
{
GenNCCLID
(
&
nccl_ids
);
// server endpoints
std
::
vector
<
std
::
string
>
flat_endpoints
;
flat_endpoints
.
insert
(
flat_endpoints
.
begin
(),
trainers
.
begin
()
+
1
,
trainers
.
end
());
SendBroadCastNCCLID
(
flat_endpoints
,
nccl_comm_num
,
func
,
scope
);
platform
::
SendBroadCastCommID
(
flat_endpoints
,
&
nccl_ids
);
}
else
{
server_fd
=
CreateListenSocket
(
endpoint
);
RecvBroadCastNCCLID
(
server_fd
,
endpoint
,
nccl_comm_num
,
func
,
scope
);
server_fd
=
platform
::
CreateListenSocket
(
endpoint
);
platform
::
RecvBroadCastCommID
(
server_fd
,
endpoint
,
&
nccl_ids
);
}
CopyNCCLIDToVar
(
nccl_ids
,
func
,
scope
);
/// 2. hierarchical inter ncclid
func
=
platform
::
GetHierarchicalInterNCCLVarName
;
...
...
@@ -127,10 +154,13 @@ class GenNCCLIdOp : public framework::OperatorBase {
}
VLOG
(
1
)
<<
"Hierarchical inter ring endpoints:"
<<
ss
.
str
();
SendBroadCastNCCLID
(
inter_endpoints
,
nccl_comm_num
,
func
,
scope
);
GenNCCLID
(
&
nccl_ids
);
platform
::
SendBroadCastCommID
(
inter_endpoints
,
&
nccl_ids
);
CopyNCCLIDToVar
(
nccl_ids
,
func
,
scope
);
}
else
if
(
inter_trainer_id
>
0
)
{
VLOG
(
1
)
<<
"Hierarchical inter ring"
;
RecvBroadCastNCCLID
(
server_fd
,
endpoint
,
nccl_comm_num
,
func
,
scope
);
platform
::
RecvBroadCastCommID
(
server_fd
,
endpoint
,
&
nccl_ids
);
CopyNCCLIDToVar
(
nccl_ids
,
func
,
scope
);
}
/// 3. hierarchical exter ncclid
...
...
@@ -146,15 +176,18 @@ class GenNCCLIdOp : public framework::OperatorBase {
}
VLOG
(
1
)
<<
"Hierarchical exter ring endpoints:"
<<
ss
.
str
();
SendBroadCastNCCLID
(
exter_endpoints
,
nccl_comm_num
,
func
,
scope
);
GenNCCLID
(
&
nccl_ids
);
platform
::
SendBroadCastCommID
(
exter_endpoints
,
&
nccl_ids
);
CopyNCCLIDToVar
(
nccl_ids
,
func
,
scope
);
}
else
if
(
exter_trainer_id
>
0
)
{
VLOG
(
1
)
<<
"Hierarchical exter ring"
;
RecvBroadCastNCCLID
(
server_fd
,
endpoint
,
nccl_comm_num
,
func
,
scope
);
platform
::
RecvBroadCastCommID
(
server_fd
,
endpoint
,
&
nccl_ids
);
CopyNCCLIDToVar
(
nccl_ids
,
func
,
scope
);
}
// close socket server
if
(
trainer_id
!=
0
)
{
CloseSocket
(
server_fd
);
platform
::
CloseSocket
(
server_fd
);
}
}
};
...
...
paddle/fluid/platform/CMakeLists.txt
浏览文件 @
572c466d
...
...
@@ -101,7 +101,7 @@ cc_library(device_context SRCS device_context.cc init.cc DEPS simple_threadpool
place eigen3 stringpiece cpu_helper cpu_info framework_proto
${
GPU_CTX_DEPS
}
${
MKLDNN_CTX_DEPS
}
${
dgc_deps
}
dlpack cudnn_workspace_helper
${
XPU_CTX_DEPS
}
)
cc_library
(
collective_helper SRCS collective_helper.cc DEPS framework_proto device_context enforce
)
cc_library
(
collective_helper SRCS collective_helper.cc
gen_comm_id_helper.cc
DEPS framework_proto device_context enforce
)
if
(
WITH_GPU
)
cc_library
(
cuda_resource_pool SRCS cuda_resource_pool.cc DEPS gpu_info
)
...
