op_desc.cc 44.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
F
fengjiayi 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/op_desc.h"
16

17
#include <string>
18

19
#include "glog/logging.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/block_desc.h"
21
#include "paddle/fluid/framework/op_call_stack.h"
Y
yuyang18 已提交
22
#include "paddle/fluid/framework/op_proto_maker.h"
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/shape_inference.h"
M
minqiyang 已提交
25
#include "paddle/fluid/framework/var_type_inference.h"
26
#include "paddle/fluid/operators/ops_extra_info.h"
27
#include "paddle/phi/common/complex.h"
R
Ruibiao Chen 已提交
28
#include "paddle/utils/blank.h"
Y
Yu Yang 已提交
29

F
fengjiayi 已提交
30 31 32
namespace paddle {
namespace framework {

33 34
class CompileTimeInferShapeContext : public InferShapeContext {
 public:
Y
Yu Yang 已提交
35
  CompileTimeInferShapeContext(const OpDesc &op, const BlockDesc &block);
36 37 38 39 40

  bool HasInput(const std::string &name) const override;

  bool HasOutput(const std::string &name) const override;

41 42
  bool HasAttr(const std::string &name) const override;

43 44
  bool HasInputs(const std::string &name) const override;

45 46
  bool HasOutputs(const std::string &name,
                  bool allow_null = false) const override;
47 48 49

  AttrReader Attrs() const override;

H
hong 已提交
50
  std::vector<std::string> Inputs(const std::string &name) const override;
51

H
hong 已提交
52
  std::vector<std::string> Outputs(const std::string &name) const override;
53

54 55 56
  std::string GetInputNameByIdx(size_t idx) const override {
    auto &op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
57 58
    PADDLE_ENFORCE_LT(idx,
                      op_proto->inputs().size(),
59 60 61
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
62 63 64
                          op_.Type(),
                          idx,
                          op_proto->inputs().size()));
65 66 67 68 69 70 71
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto &op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
72 73
        idx,
        op_proto->outputs().size(),
74 75 76
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
77 78 79
            op_.Type(),
            idx,
            op_proto->outputs().size()));
80 81 82
    return op_proto->outputs()[idx].name();
  }

83 84 85
  void ShareDim(const std::string &in,
                const std::string &out,
                size_t i = 0,
86
                size_t j = 0) override {
87 88
    PADDLE_ENFORCE_LT(i,
                      Inputs(in).size(),
89 90 91
                      platform::errors::InvalidArgument(
                          "The input variable index is out of range, expected "
                          "index less than %d, but received index is %d.",
92 93 94 95
                          Inputs(in).size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      Outputs(out).size(),
96 97 98
                      platform::errors::InvalidArgument(
                          "The output variable index is out of range, expected "
                          "index less than %d, but received index is %d.",
99 100
                          Outputs(out).size(),
                          j));
101

H
hong 已提交
102 103
    std::string input_n = Inputs(in)[i];
    std::string output_n = Outputs(out)[j];
104

105 106
    PADDLE_ENFORCE_NE(input_n,
                      framework::kEmptyVarName,
107 108
                      platform::errors::InvalidArgument(
                          "The input variable %s[%d] is empty.", in, i));
109 110
    PADDLE_ENFORCE_NE(output_n,
                      framework::kEmptyVarName,
111 112
                      platform::errors::InvalidArgument(
                          "The output variable %s[%d] is empty.", out, j));
113 114 115 116

    auto *in_var = block_.FindVarRecursive(input_n);
    auto *out_var = block_.FindVarRecursive(output_n);

117
    PADDLE_ENFORCE_EQ(
118 119
        in_var->GetType(),
        out_var->GetType(),
120 121 122
        platform::errors::InvalidArgument(
            "The type of input %s and output %s do not match. The input type "
            "is %s, output type is %s.",
123 124 125
            input_n,
            output_n,
            DataTypeToString(in_var->GetType()),
126
            DataTypeToString(out_var->GetType())));
127 128 129 130

    SetDim(output_n, GetDim(input_n));
  }

H
hong 已提交
131 132 133 134 135 136
  void ShareAllLoD(const std::string &in,
                   const std::string &out) const override {
    auto &in_var_names = op_.Input(in);
    auto &out_var_names = op_.Output(out);

    PADDLE_ENFORCE_EQ(
137 138
        in_var_names.size(),
        out_var_names.size(),
H
hong 已提交
139
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
140
            "Op [%s]:  Input var number should be equal with output var number",
H
hong 已提交
141 142 143 144 145 146 147 148 149 150 151
            op_.Type()));

    for (size_t i = 0; i < in_var_names.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      auto *in_var = block_.FindVarRecursive(in_var_names[i]);
      auto *out_var = block_.FindVarRecursive(out_var_names[i]);
      if (in_var->GetType() != proto::VarType::LOD_TENSOR &&
          in_var->GetType() != proto::VarType::LOD_TENSOR_ARRAY) {
152 153
        VLOG(3) << "input " << in
                << " is not phi::DenseTensor or LoDTensorArray.";
H
hong 已提交
154 155 156 157 158 159
        return;
      }
      out_var->SetLoDLevel(in_var->GetLoDLevel());
    }
  }

160 161 162
  void ShareLoD(const std::string &in,
                const std::string &out,
                size_t i = 0,
Q
Qiao Longfei 已提交
163
                size_t j = 0) const override {
164 165
    PADDLE_ENFORCE_LT(i,
                      Inputs(in).size(),
166 167 168
                      platform::errors::InvalidArgument(
                          "The input variable index is out of range, expected "
                          "index less than %d, but received index is %d.",
169 170 171 172
                          Inputs(in).size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      Outputs(out).size(),
173 174 175
                      platform::errors::InvalidArgument(
                          "The output variable index is out of range, expected "
                          "index less than %d, but received index is %d.",
176 177 178 179
                          Outputs(out).size(),
                          j));
    PADDLE_ENFORCE_NE(Inputs(in)[i],
                      framework::kEmptyVarName,
180 181
                      platform::errors::InvalidArgument(
                          "The input variable %s[%d] is empty.", in, i));
182 183
    PADDLE_ENFORCE_NE(Outputs(out)[j],
                      framework::kEmptyVarName,
184 185
                      platform::errors::InvalidArgument(
                          "The output variable %s[%d] is empty.", out, j));
Q
Qiao Longfei 已提交
186 187
    auto *in_var = block_.FindVarRecursive(Inputs(in)[i]);
    auto *out_var = block_.FindVarRecursive(Outputs(out)[j]);
C
chengduo 已提交
188 189
    if (in_var->GetType() != proto::VarType::LOD_TENSOR &&
        in_var->GetType() != proto::VarType::LOD_TENSOR_ARRAY) {
190 191
      VLOG(3) << "input " << in
              << " is not phi::DenseTensor or LoDTensorArray.";
X
fix  
Xin Pan 已提交
192 193
      return;
    }
194
    out_var->SetLoDLevel(in_var->GetLoDLevel());
Q
Qiao Longfei 已提交
195
  }
D
dzhwinter 已提交
196

