reducer.cc 47.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/reducer.h"

17 18
#include <iostream>

19
#include "paddle/fluid/framework/tensor_util.h"
20
#include "paddle/fluid/imperative/layer.h"
21
#include "paddle/fluid/imperative/parallel_context.h"
22
#include "paddle/fluid/operators/math/concat_and_split.h"
23
#include "paddle/phi/kernels/funcs/strided_memcpy.h"
24
#ifdef PADDLE_WITH_XPU
25 26
#include "paddle/fluid/platform/device/xpu/enforce_xpu.h"
#endif
27
#include "paddle/fluid/string/string_helper.h"
28
#include "paddle/phi/core/dense_tensor.h"
29 30 31
namespace paddle {
namespace imperative {

K
kuizhiqing 已提交
32 33
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) ||     \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO) || \
Z
zn 已提交
34
    defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_CNCL)
35 36
// div the nranks
void Group::DivNRanks(const platform::DeviceContext &context, int64_t nranks) {
37
  phi::DenseTensor *tensor =
38
      is_sparse_
39
          ? sparse_contents_->GetMutable<phi::SelectedRows>()->mutable_value()
40
          : dense_contents_.GetMutable<phi::DenseTensor>();
41 42

  if (platform::is_gpu_place(tensor->place())) {
43
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
44 45
    DivNRanks(tensor, nranks, context);
#endif
K
kuizhiqing 已提交
46 47 48
  } else if (platform::is_npu_place(tensor->place())) {
    // TODO(kuizhiqing)
    VLOG(4) << "divnrank for npu not support yet";
49
  } else if (platform::is_cpu_place(tensor->place())) {
50 51
    VLOG(4) << "before div 2" << *tensor;
    VLOG(4) << "NDiv for cpu devices : rank = " << nranks;
52 53 54 55 56 57
#ifdef PADDLE_WITH_HIP
    if (dtype_ == paddle::framework::proto::VarType_Type_BF16) {
      PADDLE_THROW(paddle::platform::errors::Fatal(
          "Unsupport BF16 in DataParallel for now"));
    }
    framework::VisitDataTypeForHIP(
58
        dtype_,
L
Leo Chen 已提交
59
        DivNRanksForAllReduce<phi::CPUContext>(tensor, nranks, context));
60
#else
L
Leo Chen 已提交
61 62 63
    framework::VisitDataType(
        dtype_,
        DivNRanksForAllReduce<phi::CPUContext>(tensor, nranks, context));
64
#endif
65
    VLOG(4) << "after div 2" << *tensor;
66 67 68 69
  } else if (platform::is_xpu_place(tensor->place())) {
#ifdef PADDLE_WITH_XPU_BKCL
// TODO(liuyuhui) support xpu about div nranks in the future
#endif
Z
zn 已提交
70 71 72
  } else if (platform::is_mlu_place(tensor->place())) {
    // TODO(zhangna)
    VLOG(4) << "divnrank for mlu not support yet";
73 74 75
  }
}

76 77 78
template <typename DeviceContext, typename T>
static void ConcatTensorsForAllReduce(
    const DeviceContext &context,
79
    const std::vector<phi::DenseTensor> &dense_tensors_,
80 81
    framework::Variable *p_dense_contents) {
  operators::math::ConcatFunctor<DeviceContext, T> concat_functor_;
82 83 84
  concat_functor_(context,
                  dense_tensors_,
                  0,
85
                  p_dense_contents->GetMutable<phi::DenseTensor>());
86 87 88 89
}

template <typename DeviceContext, typename T>
static void SplitTensorsForAllReduce(
90 91
    const DeviceContext &context,
    framework::Variable *p_dense_contents,
92
    std::vector<phi::DenseTensor> *p_dense_tensors) {
93
  auto *in = p_dense_contents->GetMutable<phi::DenseTensor>();
94 95
  std::vector<phi::DenseTensor *> outs;
  std::vector<const phi::DenseTensor *> shape_refer;
96 97 98

  outs.reserve(p_dense_tensors->size());
  shape_refer.reserve(p_dense_tensors->size());
99

100 101 102 103 104 105
  for (auto &tensor : *p_dense_tensors) {
    outs.emplace_back(&tensor);
    shape_refer.emplace_back(&tensor);
  }
  // Sometimes direct copies will be faster
  if (p_dense_tensors->size() < 10) {
106
    phi::funcs::StridedMemcpyWithAxis0<T>(context, *in, shape_refer, &outs);
107 108 109 110 111 112 113 114 115 116
  } else {
    operators::math::SplitFunctor<DeviceContext, T> split_functor_;
    split_functor_(context, *in, shape_refer, 0, &outs);
  }
}

// context is used to select the stream for concat
template <typename DeviceContext>
static void ConcatTensorsWithType(
    const DeviceContext &context,
117
    const std::vector<phi::DenseTensor> &dense_tensors_,
118 119 120
    framework::Variable *p_dense_contents,
    framework::proto::VarType::Type type) {
  switch (type) {
121
    case framework::proto::VarType::FP16:
122 123
      ConcatTensorsForAllReduce<DeviceContext, platform::float16>(
          context, dense_tensors_, p_dense_contents);
124 125
      break;
    case framework::proto::VarType::FP32:
126 127
      ConcatTensorsForAllReduce<DeviceContext, float>(
          context, dense_tensors_, p_dense_contents);
128 129
      break;
    case framework::proto::VarType::FP64:
130 131
      ConcatTensorsForAllReduce<DeviceContext, double>(
          context, dense_tensors_, p_dense_contents);
132 133 134 135 136
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
137
          framework::DataTypeToString(type)));
138 139 140 141
  }
}

// context is used to select the stream for split
142
template <typename DeviceContext>
143 144 145 146
static void SplitTensorsWithType(const DeviceContext &context,
                                 framework::Variable *p_dense_contents,
                                 std::vector<phi::DenseTensor> *p_dense_tensors,
                                 framework::proto::VarType::Type type) {
147
  switch (type) {
148
    case framework::proto::VarType::FP16:
149 150
      SplitTensorsForAllReduce<DeviceContext, platform::float16>(
          context, p_dense_contents, p_dense_tensors);
151 152
      break;
    case framework::proto::VarType::FP32:
153 154
      SplitTensorsForAllReduce<DeviceContext, float>(
          context, p_dense_contents, p_dense_tensors);
155 156
      break;
    case framework::proto::VarType::FP64:
157 158
      SplitTensorsForAllReduce<DeviceContext, double>(
          context, p_dense_contents, p_dense_tensors);
159 160 161 162 163
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
164 165 166 167
          framework::DataTypeToString(type)));
  }
}