...
paddle/fluid/
operators/collective/gen_nccl_id_op
_helper.cc
→
paddle/fluid/
platform/gen_comm_id
_helper.cc
浏览文件 @
572c466d
...
...
@@ -12,7 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/collective/gen_nccl_id_op_helper.h"
#ifdef PADDLE_WITH_NCCL
#include "paddle/fluid/platform/gen_comm_id_helper.h"
#include <arpa/inet.h>
#include <netdb.h>
...
...
@@ -31,7 +32,7 @@ limitations under the License. */
#include "paddle/fluid/string/split.h"
namespace
paddle
{
namespace
operators
{
namespace
platform
{
constexpr
char
COMM_HEAD
[]
=
"_pd_gen_comm_id_"
;
...
...
@@ -257,26 +258,29 @@ static int ConnectAddr(const std::string& ep, const char* head) {
return
sock
;
}
static
void
RecvNCCLID
(
int
conn
,
ncclUniqueId
*
nccl_id
)
{
template
<
typename
CommUniqueId
>
static
void
RecvCommID
(
int
conn
,
CommUniqueId
*
nccl_id
)
{
char
buffer
[
1024
]
=
{
0
};
static_assert
(
NCCL_UNIQUE_ID_BYTES
<=
1024
,
static_assert
(
sizeof
(
CommUniqueId
)
<=
1024
,
"nccl id bytes must <= buffer size"
);
CHECK_SYS_CALL
(
SocketRecv
(
conn
,
buffer
,
NCCL_UNIQUE_ID_BYTES
),
"recv ncc id"
);
memcpy
(
nccl_id
,
buffer
,
NCCL_UNIQUE_ID_BYTES
);
CHECK_SYS_CALL
(
SocketRecv
(
conn
,
buffer
,
sizeof
(
CommUniqueId
)),
"recv comm unique id"
);
memcpy
(
nccl_id
,
buffer
,
sizeof
(
CommUniqueId
));
}
static
void
SendNCCLID
(
int
conn
,
ncclUniqueId
*
nccl_id
)
{
template
<
typename
CommUniqueId
>
static
void
SendCommID
(
int
conn
,
CommUniqueId
*
nccl_id
)
{
char
buffer
[
1024
]
=
{
0
};
memcpy
(
buffer
,
nccl_id
,
NCCL_UNIQUE_ID_BYTES
);
memcpy
(
buffer
,
nccl_id
,
sizeof
(
CommUniqueId
)
);
CHECK_SYS_CALL
(
SocketSend
(
conn
,
buffer
,
NCCL_UNIQUE_ID_BYTES
),
"send
nccl
id"
);
CHECK_SYS_CALL
(
SocketSend
(
conn
,
buffer
,
sizeof
(
CommUniqueId
)
),
"send
comm unique
id"
);
}
void
SendBroadCastNCCLID
(
std
::
vector
<
std
::
string
>
servers
,
int
nccl_comm_num
,
std
::
function
<
std
::
string
(
size_t
)
>
func
,
const
framework
::
Scope
&
scope
)
{
template
<
typename
CommUniqueId
>
void
SendBroadCastCommID
(
std
::
vector
<
std
::
string
>
servers
,
std
::
vector
<
CommUniqueId
>*
nccl_ids
)
{
// connect with server
std
::
vector
<
int
>
connects
;
for
(
auto
server
:
servers
)
{
...
...
@@ -286,23 +290,13 @@ void SendBroadCastNCCLID(std::vector<std::string> servers, int nccl_comm_num,
}
VLOG
(
3
)
<<
"connecting completed..."
;
for
(
int
i
=
0
;
i
<
nccl_comm_num
;
++
i
)
{
std
::
string
var_name
=
func
(
i
);
auto
var
=
scope
.
FindVar
(
var_name
);
PADDLE_ENFORCE_NOT_NULL
(
var
,
platform
::
errors
::
NotFound
(
"Variable with name %s is not found"
,
var_name
.
c_str
()));
auto
nccl_id
=
var
->
GetMutable
<
ncclUniqueId
>
();
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
ncclGetUniqueId
(
nccl_id
));
for
(
size_t
i
=
0
;
i
<
nccl_ids
->
size
();
++
i
)
{
int
j
=
0
;
for
(
auto
conn
:
connects
)
{
VLOG
(
3
)
<<
"sending nccl_id_var: "
<<
var_name
<<
" to "
<<
servers
[
j
]
<<
" nccl_comm_no: "
<<
i
;
SendNCCLID
(
conn
,
nccl_id
);
VLOG
(
3
)
<<
"sending comm_id to "
<<
servers
[
j
]
<<
" nccl_comm_no: "
<<
i
;
SendCommID
(
conn
,
&
(
*
nccl_ids
)[
i
]);
++
j
;
}
VLOG
(
3
)
<<
"sending completed..."