197
  int32_t GetLoDLevel(const std::string &in, size_t i = 0) const override {
198 199
    PADDLE_ENFORCE_LT(i,
                      Inputs(in).size(),
200 201 202
                      platform::errors::InvalidArgument(
                          "The input variable index is out of range, input "
                          "variable %s of operator %s only has %d elements.",
203 204 205 206 207
                          in,
                          op_.Type(),
                          Inputs(in).size()));
    PADDLE_ENFORCE_NE(Inputs(in)[i],
                      framework::kEmptyVarName,
208 209
                      platform::errors::InvalidArgument(
                          "The input variable %s[%d] of operator %s is empty.",
210 211 212
                          in,
                          i,
                          op_.Type()));
C
chengduo 已提交
213
    auto *in_var = block_.FindVarRecursive(Inputs(in)[i]);
214
    PADDLE_ENFORCE_NOT_NULL(
215 216 217 218 219 220
        in_var,
        platform::errors::NotFound(
            "The input variable %s[%d] of operator %s is not found.",
            in,
            i,
            op_.Type()));
221
    return in_var->GetLoDLevel();
C
chengduo 已提交
222 223
  }

224 225
  void SetLoDLevel(const std::string &out,
                   int32_t lod_level,
226
                   size_t j = 0) const override {
227 228
    PADDLE_ENFORCE_LT(j,
                      Outputs(out).size(),
229 230 231
                      platform::errors::InvalidArgument(
                          "The output variable index is out of range, output "
                          "variable %s of operator %s only has %d elements.",
232 233 234 235 236
                          out,
                          op_.Type(),
                          Outputs(out).size()));
    PADDLE_ENFORCE_NE(Outputs(out)[j],
                      framework::kEmptyVarName,
237 238
                      platform::errors::InvalidArgument(
                          "The output variable %s[%d] of operator %s is empty.",
239 240 241
                          out,
                          j,
                          op_.Type()));
242
    auto *out_var = block_.FindVarRecursive(Outputs(out)[j]);
243
    PADDLE_ENFORCE_NOT_NULL(
244 245 246 247 248 249
        out_var,
        platform::errors::NotFound(
            "The output variable %s[%d] of operator %s is not found.",
            out,
            j,
            op_.Type()));
250 251 252
    if (lod_level >= 0) {
      out_var->SetLoDLevel(lod_level);
    }
253 254
  }

C
Chen Weihang 已提交
255
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
256
  GetInputVarPtrs(const std::string &name) const override {
257
    const std::vector<std::string> arg_names = Inputs(name);
C
Chen Weihang 已提交
258
    paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
259
    res.reserve(arg_names.size());
260 261 262
    std::transform(arg_names.begin(),
                   arg_names.end(),
                   std::back_inserter(res),
263 264 265 266 267 268
                   [this](const std::string &name) {
                     return block_.FindVarRecursive(name);
                   });
    return res;
  }

C
Chen Weihang 已提交
269
  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
270
  GetOutputVarPtrs(const std::string &name) const override {
271
    const std::vector<std::string> arg_names = Outputs(name);
C
Chen Weihang 已提交
272
    paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
273
    res.reserve(arg_names.size());
274 275 276
    std::transform(arg_names.begin(),
                   arg_names.end(),
                   std::back_inserter(res),
277 278 279 280 281 282
                   [this](const std::string &name) {
                     return block_.FindVarRecursive(name);
                   });
    return res;
  }

X
Xin Pan 已提交
283 284
  DDim GetInputDim(const std::string &name) const override {
    const std::vector<std::string> &arg_names = Inputs(name);
285 286
    PADDLE_ENFORCE_EQ(arg_names.size(),
                      1UL,
287 288 289
                      platform::errors::InvalidArgument(
                          "The input(%s) should hold only one element, but now "
                          "it holds %d elements.",
290 291
                          name,
                          arg_names.size()));
X
Xin Pan 已提交
292 293 294 295 296 297 298 299
    return this->GetDim(arg_names[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string &name) const override {
    const std::vector<std::string> &arg_names = Inputs(name);
    return GetDims(arg_names);
  }

300 301
  bool IsRuntime() const override;

302 303
  bool IsRunMKLDNNKernel() const override;

304 305 306 307
  proto::VarType::Type GetInputVarType(const std::string &name) const override {
    return GetVarType(Inputs(name).at(0));
  }

X
Xin Pan 已提交
308 309 310 311 312 313 314 315 316 317
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string &name) const override {
    return GetVarTypes(Inputs(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string &name) const override {
    return GetVarTypes(Outputs(name));
  }

X
Xin Pan 已提交
318
  void SetOutputDim(const std::string &name, const DDim &dim) override {
H
hong 已提交
319
    auto arg_names = Outputs(name);
320 321
    PADDLE_ENFORCE_EQ(arg_names.size(),
                      1UL,
322 323 324
                      platform::errors::InvalidArgument(
                          "The iutput(%s) should hold only one element, but "
                          "now it holds %d elements.",
325 326
                          name,
                          arg_names.size()));
X
Xin Pan 已提交
327 328 329 330 331
    SetDim(arg_names[0], dim);
  }

  void SetOutputsDim(const std::string &name,
                     const std::vector<DDim> &dims) override {
H
hong 已提交
332
    auto names = Outputs(name);
X
Xin Pan 已提交
333 334 335
    SetDims(names, dims);
  }

336 337 338 339 340 341 342 343
  const phi::ArgumentMappingFn *GetPhiArgumentMappingFn() const override {
    return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
  }

  const phi::KernelSignature *GetPhiDefaultKernelSignature() const override {
    return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
  }

344
 protected:
X
Xin Pan 已提交
345 346 347 348 349
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<std::string> &names) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(names.size());
    std::transform(
350 351 352 353 354
        names.begin(),
        names.end(),
        retv.begin(),
        std::bind(std::mem_fn(&CompileTimeInferShapeContext::GetVarType),
                  this,
X
Xin Pan 已提交
355 356 357 358 359
                  std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(const std::string &name) const;
Q
Qiao Longfei 已提交
360

X
Xin Pan 已提交
361 362
  DDim GetDim(const std::string &name) const {
    auto var = block_.FindVarRecursive(name);
363 364
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::NotFound("Variable %s is not found.", name));
X
Xin Pan 已提交
365 366 367
    DDim res;
    try {
      auto shape = var->GetShape();
368
      res = phi::make_ddim(shape);
X
Xin Pan 已提交
369 370 371 372 373 374 375 376 377 378 379
    } catch (...) {
      VLOG(5) << "GetDim of variable " << name << " error";
      std::rethrow_exception(std::current_exception());
    }
    return res;
  }

  std::vector<DDim> GetDims(const std::vector<std::string> &names) const {
    std::vector<DDim> ret;
    ret.reserve(names.size());
    std::transform(
380 381 382
        names.begin(),
        names.end(),
        std::back_inserter(ret),
X
Xin Pan 已提交
383 384 385
        [this](const std::string &name) { return this->GetDim(name); });
    return ret;
  }
386