168 169 170 171 172
#ifdef PADDLE_WITH_XPU_BKCL
template <>
void SplitTensorsForAllReduce<platform::XPUDeviceContext, float>(
    const platform::XPUDeviceContext &context,
    framework::Variable *p_dense_contents,
173
    std::vector<phi::DenseTensor> *p_dense_tensors) {
174
  auto *in = p_dense_contents->GetMutable<phi::DenseTensor>();
175 176
  std::vector<phi::DenseTensor *> outs;
  std::vector<const phi::DenseTensor *> shape_refer;
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

  outs.reserve(p_dense_tensors->size());
  shape_refer.reserve(p_dense_tensors->size());

  for (auto &tensor : *p_dense_tensors) {
    outs.emplace_back(&tensor);
    shape_refer.emplace_back(&tensor);
  }
  operators::math::SplitFunctor<platform::XPUDeviceContext, float>
      split_functor_;
  split_functor_(context, *in, shape_refer, 0, &outs);
}

// context is used to select the stream for concat
template <>
void ConcatTensorsWithType<platform::XPUDeviceContext>(
    const platform::XPUDeviceContext &context,
194
    const std::vector<phi::DenseTensor> &dense_tensors_,
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    framework::Variable *p_dense_contents,
    framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType::FP32:
      ConcatTensorsForAllReduce<platform::XPUDeviceContext, float>(
          context, dense_tensors_, p_dense_contents);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
          framework::DataTypeToString(type)));
  }
}

// context is used to select the stream for split
template <>
void SplitTensorsWithType<platform::XPUDeviceContext>(
    const platform::XPUDeviceContext &context,
    framework::Variable *p_dense_contents,
215
    std::vector<phi::DenseTensor> *p_dense_tensors,
216 217 218 219 220 221
    framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType::FP32:
      SplitTensorsForAllReduce<platform::XPUDeviceContext, float>(
          context, p_dense_contents, p_dense_tensors);
      break;
K
kuizhiqing 已提交
222 223 224 225 226 227 228 229 230
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
          framework::DataTypeToString(type)));
  }
}
#endif

Z
zn 已提交
231 232 233 234 235
#ifdef PADDLE_WITH_CNCL
// context is used to select the stream for concat
template <>
void ConcatTensorsWithType<platform::MLUDeviceContext>(
    const platform::MLUDeviceContext &context,
236
    const std::vector<phi::DenseTensor> &dense_tensors_,
Z
zn 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    framework::Variable *p_dense_contents,
    framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType::FP16:
      ConcatTensorsForAllReduce<platform::MLUDeviceContext, platform::float16>(
          context, dense_tensors_, p_dense_contents);
      break;
    case framework::proto::VarType::FP32:
      ConcatTensorsForAllReduce<platform::MLUDeviceContext, float>(
          context, dense_tensors_, p_dense_contents);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
          framework::DataTypeToString(type)));
  }
}

// context is used to select the stream for split
template <>
void SplitTensorsWithType<platform::MLUDeviceContext>(
    const platform::MLUDeviceContext &context,
    framework::Variable *p_dense_contents,
261
    std::vector<phi::DenseTensor> *p_dense_tensors,
Z
zn 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType::FP16:
      SplitTensorsForAllReduce<platform::MLUDeviceContext, platform::float16>(
          context, p_dense_contents, p_dense_tensors);
      break;
    case framework::proto::VarType::FP32:
      SplitTensorsForAllReduce<platform::MLUDeviceContext, float>(
          context, p_dense_contents, p_dense_tensors);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
          framework::DataTypeToString(type)));
  }
}
#endif

281 282 283
void Group::ConcatTensors(const platform::DeviceContext &context) {
  auto place = context.GetPlace();
  if (platform::is_gpu_place(place)) {
284
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
L
Leo Chen 已提交
285 286 287 288
    ConcatTensorsWithType(static_cast<const phi::GPUContext &>(context),
                          dense_tensors_,
                          &dense_contents_,
                          dtype_);
289 290 291 292
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
293 294 295 296 297
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU_BKCL
    ConcatTensorsWithType(
        static_cast<const platform::XPUDeviceContext &>(context),
298 299 300
        dense_tensors_,
        &dense_contents_,
        dtype_);
301 302 303 304
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat xpu grads since it's not compiled with BKCL,"
        "Please recompile or reinstall Paddle with BKCL support."));
305 306 307 308 309
#endif
  } else if (platform::is_npu_place(place)) {
#ifdef PADDLE_WITH_ASCEND_CL
    ConcatTensorsWithType(
        static_cast<const platform::NPUDeviceContext &>(context),
310 311 312
        dense_tensors_,
        &dense_contents_,
        dtype_);
313 314 315 316
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat npu grads since it's not compiled with HCCL,"
        "Please recompile or reinstall Paddle with HCCL support."));
Z
zn 已提交
317 318 319 320 321
#endif
  } else if (platform::is_mlu_place(place)) {
#ifdef PADDLE_WITH_CNCL
    ConcatTensorsWithType(
        static_cast<const platform::MLUDeviceContext &>(context),
322 323 324
        dense_tensors_,
        &dense_contents_,
        dtype_);
Z
zn 已提交
325 326 327 328
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat mlu grads since it's not compiled with CNCL,"
        "Please recompile or reinstall Paddle with CNCL support."));
329 330
#endif
  } else if (platform::is_cpu_place(place)) {
L
Leo Chen 已提交
331 332 333 334
    ConcatTensorsWithType(static_cast<const phi::CPUContext &>(context),
                          dense_tensors_,
                          &dense_contents_,
                          dtype_);
335 336 337 338 339 340 341 342 343
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Concat grad tensor not supported on place (%s)", place));
  }
}