;
}
// close client
...
...
@@ -311,34 +305,43 @@ void SendBroadCastNCCLID(std::vector<std::string> servers, int nccl_comm_num,
}
}
void
RecvBroadCastNCCLID
(
std
::
string
endpoint
,
int
nccl_comm_num
,
std
::
function
<
std
::
string
(
size_t
)
>
func
,
const
framework
::
Scope
&
scope
)
{
template
<
typename
CommUniqueId
>
void
RecvBroadCastCommID
(
std
::
string
endpoint
,
std
::
vector
<
CommUniqueId
>*
nccl_ids
)
{
int
server
=
CreateListenSocket
(
endpoint
);
RecvBroadCast
NCCLID
(
server
,
endpoint
,
nccl_comm_num
,
func
,
scope
);
RecvBroadCast
CommID
(
server
,
endpoint
,
nccl_ids
);
CloseSocket
(
server
);
}
void
RecvBroadCastNCCLID
(
int
server_fd
,
std
::
string
endpoint
,
int
nccl_comm_num
,
std
::
function
<
std
::
string
(
size_t
)
>
func
,
const
framework
::
Scope
&
scope
)
{
template
<
typename
CommUniqueId
>
void
RecvBroadCastCommID
(
int
server_fd
,
std
::
string
endpoint
,
std
::
vector
<
CommUniqueId
>*
nccl_ids
)
{
int
client
=
SocketAccept
(
server_fd
,
COMM_HEAD
);
for
(
int
i
=
0
;
i
<
nccl_comm_num
;
++
i
)
{
std
::
string
var_name
=
func
(
i
);
auto
var
=
scope
.
FindVar
(
var_name
);
PADDLE_ENFORCE_NOT_NULL
(
var
,
platform
::
errors
::
NotFound
(
"Variable with name %s is not found"
,
var_name
.
c_str
()));
auto
nccl_id
=
var
->
GetMutable
<
ncclUniqueId
>
();
VLOG
(
3
)
<<
"trainer: "
<<
endpoint
<<
" receiving nccl_id_var: "
<<
var_name
<<
" from trainer 0, nccl_comm_no: "
<<
i
;
RecvNCCLID
(
client
,
nccl_id
);
for
(
size_t
i
=
0
;
i
<
nccl_ids
->
size
();
++
i
)
{
VLOG
(
3
)
<<
"trainer: "
<<
endpoint
<<
" receiving comm_id from trainer 0, nccl_comm_no: "
<<
i
;
RecvCommID
(
client
,
&
(
*
nccl_ids
)[
i
]);
}
VLOG
(
3
)
<<
"receiving completed..."
;
CloseSocket
(
client
);
}
}
// namespace operators
/// template instantiation
#define INSTANT_TEMPLATE(Type) \
template void SendBroadCastCommID<Type>(std::vector<std::string> servers, \
std::vector<Type> * nccl_ids); \
template void RecvBroadCastCommID<Type>(std::string endpoint, \
std::vector<Type> * nccl_ids);
#ifdef PADDLE_WITH_NCCL
INSTANT_TEMPLATE
(
ncclUniqueId
)
#endif
#ifdef PADDLE_WITH_XPU_BKCL
INSTANT_TEMPLATE
(
bkclUniqueId
)
#endif
}
// namespace platform
}
// namespace paddle
#endif
paddle/fluid/
operators/collective/gen_nccl_id_op
_helper.h
→
paddle/fluid/
platform/gen_comm_id
_helper.h
浏览文件 @
572c466d
...
...
