op_desc.cc 44.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
F
fengjiayi 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/op_desc.h"
16

17
#include <string>
18

19
#include "glog/logging.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/block_desc.h"
21
#include "paddle/fluid/framework/op_call_stack.h"
Y
yuyang18 已提交
22
#include "paddle/fluid/framework/op_proto_maker.h"
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/shape_inference.h"
M
minqiyang 已提交
25
#include "paddle/fluid/framework/var_type_inference.h"
26
#include "paddle/fluid/operators/ops_extra_info.h"
27
#include "paddle/phi/common/complex.h"
R
Ruibiao Chen 已提交
28
#include "paddle/utils/blank.h"
Y
Yu Yang 已提交
29

F
fengjiayi 已提交
30 31 32
namespace paddle {
namespace framework {

33 34
class CompileTimeInferShapeContext : public InferShapeContext {
 public:
Y
Yu Yang 已提交
35
  CompileTimeInferShapeContext(const OpDesc &op, const BlockDesc &block);
36 37 38 39 40

  bool HasInput(const std::string &name) const override;

  bool HasOutput(const std::string &name) const override;

41 42
  bool HasAttr(const std::string &name) const override;

43 44
  bool HasInputs(const std::string &name) const override;

45 46
  bool HasOutputs(const std::string &name,
                  bool allow_null = false) const override;
47 48 49

  AttrReader Attrs() const override;

H
hong 已提交
50
  std::vector<std::string> Inputs(const std::string &name) const override;
51

H
hong 已提交
52
  std::vector<std::string> Outputs(const std::string &name) const override;
53

54 55 56
  std::string GetInputNameByIdx(size_t idx) const override {
    auto &op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
57 58
    PADDLE_ENFORCE_LT(idx,
                      op_proto->inputs().size(),
59 60 61
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
62 63 64
                          op_.Type(),
                          idx,
                          op_proto->inputs().size()));
65 66 67 68 69 70 71
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto &op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
72 73
        idx,
        op_proto->outputs().size(),
74 75 76
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
77 78 79
            op_.Type(),
            idx,
            op_proto->outputs().size()));
80 81 82
    return op_proto->outputs()[idx].name();
  }

83 84 85
  void ShareDim(const std::string &in,
                const std::string &out,
                size_t i = 0,
86
                size_t j = 0) override {
87 88
    PADDLE_ENFORCE_LT(i,
                      Inputs(in).size(),
89 90 91
                      platform::errors::InvalidArgument(
                          "The input variable index is out of range, expected "
                          "index less than %d, but received index is %d.",
92 93 94 95
                          Inputs(in).size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      Outputs(out).size(),
96 97 98
                      platform::errors::InvalidArgument(
                          "The output variable index is out of range, expected "
                          "index less than %d, but received index is %d.",
99 100
                          Outputs(out).size(),
                          j));
101

H
hong 已提交
102 103
    std::string input_n = Inputs(in)[i];
    std::string output_n = Outputs(out)[j];
104

105 106
    PADDLE_ENFORCE_NE(input_n,
                      framework::kEmptyVarName,
107 108
                      platform::errors::InvalidArgument(
                          "The input variable %s[%d] is empty.", in, i));
109 110
    PADDLE_ENFORCE_NE(output_n,
                      framework::kEmptyVarName,
111 112
                      platform::errors::InvalidArgument(
                          "The output variable %s[%d] is empty.", out, j));
113 114 115 116

    auto *in_var = block_.FindVarRecursive(input_n);
    auto *out_var = block_.FindVarRecursive(output_n);

117
    PADDLE_ENFORCE_EQ(
118 119
        in_var->GetType(),
        out_var->GetType(),
120 121 122
        platform::errors::InvalidArgument(
            "The type of input %s and output %s do not match. The input type "
            "is %s, output type is %s.",
123 124 125
            input_n,
            output_n,
            DataTypeToString(in_var->GetType()),
126
            DataTypeToString(out_var->GetType())));
127 128 129 130