void Group::SplitTensors(const platform::DeviceContext &context) {
  auto place = context.GetPlace();
  if (platform::is_gpu_place(place)) {
344
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
L
Leo Chen 已提交
345 346 347 348
    SplitTensorsWithType(static_cast<const phi::GPUContext &>(context),
                         &dense_contents_,
                         &dense_tensors_,
                         dtype_);
349 350 351 352
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split grad tensor since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
353 354 355 356 357
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU_BKCL
    SplitTensorsWithType(
        static_cast<const platform::XPUDeviceContext &>(context),
358 359 360
        &dense_contents_,
        &dense_tensors_,
        dtype_);
361 362 363 364
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split xpu grad since it's not compiled with BKCL,"
        "Please recompile or reinstall Paddle with BKCL support."));
365 366 367 368 369
#endif
  } else if (platform::is_npu_place(place)) {
#ifdef PADDLE_WITH_ASCEND_CL
    SplitTensorsWithType(
        static_cast<const platform::NPUDeviceContext &>(context),
370 371 372
        &dense_contents_,
        &dense_tensors_,
        dtype_);
373 374 375 376
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split npu grad since it's not compiled with HCCL,"
        "Please recompile or reinstall Paddle with HCCL support."));
Z
zn 已提交
377 378 379 380 381
#endif
  } else if (platform::is_mlu_place(place)) {
#ifdef PADDLE_WITH_CNCL
    SplitTensorsWithType(
        static_cast<const platform::MLUDeviceContext &>(context),
382 383 384
        &dense_contents_,
        &dense_tensors_,
        dtype_);
Z
zn 已提交
385 386 387 388
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split mlu grad since it's not compiled with CNCL,"
        "Please recompile or reinstall Paddle with CNCL support."));
389 390
#endif
  } else if (platform::is_cpu_place(place)) {
L
Leo Chen 已提交
391 392 393 394
    SplitTensorsWithType(static_cast<const phi::CPUContext &>(context),
                         &dense_contents_,
                         &dense_tensors_,
                         dtype_);
395 396 397
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Split grad tensor not supported on place (%s)", place));
398 399 400 401 402
  }
}

std::ostream &operator<<(std::ostream &out, const Group &group) {
  const auto &vars = group.variable_indices_;
403
  out << "numel: " << group.all_length_ << " ;is_sparse: " << group.is_sparse_
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
      << " ;var number: " << vars.size() << "\n";
  auto begin = vars.begin();
  auto end = vars.end();
  out << "[";
  for (int i = 0; begin != end && i < 100; ++i, ++begin) {
    if (i > 0) out << ' ';
    out << *begin;
  }
  if (begin != end) {
    out << " ...";
  }
  out << "]\n";
  return out;
}

419 420 421
Reducer::Reducer(const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
                 const std::vector<std::vector<size_t>> &group_indices,
                 const std::vector<bool> &is_sparse_gradient,
422
                 std::shared_ptr<imperative::ParallelContext> parallel_ctx,
423 424
                 const std::vector<size_t> &group_size_limits,
                 bool find_unused_vars)
425 426 427
    : vars_(vars),
      group_indices_(group_indices),
      is_sparse_gradient_(is_sparse_gradient),
428
      parallel_ctx_(parallel_ctx),
429
      group_size_limits_(group_size_limits),
430
      find_unused_vars_each_step_(find_unused_vars) {
431
  VLOG(3) << "Start construct the Reducer ...";
432
  nrings_ = parallel_ctx->GetNRings();
433
  nranks_ = parallel_ctx->GetNRanks();
434 435
  // initialize groups
  InitializeGroups(group_indices);
436 437
  for (size_t global_var_index = 0; global_var_index < vars_.size();
       ++global_var_index) {
438
    auto var = vars_[global_var_index];
439 440
    var->GradVarBase()->AddVoidHook(std::make_shared<std::function<void()>>(
        [=]() { this->AddDistHook(global_var_index); }));
441
    var_index_map_[var->GradVarBase()->SharedVar().get()] = global_var_index;
442
  }
443 444 445 446 447 448

  // for checking var is ready once
  vars_marked_ready_.resize(vars_.size(), false);

  // Initialize local used vars
  local_used_vars_.resize(vars_.size(), 0);
449 450
}

451
void Reducer::InitializeDenseGroups(
452 453 454 455 456
    const std::vector<size_t> &variable_indices_, Group *p_group) {
  int64_t all_length = 0;
  for (size_t index = 0; index < variable_indices_.size(); ++index) {
    const auto variable_index = variable_indices_[index];
    const auto &var = vars_[variable_index];
457
    const auto &var_name = var->Name();
458 459
    PADDLE_ENFORCE_EQ(is_sparse_gradient_[variable_index],
                      false,
460
                      platform::errors::PreconditionNotMet(
461
                          "Tensor %s's GRAD must be LoDTensor, but received "
462 463 464
                          "GRAD is SelectedRows",
                          var_name));

465
    auto lod_tensor = var->MutableVar()->GetMutable<phi::DenseTensor>();
466 467
    PADDLE_ENFORCE_EQ(lod_tensor->IsInitialized(),
                      true,
468
                      platform::errors::PreconditionNotMet(
469
                          "Tensor %s is not initialized.", var_name));
470
    const auto size = lod_tensor->numel();
471
    PADDLE_ENFORCE_GT(
472 473
        size,
        0,
474 475
        platform::errors::PreconditionNotMet(
            "The number of tensor %s's elements is 0.", var_name));
476 477 478 479
    all_length += size;

    p_group->length_.push_back(size);

480
    // for concat operator
481
    p_group->dense_tensors_.push_back(phi::DenseTensor());
482

483
    // check the dtype and place, it must be same.
484 485
    const auto &dtype = var->DataType();
    const auto &place = var->Place();
486 487
    if (index > 0) {
      PADDLE_ENFORCE_EQ(
488 489
          dtype,
          p_group->dtype_,
490 491 492
          platform::errors::PreconditionNotMet(
              "Tensor %s has different dtype. Expected dtype is %s, but actual "
              "dtype is %s",
493 494
              var_name,
              framework::DataTypeToString(p_group->dtype_),
495
              framework::DataTypeToString(dtype)));
496 497
      PADDLE_ENFORCE_EQ(place,
                        place_,
498 499 500
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different place. Expected place is "
                            "%s, but actual place is %s",
501 502 503
                            var_name,
                            place_,
                            place));
504 505 506 507 508
    } else {
      p_group->dtype_ = dtype;
      place_ = place;
    }
  }
509
  p_group->all_length_ = all_length;
510 511 512 513 514
}