X
Xin Pan 已提交
387 388 389 390 391
  void SetDim(const std::string &name, const DDim &dim);

  void SetDims(const std::vector<std::string> &names,
               const std::vector<DDim> &dims) {
    size_t length = names.size();
392 393
    PADDLE_ENFORCE_EQ(length,
                      dims.size(),
394 395 396
                      platform::errors::InvalidArgument(
                          "The input variables number(%d) and input dimensions "
                          "number(%d) do not match.",
397 398
                          length,
                          dims.size()));
X
Xin Pan 已提交
399 400 401 402 403 404 405
    for (size_t i = 0; i < length; ++i) {
      if (names[i] == framework::kEmptyVarName) {
        continue;
      }
      SetDim(names[i], dims[i]);
    }
  }
406

F
fengjiayi 已提交
407 408 409 410
  std::vector<DDim> GetRepeatedDims(const std::string &name) const override;

  void SetRepeatedDims(const std::string &name,
                       const std::vector<DDim> &dims) override;
F
fengjiayi 已提交
411

Y
Yu Yang 已提交
412 413
  const OpDesc &op_;
  const BlockDesc &block_;
414 415
};

416 417 418 419 420 421 422
static void InitRuntimeAttributeMapByOpExtraInfo(const std::string &op_type,
                                                 AttributeMap *runtime_attrs) {
  const auto &extra_attr_map =
      operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
  runtime_attrs->insert(extra_attr_map.begin(), extra_attr_map.end());
}

423 424 425 426
OpDesc::OpDesc(const std::string &type,
               const VariableNameMap &inputs,
               const VariableNameMap &outputs,
               const AttributeMap &attrs) {
427
  desc_.set_type(type);
F
fengjiayi 已提交
428 429 430
  inputs_ = inputs;
  outputs_ = outputs;
  attrs_ = attrs;
F
Fix bug  
fengjiayi 已提交
431
  need_update_ = true;
L
liuwei1031 已提交
432
  block_ = nullptr;
433
  InitRuntimeAttributeMapByOpExtraInfo(type, &runtime_attrs_);
F
fengjiayi 已提交
434 435
}

436 437 438 439 440 441
OpDesc::OpDesc(const OpDesc &other) {
  CopyFrom(other);
  block_ = other.block_;
  need_update_ = true;
}

X
Xin Pan 已提交
442 443 444 445
OpDesc::OpDesc(const OpDesc &other, BlockDesc *block) {
  CopyFrom(other);
  block_ = block;
  need_update_ = true;
446 447 448
  for (auto &iter : attrs_) {
    UpdateVarAttr(iter.first, iter.second);
  }
X
Xin Pan 已提交
449 450
}

451
void OpDesc::CopyFrom(const OpDesc &op_desc) {
F
fengjiayi 已提交
452 453 454 455
  desc_.set_type(op_desc.Type());
  inputs_ = op_desc.inputs_;
  outputs_ = op_desc.outputs_;
  attrs_ = op_desc.attrs_;
456 457
  runtime_attrs_ = op_desc.runtime_attrs_;
  // The record of original_id_ is only for auto parallel.
458
  original_id_ = op_desc.original_id_;
459 460 461
  if (op_desc.dist_attr_) {
    dist_attr_.reset(new OperatorDistAttr(*op_desc.dist_attr_));
  }
F
fengjiayi 已提交
462 463 464
  need_update_ = true;
}

F
fengjiayi 已提交
465
OpDesc::OpDesc(const proto::OpDesc &desc, BlockDesc *block)
466 467 468 469
    : desc_(desc), need_update_(false) {
  // restore inputs_
  int input_size = desc_.inputs_size();
  for (int i = 0; i < input_size; ++i) {
470
    const proto::OpDesc::Var &var = desc_.inputs(i);
471 472 473 474 475 476 477 478 479 480
    std::vector<std::string> &args = inputs_[var.parameter()];
    int argu_size = var.arguments_size();
    args.reserve(argu_size);
    for (int j = 0; j < argu_size; ++j) {
      args.push_back(var.arguments(j));
    }
  }
  // restore outputs_
  int output_size = desc_.outputs_size();
  for (int i = 0; i < output_size; ++i) {
481
    const proto::OpDesc::Var &var = desc_.outputs(i);
482 483 484 485 486 487 488 489
    std::vector<std::string> &args = outputs_[var.parameter()];
    int argu_size = var.arguments_size();
    args.reserve(argu_size);
    for (int j = 0; j < argu_size; ++j) {
      args.push_back(var.arguments(j));
    }
  }
  // restore attrs_
490
  InitRuntimeAttributeMapByOpExtraInfo(desc.type(), &runtime_attrs_);
491
  for (const proto::OpDesc::Attr &attr : desc_.attrs()) {
492
    const std::string &attr_name = attr.name();
493
    // The sub_block referred to by the BLOCK attr hasn't been added
494 495 496 497 498 499 500
    // to ProgramDesc class yet, we skip setting BLOCK/BLOCKS/VAR/VARS attr
    // here.
    auto attr_type = attr.type();
    if (attr_type != proto::AttrType::BLOCK &&
        attr_type != proto::AttrType::BLOCKS &&
        attr_type != proto::AttrType::VAR &&
        attr_type != proto::AttrType::VARS) {
501 502 503 504 505 506
      auto iter = runtime_attrs_.find(attr_name);
      if (iter == runtime_attrs_.end()) {
        attrs_[attr_name] = GetAttrValue(attr);
      } else {
        iter->second = GetAttrValue(attr);
      }
507
    }
508
  }
509
  this->block_ = block;
510 511
}

512 513 514 515 516 517 518 519 520
// Explicitly implement the assign operator, Since the added
// unique_ptr data member does not have the implicit assign operator.
OpDesc &OpDesc::operator=(const OpDesc &other) {
  CopyFrom(other);
  block_ = other.block_;
  need_update_ = true;
  return *this;
}

Y
Yu Yang 已提交
521
proto::OpDesc *OpDesc::Proto() {
522
  Flush();
523
  return &desc_;
F
fengjiayi 已提交
524 525
}

Y
Yu Yang 已提交
526
const std::vector<std::string> &OpDesc::Input(const std::string &name) const {
F
fengjiayi 已提交
527
  auto it = inputs_.find(name);
528
  PADDLE_ENFORCE_NE(
529 530 531 532
      it,
      inputs_.end(),
      platform::errors::NotFound(
          "Input %s cannot be found in operator %s.", name, Type()));
F
fengjiayi 已提交
533 534 535
  return it->second;
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
std::vector<std::string> OpDesc::Input(const std::string &name,
                                       bool with_attr_var) const {
  // Attribute with VarDesc type will consider as Input
  if (with_attr_var) {
    auto it = attrs_.find(name);
    if (it != attrs_.end() && HasAttrVar(it->second))
      return AttrVarNames(it->second);
  }
  return this->Input(name);
}

VariableNameMap OpDesc::Inputs(bool with_attr_var) const {
  if (!with_attr_var) {
    return inputs_;
  }
  VariableNameMap res = inputs_;
  for (auto &attr : FilterAttrVar(attrs_)) {
    res[attr.first] = AttrVarNames(attr.second);
  }
  return res;
}

std::vector<std::string> OpDesc::InputArgumentNames(bool with_attr_var) const {
F
Update  
fengjiayi 已提交
559
  std::vector<std::string> retv;
560
  for (auto &ipt : this->Inputs(with_attr_var)) {
F
Update  
fengjiayi 已提交
561 562 563 564 565
    retv.insert(retv.end(), ipt.second.begin(), ipt.second.end());
  }
  return retv;
}