    SetDim(output_n, GetDim(input_n));
  }

H
hong 已提交
131 132 133 134 135 136
  void ShareAllLoD(const std::string &in,
                   const std::string &out) const override {
    auto &in_var_names = op_.Input(in);
    auto &out_var_names = op_.Output(out);

    PADDLE_ENFORCE_EQ(
137 138
        in_var_names.size(),
        out_var_names.size(),
H
hong 已提交
139
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
140
            "Op [%s]:  Input var number should be equal with output var number",
H
hong 已提交
141 142 143 144 145 146 147 148 149 150 151
            op_.Type()));

    for (size_t i = 0; i < in_var_names.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      auto *in_var = block_.FindVarRecursive(in_var_names[i]);
      auto *out_var = block_.FindVarRecursive(out_var_names[i]);
      if (in_var->GetType() != proto::VarType::LOD_TENSOR &&
          in_var->GetType() != proto::VarType::LOD_TENSOR_ARRAY) {
152 153
        VLOG(3) << "input " << in
                << " is not phi::DenseTensor or LoDTensorArray.";
H
hong 已提交
154 155 156 157 158 159
        return;
      }
      out_var->SetLoDLevel(in_var->GetLoDLevel());
    }
  }

160 161 162
  void ShareLoD(const std::string &in,
                const std::string &out,
                size_t i = 0,
Q
Qiao Longfei 已提交
163
                size_t j = 0) const override {
164 165
    PADDLE_ENFORCE_LT(i,
                      Inputs(in).size(),
166 167 168
                      platform::errors::InvalidArgument(
                          "The input variable index is out of range, expected "
                          "index less than %d, but received index is %d.",
169 170 171 172
                          Inputs(in).size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      Outputs(out).size(),
173 174 175
                      platform::errors::InvalidArgument(
                          "The output variable index is out of range, expected "
                          "index less than %d, but received index is %d.",
176 177 178 179
                          Outputs(out).size(),
                          j));
    PADDLE_ENFORCE_NE(Inputs(in)[i],
                      framework::kEmptyVarName,
180 181
                      platform::errors::InvalidArgument(
                          "The input variable %s[%d] is empty.", in, i));
182 183
    PADDLE_ENFORCE_NE(Outputs(out)[j],
                      framework::kEmptyVarName,
184 185
                      platform::errors::InvalidArgument(
                          "The output variable %s[%d] is empty.", out, j));
Q
Qiao Longfei 已提交
186 187
    auto *in_var = block_.FindVarRecursive(Inputs(in)[i]);
    auto *out_var = block_.FindVarRecursive(Outputs(out)[j]);
C
chengduo 已提交
188 189
    if (in_var->GetType() != proto::VarType::LOD_TENSOR &&
        in_var->GetType() != proto::VarType::LOD_TENSOR_ARRAY) {
190 191
      VLOG(3) << "input " << in
              << " is not phi::DenseTensor or LoDTensorArray.";
X
fix  
Xin Pan 已提交
192 193
      return;
    }
194
    out_var->SetLoDLevel(in_var->GetLoDLevel());
Q
Qiao Longfei 已提交
195
  }
D
dzhwinter 已提交
196

197
  int32_t GetLoDLevel(const std::string &in, size_t i = 0) const override {
198 199
    PADDLE_ENFORCE_LT(i,
                      Inputs(in).size(),
200 201 202
                      platform::errors::InvalidArgument(
                          "The input variable index is out of range, input "
                          "variable %s of operator %s only has %d elements.",
203 204 205 206 207
                          in,
                          op_.Type(),
                          Inputs(in).size()));
    PADDLE_ENFORCE_NE(Inputs(in)[i],
                      framework::kEmptyVarName,
208 209
                      platform::errors::InvalidArgument(
                          "The input variable %s[%d] of operator %s is empty.",
210 211 212
                          in,
                          i,
                          op_.Type()));
C
chengduo 已提交
213
    auto *in_var = block_.FindVarRecursive(Inputs(in)[i]);
214
    PADDLE_ENFORCE_NOT_NULL(
215 216 217 218 219 220
        in_var,
        platform::errors::NotFound(
            "The input variable %s[%d] of operator %s is not found.",
            in,
            i,
            op_.Type()));
221
    return in_var->GetLoDLevel();
C
chengduo 已提交
222 223
  }