// Each parameter will be initialized according to the group information.
// For the sparse parameter, sparse_contents_ in the group directly points
// to the parameter. For dense parameters, first construct an empty Tensor().
515
// Then specify the actual memory in MarkDenseVarReady.
516 517 518 519 520 521
void Reducer::InitializeGroups(
    const std::vector<std::vector<size_t>> &group_indices) {
  VLOG(3) << "Start initialize groups ..";
  // clear the group
  groups_.clear();
  groups_.reserve(group_indices.size());
522 523
  variable_locators_.clear();
  variable_locators_.resize(vars_.size());
524 525 526 527 528

  auto group_nums = group_indices.size();
  for (size_t group_index = 0; group_index < group_nums; ++group_index) {
    const auto &variable_indices_ = group_indices[group_index];
    PADDLE_ENFORCE_GT(
529 530
        variable_indices_.size(),
        0,
531
        platform::errors::PreconditionNotMet(
532
            "The number of group[%d]'s elements is 0.", group_index));
533 534 535 536 537 538 539 540 541 542 543
    Group group;

    // It's just for check the sparse or dense
    auto first_varbase = vars_[variable_indices_.front()];
    if (variable_indices_.size() == 1 &&
        is_sparse_gradient_[variable_indices_.front()]) {
      // process the sparse gradient. one sparse, one group
      group.dtype_ = first_varbase->DataType();
      group.is_sparse_ = true;
    } else {
      // process the dense gradient.
544
      InitializeDenseGroups(variable_indices_, &group);
545
    }
546 547 548

    // map variables to this group by VariableLocator
    size_t inside_group_index = 0;
549
    for (const auto var_index : variable_indices_) {
550 551 552 553 554 555
      variable_locators_[var_index] = VariableLocator{
          .group_index = group_index,
          .inside_group_index = inside_group_index++,
      };
    }
    group.variable_indices_ = std::move(variable_indices_);
556
    groups_.emplace_back(std::move(group));
557
    // Debug Message For Reducer
558
    VLOG(3) << "The Group[" << group_index << "]:" << groups_.back();
559 560 561
  }
}

562 563
void Reducer::PrepareDeps(const std::unordered_set<GradOpNode *> &init_nodes) {
  PADDLE_ENFORCE_EQ(
564 565
      node_deps_.empty(),
      true,
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
      platform::errors::AlreadyExists("Op deps must be initialized here"));

  std::queue<GradOpNode *> q;
  std::unordered_set<GradOpNode *> visited;

  for (auto pos = init_nodes.begin(); pos != init_nodes.end(); pos++) {
    q.push(*pos);
    visited.insert(*pos);
  }

  while (!q.empty()) {
    auto *cur_node = q.front();
    q.pop();

    const auto &grad_pending_nodes = cur_node->GradPendingNodes();
    for (auto &grad_pending_node : grad_pending_nodes) {
      PADDLE_ENFORCE_NOT_NULL(
          grad_pending_node,
          platform::errors::NotFound("Grad pending node should not be null"));
585 586 587 588 589
      // py_layer is not supported in DataParallel
      auto begin = grad_pending_node->begin();
      auto end = grad_pending_node->end();
      for (auto op_base = begin; op_base != end; op_base++) {
        PADDLE_ENFORCE_EQ(
590 591
            op_base->Type() != "py_layer",
            true,
592 593 594 595 596 597 598 599 600
            platform::errors::PreconditionNotMet(
                "Note: Currently PyLayer is not supported in DataParallel. For "
                "using PyLayer in a DataParallel model, you can skip gradient "
                "synchronization among multiple cards by 'no_sync', and "
                "manually implement 'all_reduce' before model optimization. "
                "There is an example showing specific implemetation processing "
                "in offical docs: https://www.paddlepaddle.org.cn/documentation"
                "/docs/api/paddle/DataParallel_cn.html"));
      }
601 602 603 604 605 606 607 608 609
      ++node_deps_[grad_pending_node.get()];
      if (visited.count(grad_pending_node.get()) == 0) {
        visited.insert(grad_pending_node.get());
        q.push(grad_pending_node.get());
      }
    }
  }
}

610
void Reducer::TraverseBackwardGraph(
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
    const std::vector<std::shared_ptr<imperative::VarBase>> &outputs) {
  node_deps_.clear();
  std::queue<std::shared_ptr<GradOpNode>> q;
  std::unordered_set<VariableWrapper *> var_visited;
  std::unordered_set<GradOpNode *> init_nodes;

  for (const auto &output : outputs) {
    const auto &grad_node = output->GradVarBase()->GradNode();
    if (grad_node == nullptr || output->OverridedStopGradient()) {
      VLOG(3) << "Skip auto grad since there is no grad op or output is "
                 "stop_gradient=True: "
              << output->Name();
      continue;
    } else {
      init_nodes.insert(grad_node.get());
      var_visited.insert(output->SharedVar().get());
      q.push(grad_node);
    }
  }

  PrepareDeps(init_nodes);
  // Traverse the autograd graph starting at the specified output
  while (!q.empty()) {
    auto cur_node = q.front();
    q.pop();

    for (const auto &cur_op : *cur_node) {
      auto &bwd_outs = cur_op.GetOutsMap();
      for (const auto &pair : bwd_outs) {
        if (!pair.second.IsGrad()) {
          continue;
        }
        for (auto &var : pair.second) {
          if (!var || var->OverridedStopGradient()) {
            continue;
          } else {
            var_visited.insert(var.get());
          }
        }
      }
    }
    for (const auto &grad_pending_node : cur_node->GradPendingNodes()) {
      PADDLE_ENFORCE_NOT_NULL(grad_pending_node,
                              platform::errors::NotFound(
                                  "Grad pending node should not be nullptr"));
      auto iter = node_deps_.find(grad_pending_node.get());
      if (iter == node_deps_.end()) {
        continue;
      }
      if (--(iter->second) == 0) {
        q.push(grad_pending_node);
      }
    }
  }

  for (const auto &it : var_index_map_) {
    if (var_visited.count(it.first) == 0) {
      unused_vars_.push_back(it.second);
      VLOG(3) << "Var[" << it.second << "] [" << it.first->Name()
              << "] is not used";
    }
  }
673
}
674