Y
Yu Yang 已提交
566 567
void OpDesc::SetInput(const std::string &param_name,
                      const std::vector<std::string> &args) {
F
fengjiayi 已提交
568 569 570 571
  need_update_ = true;
  inputs_[param_name] = args;
}

Y
Yu Yang 已提交
572
const std::vector<std::string> &OpDesc::Output(const std::string &name) const {
F
fengjiayi 已提交
573
  auto it = outputs_.find(name);
574
  PADDLE_ENFORCE_NE(
575 576 577 578
      it,
      outputs_.end(),
      platform::errors::NotFound(
          "Output %s cannot be found in operator %s.", name, Type()));
F
fengjiayi 已提交
579 580 581
  return it->second;
}

582 583 584 585
bool OpDesc::HasOutput(const std::string &name) const {
  return outputs_.find(name) != outputs_.end();
}

586 587 588 589
bool OpDesc::HasInput(const std::string &name) const {
  return inputs_.find(name) != inputs_.end();
}

Y
Yu Yang 已提交
590
std::vector<std::string> OpDesc::OutputArgumentNames() const {
F
Update  
fengjiayi 已提交
591 592 593 594 595 596 597
  std::vector<std::string> retv;
  for (auto &ipt : this->outputs_) {
    retv.insert(retv.end(), ipt.second.begin(), ipt.second.end());
  }
  return retv;
}

Y
Yu Yang 已提交
598 599
void OpDesc::SetOutput(const std::string &param_name,
                       const std::vector<std::string> &args) {
F
fengjiayi 已提交
600 601 602 603
  need_update_ = true;
  this->outputs_[param_name] = args;
}

604 605 606 607 608
void OpDesc::RemoveOutput(const std::string &name) {
  outputs_.erase(name);
  need_update_ = true;
}

609 610 611 612 613
void OpDesc::RemoveInput(const std::string &name) {
  inputs_.erase(name);
  need_update_ = true;
}

614 615 616 617 618 619 620 621 622 623
bool OpDesc::HasProtoAttr(const std::string &name) const {
  auto &op_info = OpInfoMap::Instance();
  if (op_info.Has(desc_.type())) {
    auto op_info_ptr = op_info.Get(desc_.type());
    if (op_info_ptr.HasOpProtoAndChecker()) {
      const proto::OpProto &proto = op_info_ptr.Proto();
      for (int i = 0; i != proto.attrs_size(); ++i) {
        const proto::OpProto::Attr &attr = proto.attrs(i);
        if (attr.name() == name) {
          return true;
L
luotao1 已提交
624 625
        }
      }
L
luotao1 已提交
626 627 628 629 630
    }
  }
  return false;
}

631 632 633 634
proto::AttrType OpDesc::GetAttrType(const std::string &name,
                                    bool with_attr_var) const {
  auto attr = this->GetAttr(name, with_attr_var);
  return static_cast<proto::AttrType>(attr.index() - 1);
F
fengjiayi 已提交
635 636
}

637
std::vector<std::string> OpDesc::AttrNames(bool with_attr_var) const {
F
fengjiayi 已提交
638 639 640
  std::vector<std::string> retv;
  retv.reserve(attrs_.size());
  for (auto &attr : attrs_) {
641
    if (!with_attr_var && HasAttrVar(attr.second)) continue;
F
fengjiayi 已提交
642 643 644 645 646
    retv.push_back(attr.first);
  }
  return retv;
}

647 648
bool OpDesc::HasAttr(const std::string &name, bool with_attr_var) const {
  auto iter = attrs_.find(name);
649 650 651 652 653 654 655
  bool is_found = true;
  if (iter == attrs_.end()) {
    iter = runtime_attrs_.find(name);
    if (iter == runtime_attrs_.end()) {
      is_found = false;
    }
  }
656 657 658 659 660 661
  if (with_attr_var) {
    return is_found;
  }
  return is_found && !HasAttrVar(iter->second);
}

662 663
void OpDesc::RemoveAttr(const std::string &name) {
  attrs_.erase(name);
664
  runtime_attrs_.erase(name);
665 666 667
  need_update_ = true;
}

Y
Yu Yang 已提交
668
void OpDesc::SetAttr(const std::string &name, const Attribute &v) {
669 670
  AttributeMap *attrs_ptr = &(this->attrs_);

671 672
  bool is_runtime_attr = false;

673 674 675 676
  const auto &extra_attr_map =
      operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(Type());
  auto extra_attr_iter = extra_attr_map.find(name);
  if (extra_attr_iter != extra_attr_map.end()) {
677
    is_runtime_attr = true;
678
    attrs_ptr = &(this->runtime_attrs_);
679 680 681 682 683
    // When an attribute is found in both attrs and runtime_attrs, it must
    // be a runtime attribute, so it's value in attrs should be removed.
    if (this->attrs_.find(name) != this->attrs_.end()) {
      this->attrs_.erase(name);
    }
684
  }
M
minqiyang 已提交
685 686 687
  // NOTICE(minqiyang): pybind11 will take the empty list in python as
  // the std::vector<int> type in C++; so we have to change the attr's type
  // here if we meet this issue
R
Ruibiao Chen 已提交
688
  proto::AttrType attr_type = static_cast<proto::AttrType>(v.index() - 1);
M
minqiyang 已提交
689
  if (attr_type == proto::AttrType::INTS &&
R
Ruibiao Chen 已提交
690
      PADDLE_GET_CONST(std::vector<int>, v).size() == 0u) {
M
minqiyang 已提交
691
    // Find current attr via attr name and set the correct attribute value
692 693 694 695 696 697
    if (is_runtime_attr) {
      attr_type =
          static_cast<proto::AttrType>(extra_attr_iter->second.index() - 1);
    } else if (HasProtoAttr(name)) {
      attr_type = GetProtoAttr(name).type();
    }
698
    switch (attr_type) {
M
minqiyang 已提交
699
      case proto::AttrType::BOOLEANS: {
M
minqiyang 已提交
700 701
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from INTS to BOOLEANS";
702
        attrs_ptr->operator[](name) = std::vector<bool>();
M
minqiyang 已提交
703 704 705
        break;
      }
      case proto::AttrType::INTS: {
M
minqiyang 已提交
706 707
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from INTS to INTS";
708
        attrs_ptr->operator[](name) = std::vector<int>();
M
minqiyang 已提交
709 710
        break;
      }
711
      case proto::AttrType::LONGS: {
M
minqiyang 已提交
712 713
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from LONGS to LONGS";
714
        attrs_ptr->operator[](name) = std::vector<int64_t>();
715 716
        break;
      }
M
minqiyang 已提交
717
      case proto::AttrType::FLOATS: {
M
minqiyang 已提交
718 719
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from INTS to FLOATS";
720
        attrs_ptr->operator[](name) = std::vector<float>();
M
minqiyang 已提交
721 722
        break;
      }
723 724 725 726 727 728
      case proto::AttrType::FLOAT64S: {
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from INTS to FLOAT64S";
        this->attrs_[name] = std::vector<double>();
        break;
      }
M
minqiyang 已提交
729
      case proto::AttrType::STRINGS: {
M
minqiyang 已提交
730 731
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from INTS to STRINGS";
732
        attrs_ptr->operator[](name) = std::vector<std::string>();
M
minqiyang 已提交
733 734 735
        break;
      }
      case proto::AttrType::BLOCKS: {
M
minqiyang 已提交
736 737
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from INTS to BLOCKS";
738
        attrs_ptr->operator[](name) = std::vector<BlockDesc *>();
M
minqiyang 已提交
739 740
        return;
      }
M
minqiyang 已提交
741
      default:
742
        PADDLE_THROW(platform::errors::Unimplemented(
743
            "Unsupported attribute type (code %d).", attr_type));
M
minqiyang 已提交
744
    }
M
minqiyang 已提交
745 746
    need_update_ = true;
    return;
M
minqiyang 已提交
747 748
  }