@@ -14,35 +14,31 @@ limitations under the License. */
#pragma once
#ifdef PADDLE_WITH_NCCL
#include <functional>
#include <string>
#include <vector>
namespace
paddle
{
namespace
framework
{
class
Scope
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
operators
{
namespace
platform
{
int
CreateListenSocket
(
const
std
::
string
&
ep
);
void
CloseSocket
(
int
fd
);
void
SendBroadCastNCCLID
(
std
::
vector
<
std
::
string
>
servers
,
int
nccl_comm_num
,
std
::
function
<
std
::
string
(
size_t
)
>
func
,
const
framework
::
Scope
&
scope
);
template
<
typename
CommUniqueId
>
void
SendBroadCastCommID
(
std
::
vector
<
std
::
string
>
servers
,
std
::
vector
<
CommUniqueId
>*
nccl_ids
);
// server listen on endpoint, then recv nccl id
void
RecvBroadCastNCCLID
(
std
::
string
endpoint
,
int
nccl_comm_num
,
std
::
function
<
std
::
string
(
size_t
)
>
func
,
const
framework
::
Scope
&
scope
);
template
<
typename
CommUniqueId
>
void
RecvBroadCastCommID
(
std
::
string
endpoint
,
std
::
vector
<
CommUniqueId
>*
nccl_ids
);
// recv nccl id from socket
void
RecvBroadCastNCCLID
(
int
server_fd
,
std
::
string
endpoint
,
int
nccl_comm_num
,
std
::
function
<
std
::
string
(
size_t
)
>
func
,
const
framework
::
Scope
&
scope
);
}
// namespace
operators
template
<
typename
CommUniqueId
>
void
RecvBroadCastCommID
(
int
server_fd
,
std
::
string
endpoint
,
std
::
vector
<
CommUniqueId
>*
nccl_ids
);
}
// namespace
platform
}
// namespace paddle
#endif
paddle/fluid/platform/nccl_helper.h
浏览文件 @
572c466d
...
...
@@ -12,9 +12,9 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef PADDLE_WITH_NCCL
#pragma once
#ifdef PADDLE_WITH_NCCL
#include <stdio.h>
#include <memory>
#include <string>
...
...
python/paddle/fluid/tests/unittests/test_gen_nccl_id_op.py
浏览文件 @
572c466d
...
...
@@ -14,10 +14,11 @@
import
unittest
import
os
import
copy
from
launch_function_helper
import
wait
,
_find_free_port
from
multiprocessing
import
Pool
,
Process
from
threading
import
Thread
os
.
environ
[
'GLOG_vmodule'
]
=
str
(
"gen_nccl_id_op*=10"
)
os
.
environ
[
'GLOG_vmodule'
]
=
str
(
"gen_nccl_id_op*=10
,gen_comm_id*=10
"
)
import
paddle
from
paddle.fluid
import
core
...
...
@@ -29,8 +30,8 @@ def run_gen_ncc_id(attr):
nccl_comm_num
=
attr
[
'nccl_comm_num'
]
use_hallreduce
=
attr
[
'use_hierarchical_allreduce'
]
startup_program
=
paddle
.
static
.
default_startup_p
rogram
()
main_program
=
paddle
.
static
.
default_main_p
rogram
()
startup_program
=
paddle
.
static
.
P
rogram
()
main_program
=
paddle
.
static
.
P
rogram
()
with
paddle
.
static
.
program_guard
(
main_program
,
startup_program
):
nccl_id_var
=
startup_program
.
global_block
().
create_var
(
...
...
@@ -60,9 +61,10 @@ def run_gen_ncc_id(attr):
attrs
=
attr
)
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_program
)
scope
=
paddle
.
static
.
Scope
()
with
paddle
.
static
.
scope_guard
(
scope
):
exe
.
run
(
startup_program
)
class
TestGenNcclIdOp
(
unittest
.
TestCase
):
...
...
@@ -97,16 +99,19 @@ class TestGenNcclIdOp(unittest.TestCase):
procs
=
[]
for
i
in
range
(
nranks
):
attr
[
'trainer_id'
]
=
i
p
=
Process
(
target
=
run_gen_ncc_id
,
args
=
(
attr
,
))
# NOTE. multiprocessing cannot be covered by coverage
p
=
Thread
(
target
=
run_gen_ncc_id
,
args
=
(
copy
.
copy
(
attr
),
))
p
.
start
()
procs
.
append
(
p
)
wait
(
procs
,
timeout
=
120
)
for
p
in
procs
:
p
.
join
()
def
test_flat
(
self
):
print
(
">>> test gen flat nccl id"
)
self
.
gen_nccl_id
(
2
)
print
(
"<<< end test gen flat nccl id"
)
print
()
def
test_hierarchical
(
self
):
print
(
">>> test gen hierarchical nccl id"
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录