675 676 677
// After each batch is calculated, the counter of each group(group.pending_)
// and allreudce sequence counter(next_group_) will be cleaned up again.
void Reducer::PrepareForBackward(
678
    const std::vector<std::shared_ptr<imperative::VarBase>> &outputs) {
679
  VLOG(3) << "after forward, then reset count for backward.";
680
  grad_need_hooks_ = true;
681 682 683 684 685 686 687 688 689 690 691
  next_group_ = 0;
  std::for_each(groups_.begin(), groups_.end(), [](Group &group) {
    group.pending_ = group.variable_indices_.size();
    group.sparse_contents_ = nullptr;
  });

  // reinitialize vars_marked_ready_ for next iteration
  vars_marked_ready_.clear();
  vars_marked_ready_.resize(vars_.size(), false);

  PADDLE_ENFORCE_EQ(
692 693
      groups_need_finalize_,
      false,
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
      platform::errors::PreconditionNotMet(
          "A serious error has occurred here. Please "
          "set find_unused_parameters=True to traverse backward graph "
          "in each step to prepare reduce in advance. If you have "
          "set, There may be several reasons for this error: "
          "1) Please note that all forward outputs derived from the module "
          "parameters must participate in the calculation of losses and "
          "subsequent gradient calculations. If not, the wrapper will hang, "
          "waiting for autograd to generate gradients for these parameters. "
          "you can use detach or stop_gradient to make the unused parameters "
          "detached from the autograd graph. "
          "2) Used multiple forwards and one backward. You may be able to wrap "
          "multiple forwards in a model."));

  // The first var to trigger the unused parameter
  has_marked_unused_vars_ = false;

  if (find_unused_vars_once_ || find_unused_vars_each_step_) {
    unused_vars_.clear();
713
    TraverseBackwardGraph(outputs);
714 715 716 717 718
    // only check once in first step
    find_unused_vars_once_ = false;
  }

  if (find_unused_vars_each_step_ && unused_vars_.empty()) {
719 720 721 722 723 724 725 726
    LOG_FIRST_N(WARNING, 1)
        << "All parameters are involved in the backward pass. "
           "It is recommended to set find_unused_parameters to False "
           "to improve performance. However, if unused parameters "
           "appear in subsequent iterative training, then an error "
           "will occur. Please make it clear that in the subsequent "
           "training, there will be no parameters that are not used "
           "in the backward pass, and then set find_unused_parameters";
727 728 729
  }

  if (unused_vars_.size() == vars_.size()) {
730 731 732 733 734 735
    LOG_FIRST_N(WARNING, 1)
        << "There is no parameter in the device involved "
           "in the backward calculation. If there are "
           "parameters on other devices involved in the "
           "backward, then a serious error will occur here.";
  }
736 737 738 739 740
}

// Add hook function to each leaf node. When the gradient of a leaf node is
// generated, if it is the sparse parameter, it will directly execute allreduce,
// if it is the dense parameter, it will execute three steps: 1,
741
// MarkDenseVarReady. Find the position of the corresponding group
742 743 744 745 746
// through var_index, share the gradient memory and the group dense_tensors,
// the group counter is reduced by 1. 2, MarkGroupReady: When the group
// counter is 0, it means that allreduce can be emitted, and
// concat + allreduce + split is emitted in turn according to next_group_.
// 3, FinalizeBackward: after the end, synchronize each stream.
747
void Reducer::AddDistHook(size_t var_index) {
748 749
  PADDLE_ENFORCE_LT(var_index,
                    variable_locators_.size(),
750 751 752
                    platform::errors::OutOfRange(
                        "Out of bounds variable index. it must be less"
                        "than %d, but it is %d",
753 754
                        variable_locators_.size(),
                        var_index));
755

756 757 758 759 760
  // gradient synchronization is not required when grad_need_hooks_ is false.
  if (!grad_need_hooks_) {
    return;
  }

761 762 763
  VLOG(3) << "Var[" << var_index << "] ["
          << vars_[var_index]->GradVarBase()->Name()
          << "] arrived and triggered disthook";
764

765 766
  local_used_vars_[var_index] = 1;

767
  // rebuild group when find_unused_vars_each_step_ is false
768
  if (NeedRebuildGroup()) {
769 770 771
    rebuild_vars_.push_back(vars_[var_index]);
    rebuild_var_indices_.push_back(var_index);
  }
772

773
  if (!has_marked_unused_vars_) {
774 775 776 777 778 779
    has_marked_unused_vars_ = true;
    for (const auto &unused_index : unused_vars_) {
      MarkVarReady(unused_index, false);
    }
  }

780 781
  MarkVarReady(var_index, true);
}
782

783
void Reducer::MarkVarReady(const size_t var_index, const bool is_used_var) {
784 785
  groups_need_finalize_ = true;

786
  const auto &var_locator = variable_locators_[var_index];
787
  const auto group_index = var_locator.group_index;
788
  auto &group = groups_[group_index];
789

790 791 792 793
  // error happened, if the var is ready before.
  if (vars_marked_ready_[var_index]) {
    auto error_info = string::Sprintf(
        "Error happened, when parameter[%d][%s] has been ready before. "
794 795 796
        "Please set find_unused_parameters=True to traverse backward graph "
        "in each step to prepare reduce in advance. If you have set, "
        "there may be several reasons for this error: "
797 798 799 800
        "1) In multiple reentrant backward phase, some parameters are reused."
        "2) Using model parameters outside of forward function. Please "
        "make sure that model parameters are not shared in concurrent "
        "forward-backward passes.",
801 802
        var_index,
        vars_[var_index]->GradVarBase()->Name());
803

804 805
    PADDLE_ENFORCE_EQ(has_marked_unused_vars_,
                      false,
806 807 808 809 810 811 812 813 814 815 816 817 818 819
                      platform::errors::PreconditionNotMet(error_info));

    error_info +=
        "3) Unused parameters retrieval is incorrect. "
        "The return value of forward will be used to retrieve"
        " the unused parameters of the entire model. These "
        "gradients of unused parameters will not be synchronized "
        "between multiple cards. However, if the unused "
        "parameters participate in the backward calculation "
        "again at a later time (e.g. after the forward function, "
        "the loss calculation uses the unused "
        "paramters of the forward and trigger backward), "
        "its gradient will be wrong.";

820 821
    PADDLE_ENFORCE_EQ(has_marked_unused_vars_,
                      true,
822 823 824 825 826
                      platform::errors::PreconditionNotMet(error_info));
  } else {
    vars_marked_ready_[var_index] = true;
  }