749
  // In order to set bool attr properly
750 751 752 753 754 755 756 757 758 759 760 761 762 763
  if (attr_type == proto::AttrType::INT) {
    if (HasProtoAttr(name) &&
        GetProtoAttr(name).type() == proto::AttrType::BOOLEAN) {
      attrs_ptr->operator[](name) = static_cast<bool>(PADDLE_GET_CONST(int, v));
      need_update_ = true;
      return;
    }
    if (extra_attr_iter != extra_attr_map.end() &&
        static_cast<proto::AttrType>(extra_attr_iter->second.index() - 1) ==
            proto::AttrType::BOOLEAN) {
      attrs_ptr->operator[](name) = static_cast<bool>(PADDLE_GET_CONST(int, v));
      need_update_ = true;
      return;
    }
764 765
  }

766
  attrs_ptr->operator[](name) = v;
767
  VLOG(10) << "op_type: " << Type() << ", attr name: " << name
L
Leo Chen 已提交
768
           << " , type index: " << attrs_ptr->operator[](name).index();
F
fengjiayi 已提交
769 770 771
  need_update_ = true;
}

772 773 774 775 776 777 778 779 780 781
void OpDesc::SetVarAttr(const std::string &name, VarDesc *var) {
  this->attrs_[name] = var;
  need_update_ = true;
}

void OpDesc::SetVarsAttr(const std::string &name, std::vector<VarDesc *> vars) {
  this->attrs_[name] = vars;
  need_update_ = true;
}

A
Abhinav Arora 已提交
782 783
void OpDesc::SetBlockAttr(const std::string &name, BlockDesc *block) {
  this->attrs_[name] = block;
F
fengjiayi 已提交
784
  need_update_ = true;
F
fengjiayi 已提交
785 786
}

787 788 789 790 791 792
void OpDesc::SetBlocksAttr(const std::string &name,
                           std::vector<BlockDesc *> blocks) {
  this->attrs_[name] = blocks;
  need_update_ = true;
}

Y
Yu Yang 已提交
793
void OpDesc::SetAttrMap(
F
fengjiayi 已提交
794 795 796 797 798
    const std::unordered_map<std::string, Attribute> &attr_map) {
  attrs_ = attr_map;
  need_update_ = true;
}

799 800 801 802 803 804
void OpDesc::SetRuntimeAttrMap(
    const std::unordered_map<std::string, Attribute> &attr_map) {
  runtime_attrs_ = attr_map;
  need_update_ = true;
}

805
Attribute OpDesc::GetAttr(const std::string &name, bool with_attr_var) const {
F
fengjiayi 已提交
806
  auto it = attrs_.find(name);
807 808
  if (it == attrs_.end()) {
    it = runtime_attrs_.find(name);
809 810 811 812
    PADDLE_ENFORCE_NE(
        it,
        runtime_attrs_.end(),
        platform::errors::NotFound("Attribute %s is not found.", name));
813
  }
814 815 816 817
  if (!with_attr_var) {
    PADDLE_ENFORCE_EQ(
        HasAttrVar(it->second),
        false,
818 819 820 821 822
        platform::errors::NotFound(
            "Attribute %s with constant value is not found, but found it with "
            "Variable(s) type, which maybe not supported in some scenarios "
            "currently, such as TensorRT et.al",
            name));
823
  }
F
fengjiayi 已提交
824 825 826
  return it->second;
}

M
minqiyang 已提交
827 828 829
const proto::OpProto::Attr &OpDesc::GetProtoAttr(
    const std::string &name) const {
  const proto::OpProto &proto = OpInfoMap::Instance().Get(Type()).Proto();
M
minqiyang 已提交
830 831 832 833 834 835 836
  for (int i = 0; i != proto.attrs_size(); ++i) {
    const proto::OpProto::Attr &attr = proto.attrs(i);
    if (attr.name() == name) {
      return attr;
    }
  }

837 838
  PADDLE_THROW(platform::errors::NotFound(
      "Attribute %s is not found in proto %s.", name, proto.type()));
M
minqiyang 已提交
839 840
}

Y
yuyang18 已提交
841
Attribute OpDesc::GetNullableAttr(const std::string &name) const {
Y
Fix bug  
yuyang18 已提交
842 843 844 845
  auto it = attrs_.find(name);
  if (it != attrs_.end()) {
    return it->second;
  } else {
Y
yuyang18 已提交
846
    return Attribute();
Y
Fix bug  
yuyang18 已提交
847 848 849
  }
}

G
gongweibao 已提交
850 851
std::vector<int> OpDesc::GetBlocksAttrIds(const std::string &name) const {
  auto it = attrs_.find(name);
852
  PADDLE_ENFORCE_NE(
853 854
      it,
      attrs_.end(),
855 856
      platform::errors::NotFound(
          "Attribute `%s` is not found in operator `%s`.", name, desc_.type()));
R
Ruibiao Chen 已提交
857
  auto blocks = PADDLE_GET_CONST(std::vector<BlockDesc *>, it->second);
G
gongweibao 已提交
858 859 860 861 862 863 864 865 866 867

  std::vector<int> ids;
  for (auto n : blocks) {
    ids.push_back(n->ID());
  }

  return ids;
}

int OpDesc::GetBlockAttrId(const std::string &name) const {
F
fengjiayi 已提交
868
  auto it = attrs_.find(name);
869
  PADDLE_ENFORCE_NE(
870 871
      it,
      attrs_.end(),
872 873
      platform::errors::NotFound(
          "Attribute `%s` is not found in operator `%s`.", name, desc_.type()));
R
Ruibiao Chen 已提交
874
  return PADDLE_GET_CONST(BlockDesc *, it->second)->ID();
F
fengjiayi 已提交
875 876
}

Y
Yu Yang 已提交
877
const std::unordered_map<std::string, Attribute> &OpDesc::GetAttrMap() const {
F
fengjiayi 已提交
878 879 880
  return attrs_;
}

881 882
const AttributeMap &OpDesc::GetRuntimeAttrMap() const { return runtime_attrs_; }

Y
Yu Yang 已提交
883
void OpDesc::Rename(const std::string &old_name, const std::string &new_name) {
Y
Yancey1989 已提交
884 885
  RenameInput(old_name, new_name);
  RenameOutput(old_name, new_name);
F
fengjiayi 已提交
886 887 888
  need_update_ = true;
}