224 225
  void SetLoDLevel(const std::string &out,
                   int32_t lod_level,
226
                   size_t j = 0) const override {
227 228
    PADDLE_ENFORCE_LT(j,
                      Outputs(out).size(),
229 230 231
                      platform::errors::InvalidArgument(
                          "The output variable index is out of range, output "
                          "variable %s of operator %s only has %d elements.",
232 233 234 235 236
                          out,
                          op_.Type(),
                          Outputs(out).size()));
    PADDLE_ENFORCE_NE(Outputs(out)[j],
                      framework::kEmptyVarName,
237 238
                      platform::errors::InvalidArgument(
                          "The output variable %s[%d] of operator %s is empty.",
239 240 241
                          out,
                          j,
                          op_.Type()));
242
    auto *out_var = block_.FindVarRecursive(Outputs(out)[j]);
243
    PADDLE_ENFORCE_NOT_NULL(
244 245 246 247 248 249
        out_var,
        platform::errors::NotFound(
            "The output variable %s[%d] of operator %s is not found.",
            out,
            j,
            op_.Type()));
250 251 252
    if (lod_level >= 0) {
      out_var->SetLoDLevel(lod_level);
    }
253 254
  }

C
Chen Weihang 已提交
255
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
256
  GetInputVarPtrs(const std::string &name) const override {
257
    const std::vector<std::string> arg_names = Inputs(name);
C
Chen Weihang 已提交
258
    paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
259
    res.reserve(arg_names.size());
260 261 262
    std::transform(arg_names.begin(),
                   arg_names.end(),
                   std::back_inserter(res),
263 264 265 266 267 268
                   [this](const std::string &name) {
                     return block_.FindVarRecursive(name);
                   });
    return res;
  }

C
Chen Weihang 已提交
269
  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
270
  GetOutputVarPtrs(const std::string &name) const override {
271
    const std::vector<std::string> arg_names = Outputs(name);
C
Chen Weihang 已提交
272
    paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
273
    res.reserve(arg_names.size());
274 275 276
    std::transform(arg_names.begin(),
                   arg_names.end(),
                   std::back_inserter(res),
277 278 279 280 281 282
                   [this](const std::string &name) {
                     return block_.FindVarRecursive(name);
                   });
    return res;
  }

X
Xin Pan 已提交
283 284
  DDim GetInputDim(const std::string &name) const override {
    const std::vector<std::string> &arg_names = Inputs(name);
285 286
    PADDLE_ENFORCE_EQ(arg_names.size(),
                      1UL,
287 288 289
                      platform::errors::InvalidArgument(
                          "The input(%s) should hold only one element, but now "
                          "it holds %d elements.",
290 291
                          name,
                          arg_names.size()));
X
Xin Pan 已提交
292 293 294 295 296 297 298 299
    return this->GetDim(arg_names[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string &name) const override {
    const std::vector<std::string> &arg_names = Inputs(name);
    return GetDims(arg_names);
  }

300 301
  bool IsRuntime() const override;

302 303
  bool IsRunMKLDNNKernel() const override;

304 305 306 307
  proto::VarType::Type GetInputVarType(const std::string &name) const override {
    return GetVarType(Inputs(name).at(0));
  }

X
Xin Pan 已提交
308 309 310 311 312 313 314 315 316 317
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string &name) const override {
    return GetVarTypes(Inputs(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string &name) const override {
    return GetVarTypes(Outputs(name));
  }

X
Xin Pan 已提交
318
  void SetOutputDim(const std::string &name, const DDim &dim) override {
H
hong 已提交
319
    auto arg_names = Outputs(name);
320 321
    PADDLE_ENFORCE_EQ(arg_names.size(),
                      1UL,
322 323 324
                      platform::errors::InvalidArgument(
                          "The iutput(%s) should hold only one element, but "
                          "now it holds %d elements.",
325 326
                          name,
                          arg_names.size()));
X
Xin Pan 已提交
327 328 329 330 331
    SetDim(arg_names[0], dim);
  }

  void SetOutputsDim(const std::string &name,
                     const std::vector<DDim> &dims) override {
H
hong 已提交
332
    auto names = Outputs(name);
X
Xin Pan 已提交
333 334 335
    SetDims(names, dims);
  }