827 828
  if (!group.is_sparse_) {
    // process dense group
829 830
    const auto inside_group_index = var_locator.inside_group_index;
    const auto length = group.length_[inside_group_index];
831
    auto &group_tensor = group.dense_tensors_[inside_group_index];
832

833
    if (is_used_var) {
834
      auto var_base = vars_[var_index]->GradVarBase();
835
      auto tensor = var_base->MutableVar()->GetMutable<phi::DenseTensor>();
836 837
      group_tensor.ShareDataWith(*tensor).Resize(
          {static_cast<int64_t>(length)});
838
    } else {
839 840
      // TODO(shenliang03): maybe save the memory
      // by avoiding tensor construction
841 842
      if (!group_tensor.IsInitialized()) {
        group_tensor.Resize({static_cast<int64_t>(length)});
843
        group_tensor.mutable_data(place_,
844
                                  framework::TransToPhiDataType(group.dtype_));
845 846
      }

847
#ifdef PADDLE_WITH_XPU_BKCL
848
      if (platform::is_xpu_place(group_tensor.place())) {
849 850 851 852
        auto dev_ctx = static_cast<platform::XPUDeviceContext *>(
            platform::DeviceContextPool::Instance().Get(place_));
        if (HasGrad(var_index)) {
          auto var_base = vars_[var_index]->GradVarBase();
853
          auto tensor = var_base->MutableVar()->GetMutable<phi::DenseTensor>();
854 855 856 857 858 859 860 861 862 863 864
          group_tensor.ShareDataWith(*tensor).Resize(
              {static_cast<int64_t>(length)});
        } else {
          group_tensor.Resize({static_cast<int64_t>(length)});
          int r = xpu::constant(dev_ctx->x_context(),
                                reinterpret_cast<float *>(group_tensor.data()),
                                group_tensor.numel(),
                                0.0f);
          PADDLE_ENFORCE_XDNN_SUCCESS(r, "constant");
          PADDLE_ENFORCE_XPU_SUCCESS(xpu_wait(dev_ctx->stream()));
        }
865
      }
Z
zn 已提交
866 867 868 869 870
#elif defined(PADDLE_WITH_CNCL)
      if (platform::is_mlu_place(group_tensor.place())) {
        // TODO(liuyuhui) support MLU set constant
        VLOG(3) << "MLU doesn't support set_constant";
      }
871
#else
872 873 874
      auto *dev_ctx = platform::DeviceContextPool::Instance().Get(place_);
      if (HasGrad(var_index)) {
        auto var_base = vars_[var_index]->GradVarBase();
875
        auto tensor = var_base->MutableVar()->GetMutable<phi::DenseTensor>();
876 877
        group_tensor.ShareDataWith(*tensor).Resize(
            {static_cast<int64_t>(length)});
878 879
      } else {
        group_tensor.Resize({static_cast<int64_t>(length)});
880
        phi::funcs::set_constant(*dev_ctx, &group_tensor, 0.0);
881
      }
882
#endif
883 884 885
    }
  } else {
    // process sparse group
886
    PADDLE_ENFORCE_EQ(
887 888
        HasGrad(var_index),
        true,
889 890 891 892 893 894 895
        platform::errors::PreconditionNotMet(
            "The sparse parameter[%d][%s] should have gradient. "
            "Currently, DataParallel does not support sparse "
            "parameters without generating gradients during training. "
            "For example, if is_sparese=True is used in Embedding, "
            "the current step of this parameter cannot generate gradient "
            "because of stop_gradient/detatch, where error will occur.",
896 897
            var_index,
            vars_[var_index]->Name()));
898 899 900
    auto var_base = vars_[var_index]->GradVarBase();
    // need to check tensor type
    PADDLE_ENFORCE_EQ(
901 902
        var_base->Var().IsType<phi::SelectedRows>(),
        true,
903 904 905 906 907 908 909 910 911
        platform::errors::PreconditionNotMet(
            "The sparse parameter[%d][%s] must have a selectedrows gradient. "
            "Before forward pass, the parameter type is inferred to be "
            "SelectedRows, but after backward pass, its actual type becomes "
            "LodTensor. It is currently not supported by DataParallel. "
            "For example, if sparse embedding is used, and the weight of "
            "embedding is shared with subsequent dense parameters, then "
            "the parameter gradient of the embedding will be converted "
            "to dense parameters.",
912 913
            var_index,
            vars_[var_index]->Name()));
914 915

    group.sparse_contents_ = var_base->MutableVar();
916
  }
917

918 919 920 921 922 923 924 925 926 927
  if (--group.pending_ == 0) {
    // can start allreduce
    MarkGroupReady(group_index);
  }

  if (next_group_ == groups_.size()) {
    FinalizeBackward();
  }
}

928
// TODO(liuyuhui): If BKCL support non-blocking communication, it should be
929
// fixed as same as multi gpus card training.
930
void Reducer::MarkGroupReady(size_t group_index) {
931
  PADDLE_ENFORCE_GE(
932 933
      group_index,
      next_group_,
934 935 936 937
      platform::errors::PreconditionNotMet(
          "The index of the incoming group must be greater "
          "than or equal to the previously synchronized group index, "
          "expect it to greater than or equal to %d, but got %d.",
938 939
          next_group_,
          group_index));
940

941
  if (group_index > next_group_) {
942
    VLOG(3) << "It will adjust the order of group in next batch automatically";
943 944 945 946 947
    return;
  }

  for (; next_group_ < groups_.size() && groups_[next_group_].pending_ == 0;
       ++next_group_) {
948 949
    UNUSED auto &group = groups_[next_group_];
    UNUSED const int run_order = next_group_ % nrings_;
950

951
    auto *tensor = group.dense_contents_.GetMutable<phi::DenseTensor>();
952 953 954
    tensor->Resize(phi::make_ddim({group.all_length_}))
        .mutable_data(place_, framework::TransToPhiDataType(group.dtype_));

955 956 957 958 959 960
    // For CUDA or XPU, compute_stream --> comm_stream.
    // For CPU, do nothing.
    // NOTE. Because concat uses the comm_stream,
    // so we expose WaitCompute() interface and call
    // it here.
    parallel_ctx_->WaitCompute(run_order);
961
    FusedAllReduceSchedule(run_order, group, next_group_);
962 963 964
  }
}