Y
Yu Yang 已提交
889 890
void OpDesc::RenameOutput(const std::string &old_name,
                          const std::string &new_name) {
Y
Yang Yang(Tony) 已提交
891
  for (auto &output : outputs_) {
892 893
    std::replace(
        output.second.begin(), output.second.end(), old_name, new_name);
Y
Yang Yang(Tony) 已提交
894
  }
Y
yuyang18 已提交
895 896 897

  auto it = attrs_.find(framework::OpProtoAndCheckerMaker::OpRoleVarAttrName());
  if (it != attrs_.end()) {
R
Ruibiao Chen 已提交
898
    auto &op_vars = PADDLE_GET(std::vector<std::string>, it->second);
Y
yuyang18 已提交
899 900 901
    std::replace(op_vars.begin(), op_vars.end(), old_name, new_name);
  }

902 903 904 905
  if (dist_attr_) {
    dist_attr_->rename_output(old_name, new_name);
  }

Y
Yang Yang(Tony) 已提交
906 907 908
  need_update_ = true;
}

Y
Yu Yang 已提交
909 910
void OpDesc::RenameInput(const std::string &old_name,
                         const std::string &new_name) {
Y
Yang Yang(Tony) 已提交
911 912 913
  for (auto &input : inputs_) {
    std::replace(input.second.begin(), input.second.end(), old_name, new_name);
  }
Y
Yancey1989 已提交
914 915 916

  auto it = attrs_.find(framework::OpProtoAndCheckerMaker::OpRoleVarAttrName());
  if (it != attrs_.end()) {
R
Ruibiao Chen 已提交
917
    auto &op_vars = PADDLE_GET(std::vector<std::string>, it->second);
Y
Yancey1989 已提交
918 919 920
    std::replace(op_vars.begin(), op_vars.end(), old_name, new_name);
  }

921 922 923 924
  if (dist_attr_) {
    dist_attr_->rename_input(old_name, new_name);
  }

Y
Yang Yang(Tony) 已提交
925 926 927
  need_update_ = true;
}

928
struct SetAttrDescVisitor {
929 930
  explicit SetAttrDescVisitor(proto::OpDesc::Attr *attr) : attr_(attr) {}
  mutable proto::OpDesc::Attr *attr_;
Y
Yu Yang 已提交
931 932
  void operator()(int v) const { attr_->set_i(v); }
  void operator()(float v) const { attr_->set_f(v); }
933
  void operator()(double v) const { attr_->set_float64(v); }
Y
Yu Yang 已提交
934
  void operator()(const std::string &v) const { attr_->set_s(v); }
935 936
  void operator()(const paddle::experimental::Scalar &v) const {
    auto *s = new proto::Scalar;
937
    *s = MakeScalarProto(v);
938 939
    attr_->set_allocated_scalar(s);
  }
Q
QI JUN 已提交
940 941 942 943 944 945 946

  // Please refer to https://github.com/PaddlePaddle/Paddle/issues/7162
  template <class T,
            class = typename std::enable_if<std::is_same<bool, T>::value>::type>
  void operator()(T b) const {
    attr_->set_b(b);
  }
Y
Yu Yang 已提交
947 948 949 950 951 952 953 954 955 956 957 958 959

  void operator()(const std::vector<int> &v) const {
    VectorToRepeated(v, attr_->mutable_ints());
  }
  void operator()(const std::vector<float> &v) const {
    VectorToRepeated(v, attr_->mutable_floats());
  }
  void operator()(const std::vector<std::string> &v) const {
    VectorToRepeated(v, attr_->mutable_strings());
  }
  void operator()(const std::vector<bool> &v) const {
    VectorToRepeated(v, attr_->mutable_bools());
  }
960 961 962 963 964 965 966 967 968 969 970 971 972

  void operator()(const std::vector<VarDesc *> &v) const {
    std::vector<std::string> var_names;
    for (auto var : v) {
      var_names.emplace_back(var->Name());
    }
    VectorToRepeated(var_names, attr_->mutable_vars_name());
  }

  void operator()(const VarDesc *desc) const {
    attr_->set_var_name(desc->Name());
  }

973 974 975
  void operator()(const std::vector<BlockDesc *> &v) const {
    std::vector<int> blocks_idx;
    for (auto blk : v) {
T
tangwei12 已提交
976
      blocks_idx.push_back(blk->ID());
977 978 979
    }
    VectorToRepeated(blocks_idx, attr_->mutable_blocks_idx());
  }
T
tangwei12 已提交
980 981 982

  void operator()(BlockDesc *desc) const { attr_->set_block_idx(desc->ID()); }

983
  void operator()(int64_t v) const { attr_->set_l(v); }
T
tangwei12 已提交
984 985 986 987 988

  void operator()(const std::vector<int64_t> &v) const {
    VectorToRepeated(v, attr_->mutable_longs());
  }

989 990 991 992
  void operator()(const std::vector<double> &v) const {
    VectorToRepeated(v, attr_->mutable_float64s());
  }

993 994 995 996
  void operator()(const std::vector<paddle::experimental::Scalar> &v) const {
    std::vector<proto::Scalar> scalars;
    scalars.reserve(v.size());
    for (const auto &item : v) {
997
      scalars.emplace_back(MakeScalarProto(item));
998 999 1000 1001
    }
    VectorToRepeated(scalars, attr_->mutable_scalars());
  }

R
Ruibiao Chen 已提交
1002
  void operator()(paddle::blank) const {
1003 1004 1005 1006
    PADDLE_THROW(platform::errors::Unavailable(
        "Unsupported calling method of SetAttrDescVisitor object for "
        "`boosst::blank` type."));
  }
Y
Yu Yang 已提交
1007 1008
};

Y
Yu Yang 已提交
1009
void OpDesc::Flush() {
1010
  VLOG(8) << "Flush "
L
Leo Chen 已提交
1011
          << " " << Type() << " " << need_update_;
F
fengjiayi 已提交
1012
  if (need_update_) {
1013
    this->desc_.mutable_inputs()->Clear();
F
fengjiayi 已提交
1014
    for (auto &ipt : inputs_) {
1015
      auto *input = desc_.add_inputs();
F
fengjiayi 已提交
1016 1017 1018 1019
      input->set_parameter(ipt.first);
      VectorToRepeated(ipt.second, input->mutable_arguments());
    }

1020
    this->desc_.mutable_outputs()->Clear();
F
fengjiayi 已提交
1021
    for (auto &opt : outputs_) {
1022
      auto *output = desc_.add_outputs();
F
fengjiayi 已提交
1023 1024 1025 1026
      output->set_parameter(opt.first);
      VectorToRepeated(opt.second, output->mutable_arguments());
    }

1027
    this->desc_.mutable_attrs()->Clear();
1028 1029 1030 1031 1032 1033 1034 1035 1036
    auto set_attr_desc = [this](const std::string &attr_name,
                                const Attribute &attr) -> void {
      auto *attr_desc = desc_.add_attrs();
      attr_desc->set_name(attr_name);
      attr_desc->set_type(static_cast<proto::AttrType>(attr.index() - 1));
      SetAttrDescVisitor visitor(attr_desc);
      paddle::visit(visitor, attr);
    };