336 337 338 339 340 341 342 343
  const phi::ArgumentMappingFn *GetPhiArgumentMappingFn() const override {
    return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
  }

  const phi::KernelSignature *GetPhiDefaultKernelSignature() const override {
    return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
  }

344
 protected:
X
Xin Pan 已提交
345 346 347 348 349
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<std::string> &names) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(names.size());
    std::transform(
350 351 352 353 354
        names.begin(),
        names.end(),
        retv.begin(),
        std::bind(std::mem_fn(&CompileTimeInferShapeContext::GetVarType),
                  this,
X
Xin Pan 已提交
355 356 357 358 359
                  std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(const std::string &name) const;
Q
Qiao Longfei 已提交
360

X
Xin Pan 已提交
361 362
  DDim GetDim(const std::string &name) const {
    auto var = block_.FindVarRecursive(name);
363 364
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::NotFound("Variable %s is not found.", name));
X
Xin Pan 已提交
365 366 367
    DDim res;
    try {
      auto shape = var->GetShape();
368
      res = phi::make_ddim(shape);
X
Xin Pan 已提交
369 370 371 372 373 374 375 376 377 378 379
    } catch (...) {
      VLOG(5) << "GetDim of variable " << name << " error";
      std::rethrow_exception(std::current_exception());
    }
    return res;
  }

  std::vector<DDim> GetDims(const std::vector<std::string> &names) const {
    std::vector<DDim> ret;
    ret.reserve(names.size());
    std::transform(
380 381 382
        names.begin(),
        names.end(),
        std::back_inserter(ret),
X
Xin Pan 已提交
383 384 385
        [this](const std::string &name) { return this->GetDim(name); });
    return ret;
  }
386

X
Xin Pan 已提交
387 388 389 390 391
  void SetDim(const std::string &name, const DDim &dim);

  void SetDims(const std::vector<std::string> &names,
               const std::vector<DDim> &dims) {
    size_t length = names.size();
392 393
    PADDLE_ENFORCE_EQ(length,
                      dims.size(),
394 395 396
                      platform::errors::InvalidArgument(
                          "The input variables number(%d) and input dimensions "
                          "number(%d) do not match.",
397 398
                          length,
                          dims.size()));
X
Xin Pan 已提交
399 400 401 402 403 404 405
    for (size_t i = 0; i < length; ++i) {
      if (names[i] == framework::kEmptyVarName) {
        continue;
      }
      SetDim(names[i], dims[i]);
    }
  }
406

F
fengjiayi 已提交
407 408 409 410
  std::vector<DDim> GetRepeatedDims(const std::string &name) const override;

  void SetRepeatedDims(const std::string &name,
                       const std::vector<DDim> &dims) override;
F
fengjiayi 已提交
411

Y
Yu Yang 已提交
412 413
  const OpDesc &op_;
  const BlockDesc &block_;
414 415
};

416 417 418 419 420 421 422
static void InitRuntimeAttributeMapByOpExtraInfo(const std::string &op_type,
                                                 AttributeMap *runtime_attrs) {
  const auto &extra_attr_map =
      operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
  runtime_attrs->insert(extra_attr_map.begin(), extra_attr_map.end());
}

423 424 425 426
OpDesc::OpDesc(const std::string &type,
               const VariableNameMap &inputs,
               const VariableNameMap &outputs,
               const AttributeMap &attrs) {
427
  desc_.set_type(type);
F
fengjiayi 已提交
428 429 430
  inputs_ = inputs;
  outputs_ = outputs;
  attrs_ = attrs;
F
Fix bug  
fengjiayi 已提交
431
  need_update_ = true;
L
liuwei1031 已提交
432
  block_ = nullptr;
433
  InitRuntimeAttributeMapByOpExtraInfo(type, &runtime_attrs_);
F
fengjiayi 已提交
434 435
}