965 966
void Reducer::FusedAllReduceSchedule(const int run_order,
                                     Group &group,
967 968 969 970
                                     const int curr_group_index) {
  // The overall timeline: concat > div_nranks > allreduce > split
  // dev_context is used to select different stream
  const auto &dev_context = *parallel_ctx_->GetDeviceContext(run_order);
971
  if (group.is_sparse_) {
972 973 974
    VLOG(3) << "sparse group [" << curr_group_index
            << "] start allreduce in ring[" << run_order << "]";
    group.DivNRanks(dev_context, nranks_);
975 976
    parallel_ctx_->AllReduceByStream(
        *group.sparse_contents_, group.sparse_contents_, run_order, false);
977
  } else {
978 979
    VLOG(3) << "dense group [" << curr_group_index
            << "] start allreduce in ring[" << run_order << "]";
980 981
    // Select common commstream to concat tensors
    // group.dense_tensors ---> group.dense_contents_
982
    group.ConcatTensors(dev_context);
983

984
    group.DivNRanks(dev_context, nranks_);
985 986 987
    // Start allreduce
    parallel_ctx_->AllReduceByStream(
        group.dense_contents_, &(group.dense_contents_), run_order, false);
988

989
    // Select communication stream to split tensors
990
    // group.dense_contents_ ---> group.dense_tensors
991
    group.SplitTensors(dev_context);
992 993 994
  }
}

995
std::vector<std::vector<size_t>> Reducer::RebuildGruops() {
996 997 998 999
  VLOG(3) << "The order of parameter arrival: "
          << string::join_strings(rebuild_var_indices_, ',');

  PADDLE_ENFORCE_EQ(
1000 1001
      rebuild_vars_.size(),
      vars_.size(),
1002 1003 1004
      platform::errors::PreconditionNotMet(
          "Rebuild vars's number should be equal to original vars'number, "
          "expect it to be %d, but got %d.",
1005 1006
          vars_.size(),
          rebuild_vars_.size()));
1007 1008
  std::reverse(rebuild_vars_.begin(), rebuild_vars_.end());
  std::reverse(rebuild_var_indices_.begin(), rebuild_var_indices_.end());
1009 1010 1011 1012
  auto rebuild_group_indices = AssignGroupBySize(rebuild_vars_,
                                                 is_sparse_gradient_,
                                                 group_size_limits_,
                                                 rebuild_var_indices_);
1013 1014 1015 1016 1017 1018 1019
  has_rebuilt_group_ = true;
  rebuild_vars_.clear();
  rebuild_var_indices_.clear();
  std::reverse(rebuild_group_indices.begin(), rebuild_group_indices.end());
  return rebuild_group_indices;
}

1020 1021 1022 1023 1024 1025 1026
void Reducer::ProcessUnusedDenseVars() {
  // The calculation stream must be used here to
  // avoid conflicts with communication.
  VLOG(3) << "Local used vars : "
          << string::join_strings(local_used_vars_, ',');
  const auto *dev_ctx = platform::DeviceContextPool::Instance().Get(place_);
  // H2D is to allreduce the local_used_vars_
1027
  auto *global_used_tensor = global_used_vars_.GetMutable<phi::DenseTensor>();
1028 1029 1030 1031 1032 1033
  framework::TensorFromVector<int>(
      local_used_vars_, *dev_ctx, global_used_tensor);
  parallel_ctx_->AllReduceByStream(
      global_used_vars_, &global_used_vars_, 0, true);
  framework::TensorToVector<int>(
      *global_used_tensor, *dev_ctx, &local_used_vars_);
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

  // sync compute stream to get global used var message,
  // but maybe affect speed performance
  parallel_ctx_->SynchronizeCompute();
  VLOG(3) << "Global used vars : "
          << string::join_strings(local_used_vars_, ',');

  for (const auto var_index : unused_vars_) {
    const bool global_unused = (local_used_vars_[var_index] == 0);

    // global used but local unused, set grad
    VLOG(3) << "Var [" << var_index << "] [" << vars_[var_index]->Name()
            << "] global_unused:" << global_unused
            << "  has grad: " << HasGrad(var_index);

    if (!global_unused) {
      VLOG(3) << "Start process unused Var";
      // 1. source var base
      const auto &var_locator = variable_locators_[var_index];
      const auto group_index = var_locator.group_index;
      const auto &group = groups_[group_index];
      const auto inside_group_index = var_locator.inside_group_index;
      const auto &src_tensor = group.dense_tensors_[inside_group_index];
      // sparse no need to check and no support find_unused_parameters
      if (group.is_sparse_) {
        continue;
      }
      // 2. destination var base
      auto dest_var_base = vars_[var_index];
      auto *dest_tensor =
1064
          dest_var_base->MutableVar()->GetMutable<phi::DenseTensor>();
1065 1066 1067 1068
      const auto &dest_dims = dest_tensor->dims();

      // 3. create grad var base or get grad var base
      auto grad_var_base_tmp = dest_var_base->MutableGradVarBase();
1069 1070 1071 1072
      // NOTE(haohongxiang): Calling SetIsEmpty here is to make sure that
      // gradient accumulation can continue normally after clear_gradients()
      // especiall in cases including complex control flow.
      grad_var_base_tmp->SharedVar()->SetIsEmpty(false);
1073 1074 1075

      // 4. set grad tensor
      auto *dest_grad_tensor =
1076
          grad_var_base_tmp->MutableVar()->GetMutable<phi::DenseTensor>();
1077
      const auto *dev_ctx = platform::DeviceContextPool::Instance().Get(place_);
1078 1079
      paddle::framework::TensorCopy(
          src_tensor, place_, *dev_ctx, dest_grad_tensor);
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
      dest_grad_tensor->Resize(dest_dims);
    }
  }
}

bool Reducer::HasGrad(size_t var_index) {
  const auto grad_var = vars_[var_index]->GradVarBase();
  if (!grad_var || !grad_var->Var().IsInitialized()) {
    return false;
  }

  const auto &var = grad_var->Var();
1092 1093
  if (var.IsType<phi::DenseTensor>()) {
    if (var.Get<phi::DenseTensor>().IsInitialized()) {
1094 1095
      return true;
    }
1096 1097
  } else if (var.IsType<phi::SelectedRows>()) {
    if (var.Get<phi::SelectedRows>().value().IsInitialized()) {
1098 1099 1100 1101 1102 1103 1104 1105 1106
      return true;
    }
  } else {
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Only support LoDTensor and SelectedRows for gradient var"));
  }
  return false;
}