L
Leo Chen 已提交
1037 1038
    std::vector<std::pair<std::string, Attribute>> sorted_attrs{attrs_.begin(),
                                                                attrs_.end()};
1039 1040 1041 1042

    std::vector<std::pair<std::string, Attribute>> sorted_runtime_attrs{
        runtime_attrs_.begin(), runtime_attrs_.end()};

L
Leo Chen 已提交
1043 1044 1045 1046 1047
    std::sort(
        sorted_attrs.begin(),
        sorted_attrs.end(),
        [](std::pair<std::string, Attribute> a,
           std::pair<std::string, Attribute> b) { return a.first < b.first; });
1048 1049 1050 1051 1052
    std::sort(
        sorted_runtime_attrs.begin(),
        sorted_runtime_attrs.end(),
        [](std::pair<std::string, Attribute> a,
           std::pair<std::string, Attribute> b) { return a.first < b.first; });
1053

Z
zyfncg 已提交
1054
    for (auto &attr : sorted_runtime_attrs) {
1055 1056
      set_attr_desc(attr.first, attr.second);
    }
Z
zyfncg 已提交
1057
    for (auto &attr : sorted_attrs) {
1058
      set_attr_desc(attr.first, attr.second);
F
fengjiayi 已提交
1059 1060 1061 1062 1063
    }

    need_update_ = false;
  }
}
Y
Yu Yang 已提交
1064

Y
Yu Yang 已提交
1065
void OpDesc::CheckAttrs() {
1066 1067
  PADDLE_ENFORCE_EQ(Type().empty(),
                    false,
1068 1069
                    platform::errors::PreconditionNotMet(
                        "CheckAttrs() can not be called before type is set."));
Y
Yu Yang 已提交
1070 1071 1072 1073 1074 1075
  auto *checker = OpInfoMap::Instance().Get(Type()).Checker();
  if (checker == nullptr) {
    // checker is not configured. That operator could be generated by Paddle,
    // not by users.
    return;
  }
1076
  VLOG(10) << "begin to check attribute of " << Type();
T
tangwei12 已提交
1077
  checker->Check(&attrs_);
1078 1079 1080 1081 1082 1083 1084
  const auto &extra_attr_checkers =
      operators::ExtraInfoUtils::Instance().GetExtraAttrsChecker(Type());
  if (!extra_attr_checkers.empty()) {
    for (const auto &extra_checker : extra_attr_checkers) {
      extra_checker(&runtime_attrs_, false);
    }
  }
F
fengjiayi 已提交
1085 1086
}

H
hong 已提交
1087
void OpDesc::InferShape(const BlockDesc &block) {
1088 1089
  try {
    VLOG(3) << "CompileTime infer shape on " << Type();
H
hong 已提交
1090
    auto &op_info = OpInfoMap::Instance().Get(this->Type());
1091
    this->CheckAttrs();
H
hong 已提交
1092
    auto &infer_shape = op_info.infer_shape_;
1093
    PADDLE_ENFORCE_EQ(
1094 1095
        static_cast<bool>(infer_shape),
        true,
1096 1097
        platform::errors::NotFound(
            "Operator %s's infer_shape is not registered.", this->Type()));
1098 1099 1100 1101 1102
    CompileTimeInferShapeContext ctx(*this, block);
    if (VLOG_IS_ON(10)) {
      std::ostringstream sout;
      auto inames = this->InputArgumentNames();
      sout << " From [";
1103 1104
      std::copy(inames.begin(),
                inames.end(),
1105 1106 1107
                std::ostream_iterator<std::string>(sout, ", "));
      sout << "] to [";
      auto onames = this->OutputArgumentNames();
1108 1109
      std::copy(onames.begin(),
                onames.end(),
1110 1111 1112 1113 1114
                std::ostream_iterator<std::string>(sout, ", "));
      sout << "]";
      VLOG(10) << sout.str();
    }
    infer_shape(&ctx);
1115
  } catch (platform::EnforceNotMet &exception) {
1116
    framework::AppendErrorOpHint(Type(), &exception);
1117 1118 1119 1120
    throw std::move(exception);
  } catch (...) {
    std::rethrow_exception(std::current_exception());
  }
Y
Yu Yang 已提交
1121 1122
}

Y
Yu Yang 已提交
1123
void OpDesc::InferVarType(BlockDesc *block) const {
X
Xin Pan 已提交
1124 1125
  // There are a few places that var type can be set.
  // When VarDesc is created, default set to LOD_TENSOR.
T
tianshuo78520a 已提交
1126
  // When output variable is created, default is default set to LOD_TENSOR.
X
Xin Pan 已提交
1127 1128
  // We limit here to be the only place that operator defines its customized
  // var type inference. Hence, we don't do any "default" setting here.
Y
Yu Yang 已提交
1129 1130
  auto &info = OpInfoMap::Instance().Get(this->Type());
  if (info.infer_var_type_) {
M
minqiyang 已提交
1131
    InferVarTypeContext context(this, block);
M
minqiyang 已提交
1132
    info.infer_var_type_(&context);
Y
Yu Yang 已提交
1133 1134 1135
  }
}

1136 1137 1138 1139
const OperatorDistAttr *OpDesc::DistAttr() const {
  return dist_attr_ ? dist_attr_.get() : nullptr;
}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
OperatorDistAttr *OpDesc::MutableDistAttr() {
  if (dist_attr_) {
    return dist_attr_.get();
  } else {
    dist_attr_.reset(new OperatorDistAttr(*this));
    return dist_attr_.get();
  }
}

void OpDesc::SetDistAttr(const OperatorDistAttr &dist_attr) {
  MutableDistAttr();
  *dist_attr_ = dist_attr;
}

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
void OpDesc::UpdateVarAttr(const std::string &name, const Attribute &attr) {
  auto attr_type = static_cast<proto::AttrType>(attr.index() - 1);
  auto type = GetAttrType(name, true);
  if (type == proto::AttrType::VAR) {
    PADDLE_ENFORCE_EQ(
        attr_type,
        type,
        platform::errors::InvalidArgument(
            "Required attr.type == proto::AttrType::VAR, but received %s",
            attr_type));
    auto *var_desc = PADDLE_GET_CONST(VarDesc *, attr);
    VLOG(3) << "Update AttrVar " << name << " with " << var_desc->Name();
    attrs_[name] = FindVarRecursive(var_desc->Name());
  } else if (type == proto::AttrType::VARS) {
    PADDLE_ENFORCE_EQ(
        attr_type,
        type,
        platform::errors::InvalidArgument(
            "Required attr.type == proto::AttrType::VARS, but received %s",
            attr_type));
    auto vars_desc = PADDLE_GET_CONST(std::vector<VarDesc *>, attr);
    std::vector<VarDesc *> new_val;
    for (auto &var_desc : vars_desc) {
      VLOG(3) << "Update AttrVars " << name << " with " << var_desc->Name();
      new_val.emplace_back(FindVarRecursive(var_desc->Name()));
    }
    attrs_[name] = std::move(new_val);
  }
}