1107
void Reducer::FinalizeBackward() {
1108
  groups_need_finalize_ = false;
1109
  grad_need_hooks_ = false;
1110

1111 1112
  // Must prevent compute_stream_ starting until all comm streams have finished
  for (int i = 0; i < nrings_; ++i) {
1113
    parallel_ctx_->WaitComm(i);
1114 1115
  }

1116 1117 1118 1119 1120 1121
  for (auto &group : groups_) {
    if (!group.is_sparse_) {
      group.dense_contents_.Clear();
    }
  }

1122
  if (NeedRebuildGroup()) {
1123 1124 1125 1126 1127
    VLOG(3) << "Start rebuilding the groups";
    auto rebuild_group_indices = RebuildGruops();
    group_indices_ = std::move(rebuild_group_indices);
    InitializeGroups(group_indices_);
  }
1128

1129
  if (find_unused_vars_each_step_) {
1130
// TODO(liuyuhui) support xpu about Tensorcopy/TensorFromVector/TensorToVector
1131 1132 1133
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) ||      \
    defined(PADDLE_WITH_GLOO) || defined(PADDLE_WITH_ASCEND_CL) || \
    defined(PADDLE_WITH_CNCL)
1134 1135 1136 1137 1138 1139 1140 1141 1142
    ProcessUnusedDenseVars();
#endif
    // Initialize local used vars
    local_used_vars_.clear();
    local_used_vars_.resize(vars_.size(), 0);
    VLOG(3) << "ProcessUnusedDenseVars is finished.";
  }

  VLOG(3) << "In the batch, Reducer is finished.";
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
}

// According to the size of each parameter, it is allocated to different groups.
// The sparse parameter occupies a group exclusively. The dense parameters of
// the same data type are assigned to the same group. When dividing groups, the
// size of each group will be limited according to each value in
// group_size_limits in turn. When it is not enough, it will be divided
// by the last value of group_size_limits. The limit value is 0, which
// means that the parameter will monopolize the group.
std::vector<std::vector<size_t>> AssignGroupBySize(
    const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
    const std::vector<bool> &is_sparse_gradient,
1155 1156
    const std::vector<size_t> &group_size_limits,
    const std::vector<int64_t> &tensor_indices) {
1157 1158
  PADDLE_ENFORCE_EQ(vars.size(),
                    is_sparse_gradient.size(),
1159 1160 1161
                    platform::errors::PreconditionNotMet(
                        "vars len must be equal to is_sparse_gradient len, but "
                        "[%lu] != [%lu]",
1162 1163
                        vars.size(),
                        is_sparse_gradient.size()));
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
  auto check_perm = [](const std::vector<int64_t> &x) -> bool {
    size_t len = x.size();
    std::vector<size_t> cnt(len, 0);
    for (size_t i = 0; i < len; ++i) {
      if (x[i] >= static_cast<int64_t>(len) || x[i] < 0 || cnt[x[i]]) {
        return false;
      }
      cnt[x[i]]++;
    }
    return true;
  };
1175 1176
  PADDLE_ENFORCE_EQ(true,
                    check_perm(tensor_indices),
1177 1178 1179
                    platform::errors::PreconditionNotMet(
                        "tensor_indices must be a permutation from 0 to %lu",
                        tensor_indices.size()));
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
  // the return vector
  std::vector<std::vector<size_t>> res;

  // Key: the var type
  // Value: should use which index in group_size_limits for group size limit
  std::unordered_map<std::string, size_t> group_limit_index;

  // Key: the var type
  // Value: <the var index in input tensors, total numel in this group>
  std::unordered_map<std::string, std::pair<std::vector<size_t>, size_t>>
      next_group;

  for (size_t i = 0; i < vars.size(); ++i) {
    const auto &var = vars[i];
1194 1195 1196 1197 1198 1199 1200

    size_t tensor_real_index = i;
    if (!tensor_indices.empty()) {
      tensor_real_index = tensor_indices[i];
    }

    if (is_sparse_gradient[tensor_real_index]) {
1201
      // we keep sparse var a single group
1202
      res.push_back({tensor_real_index});
1203 1204 1205 1206 1207 1208 1209 1210 1211
      continue;
    }

    const auto &var_dtype = var->DataType();
    const auto var_dtype_str = framework::DataTypeToString(var_dtype);
    VLOG(3) << "var[" << var->GradVarName() << "] 's type is "
            << var->DataType();
    auto &group_info = next_group[var_dtype_str];
    int64_t var_size = -1;
1212 1213
    if (var->Var().IsType<phi::DenseTensor>()) {
      var_size = var->Var().Get<phi::DenseTensor>().numel();
1214 1215 1216 1217 1218
    } else {
      VLOG(3) << "var " << var->Name()
              << " is not tensor or selected_rows, so skip it";
      continue;
    }
1219
    group_info.first.push_back(tensor_real_index);
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
    group_info.second += framework::SizeOfType(var_dtype) * var_size;

    if (group_limit_index.find(var_dtype_str) == group_limit_index.end()) {
      // means it is the first var of var_dtype
      group_limit_index[var_dtype_str] = 0;
    }
    auto &cur_limit_index = group_limit_index[var_dtype_str];
    if (group_info.second >= group_size_limits[cur_limit_index]) {
      // exceed group capacity and create a new group
      res.emplace_back(std::move(group_info.first));
      group_info = std::pair<std::vector<size_t>, size_t>();
      cur_limit_index =
          (std::min)(cur_limit_index + 1, group_size_limits.size() - 1);
    }
  }

  // add the final groups
  for (auto &e : next_group) {
    auto &group_info = e.second;
    if (!group_info.first.empty()) {
      res.emplace_back(std::move(group_info.first));
    }
  }

  for (const auto &group_index : res) {
    PADDLE_ENFORCE_NE(
1246 1247
        group_index.empty(),
        true,
1248 1249 1250
        platform::errors::PreconditionNotMet(
            "AssignGroupBySize construct empty group, please check."));
  }
1251
  if (tensor_indices.empty()) {
1252 1253
    std::sort(res.begin(),
              res.end(),
1254 1255 1256 1257
              [](const std::vector<size_t> &x, const std::vector<size_t> &y) {
                return x.front() < y.front();
              });
  }
1258 1259 1260 1261 1262 1263
  return res;
}
#endif

}  // namespace imperative
}  // namespace paddle