VarDesc *OpDesc::FindVarRecursive(const std::string &name) {
  auto *cur_block = block_;
  while (cur_block != nullptr && cur_block->ID() >= 0) {
    auto *var = block_->FindVar(name);
    if (var != nullptr) {
      return var;
    }
    cur_block = cur_block->ParentBlock();
  }
  PADDLE_THROW(platform::errors::NotFound(
      "Not found Var(%s) from Block(%d) back into global Block.",
      name,
      block_->ID()));
}

1199
CompileTimeInferShapeContext::CompileTimeInferShapeContext(
Y
Yu Yang 已提交
1200
    const OpDesc &op, const BlockDesc &block)
1201 1202 1203
    : op_(op), block_(block) {}

bool CompileTimeInferShapeContext::HasInput(const std::string &name) const {
1204 1205
  auto inputs = op_.Inputs(/*with_attr_var=*/true);
  if (inputs.find(name) == inputs.end()) {
1206 1207
    return false;
  }
1208 1209
  const std::vector<std::string> &input_names =
      op_.Input(name, /*with_attr_var=*/true);
1210 1211 1212 1213
  auto length = input_names.size();
  if (length == 0) {
    return false;
  }
1214
  PADDLE_ENFORCE_EQ(
1215 1216
      length,
      1UL,
1217 1218
      platform::errors::InvalidArgument("Input(%s) should have only one value, "
                                        "but it has %d values now.",
1219 1220
                                        name,
                                        length));
1221 1222 1223 1224
  return block_.HasVarRecursive(input_names[0]);
}

bool CompileTimeInferShapeContext::HasOutput(const std::string &name) const {
1225 1226 1227
  if (op_.Outputs().find(name) == op_.Outputs().end()) {
    return false;
  }
1228 1229 1230 1231 1232
  const std::vector<std::string> &output_names = op_.Output(name);
  auto length = output_names.size();
  if (length == 0) {
    return false;
  }
1233 1234
  PADDLE_ENFORCE_EQ(length,
                    1UL,
1235 1236 1237
                    platform::errors::InvalidArgument(
                        "Output(%s) should have only one value, "
                        "but it has %d values now.",
1238 1239
                        name,
                        length));
1240 1241 1242
  return block_.HasVarRecursive(output_names[0]);
}

1243
bool CompileTimeInferShapeContext::HasAttr(const std::string &name) const {
1244
  return op_.HasAttr(name, /*with_attr_var=*/false);
1245 1246
}

1247
bool CompileTimeInferShapeContext::HasInputs(const std::string &name) const {
1248 1249
  auto inputs = op_.Inputs(/*with_attr_var=*/true);
  if (inputs.find(name) == inputs.end()) {
1250 1251
    return false;
  }
1252 1253
  const std::vector<std::string> &input_names =
      op_.Input(name, /*with_attr_var=*/true);
1254 1255 1256 1257 1258 1259 1260 1261 1262
  if (input_names.empty()) {
    return false;
  }
  for (auto &input : input_names) {
    if (!block_.HasVarRecursive(input)) return false;
  }
  return true;
}

1263 1264
bool CompileTimeInferShapeContext::HasOutputs(const std::string &name,
                                              bool allow_null) const {
1265 1266 1267
  if (op_.Outputs().find(name) == op_.Outputs().end()) {
    return false;
  }
1268 1269 1270 1271
  const std::vector<std::string> &output_names = op_.Output(name);
  if (output_names.empty()) {
    return false;
  }
Y
YuanRisheng 已提交
1272
  if (!allow_null) {
1273 1274 1275
    for (auto &output : output_names) {
      if (!block_.HasVarRecursive(output)) return false;
    }
1276
  }
Y
YuanRisheng 已提交
1277
  return true;
1278 1279 1280
}

AttrReader CompileTimeInferShapeContext::Attrs() const {
1281
  return AttrReader(op_.GetAttrMap(), op_.GetRuntimeAttrMap());
1282 1283
}

H
hong 已提交
1284
std::vector<std::string> CompileTimeInferShapeContext::Inputs(
1285
    const std::string &name) const {
1286
  return op_.Input(name, /*with_attr_var=*/true);
1287 1288
}

H
hong 已提交
1289
std::vector<std::string> CompileTimeInferShapeContext::Outputs(
1290 1291 1292 1293
    const std::string &name) const {
  return op_.Output(name);
}

F
fengjiayi 已提交
1294
std::vector<DDim> CompileTimeInferShapeContext::GetRepeatedDims(
F
fengjiayi 已提交
1295 1296
    const std::string &name) const {
  auto var = block_.FindVarRecursive(name);
1297 1298
  PADDLE_ENFORCE_NOT_NULL(
      var, platform::errors::NotFound("Variable %s is not found.", name));
F
fengjiayi 已提交
1299 1300 1301 1302
  std::vector<DDim> res;
  try {
    auto shapes = var->GetShapes();
    for (const auto &s : shapes) {
1303
      res.push_back(phi::make_ddim(s));
F
fengjiayi 已提交
1304 1305
    }
  } catch (...) {
M
minqiyang 已提交
1306
    VLOG(5) << "GetRepeatedDim of variable " << name << " error.";
F
fengjiayi 已提交
1307 1308 1309
    std::rethrow_exception(std::current_exception());
  }
  return res;
1310 1311 1312 1313
}

void CompileTimeInferShapeContext::SetDim(const std::string &name,
                                          const DDim &dim) {
F
fengjiayi 已提交
1314
  block_.FindVarRecursive(name)->SetShape(vectorize(dim));
1315
}
F
fengjiayi 已提交
1316 1317 1318 1319

void CompileTimeInferShapeContext::SetRepeatedDims(
    const std::string &name, const std::vector<DDim> &dims) {
  auto var = block_.FindVarRecursive(name);
1320 1321
  PADDLE_ENFORCE_NOT_NULL(
      var, platform::errors::NotFound("Variable %s is not found.", name));
F
fengjiayi 已提交
1322
  std::vector<std::vector<int64_t>> dim_vec(dims.size());
1323
  std::transform(dims.begin(), dims.end(), dim_vec.begin(), phi::vectorize<>);
F
fengjiayi 已提交
1324
  var->SetShapes(dim_vec);
1325
}
F
fengjiayi 已提交
1326

1327 1328
bool CompileTimeInferShapeContext::IsRuntime() const { return false; }

1329 1330
bool CompileTimeInferShapeContext::IsRunMKLDNNKernel() const { return false; }

1331
proto::VarType::Type CompileTimeInferShapeContext::GetVarType(
1332 1333 1334
    const std::string &name) const {
  return block_.FindVarRecursive(name)->GetType();
}
1335

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
std::vector<std::string> AttrVarNames(const Attribute &attr) {
  std::vector<std::string> vars_name;
  if (IsAttrVar(attr)) {
    vars_name.emplace_back(PADDLE_GET_CONST(VarDesc *, attr)->Name());
  } else if (IsAttrVars(attr)) {
    for (auto &iter : PADDLE_GET_CONST(std::vector<VarDesc *>, attr)) {
      vars_name.emplace_back(iter->Name());
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported Attribute value type `%s` for AttrVarNames",
        platform::demangle(attr.type().name())));
  }
  return vars_name;
}

F
fengjiayi 已提交
1352 1353
}  // namespace framework
}  // namespace paddle