436 437 438 439 440 441
OpDesc::OpDesc(const OpDesc &other) {
  CopyFrom(other);
  block_ = other.block_;
  need_update_ = true;
}

X
Xin Pan 已提交
442 443 444 445
OpDesc::OpDesc(const OpDesc &other, BlockDesc *block) {
  CopyFrom(other);
  block_ = block;
  need_update_ = true;
446 447 448
  for (auto &iter : attrs_) {
    UpdateVarAttr(iter.first, iter.second);
  }
X
Xin Pan 已提交
449 450
}

451
void OpDesc::CopyFrom(const OpDesc &op_desc) {
F
fengjiayi 已提交
452 453 454 455
  desc_.set_type(op_desc.Type());
  inputs_ = op_desc.inputs_;
  outputs_ = op_desc.outputs_;
  attrs_ = op_desc.attrs_;
456 457
  runtime_attrs_ = op_desc.runtime_attrs_;
  // The record of original_id_ is only for auto parallel.
458
  original_id_ = op_desc.original_id_;
459 460 461
  if (op_desc.dist_attr_) {
    dist_attr_.reset(new OperatorDistAttr(*op_desc.dist_attr_));
  }
F
fengjiayi 已提交
462 463 464
  need_update_ = true;
}

F
fengjiayi 已提交
465
OpDesc::OpDesc(const proto::OpDesc &desc, BlockDesc *block)
466 467 468 469
    : desc_(desc), need_update_(false) {
  // restore inputs_
  int input_size = desc_.inputs_size();
  for (int i = 0; i < input_size; ++i) {
470
    const proto::OpDesc::Var &var = desc_.inputs(i);
471 472 473 474 475 476 477 478 479 480
    std::vector<std::string> &args = inputs_[var.parameter()];
    int argu_size = var.arguments_size();
    args.reserve(argu_size);
    for (int j = 0; j < argu_size; ++j) {
      args.push_back(var.arguments(j));
    }
  }
  // restore outputs_
  int output_size = desc_.outputs_size();
  for (int i = 0; i < output_size; ++i) {
481
    const proto::OpDesc::Var &var = desc_.outputs(i);
482 483 484 485 486 487 488 489
    std::vector<std::string> &args = outputs_[var.parameter()];
    int argu_size = var.arguments_size();
    args.reserve(argu_size);
    for (int j = 0; j < argu_size; ++j) {
      args.push_back(var.arguments(j));
    }
  }
  // restore attrs_
490
  InitRuntimeAttributeMapByOpExtraInfo(desc.type(), &runtime_attrs_);
491
  for (const proto::OpDesc::Attr &attr : desc_.attrs()) {
492
    const std::string &attr_name = attr.name();
493
    // The sub_block referred to by the BLOCK attr hasn't been added
494 495 496 497 498 499 500
    // to ProgramDesc class yet, we skip setting BLOCK/BLOCKS/VAR/VARS attr
    // here.
    auto attr_type = attr.type();
    if (attr_type != proto::AttrType::BLOCK &&
        attr_type != proto::AttrType::BLOCKS &&
        attr_type != proto::AttrType::VAR &&
        attr_type != proto::AttrType::VARS) {
501 502 503 504 505 506
      auto iter = runtime_attrs_.find(attr_name);
      if (iter == runtime_attrs_.end()) {
        attrs_[attr_name] = GetAttrValue(attr);
      } else {
        iter->second = GetAttrValue(attr);
      }
507
    }
508
  }
509
  this->block_ = block;
510 511
}

512 513 514 515 516 517 518 519 520
// Explicitly implement the assign operator, Since the added
// unique_ptr data member does not have the implicit assign operator.
OpDesc &OpDesc::operator=(const OpDesc &other) {
  CopyFrom(other);
  block_ = other.block_;
  need_update_ = true;
  return *this;
}

Y
Yu Yang 已提交
521
proto::OpDesc *OpDesc::Proto() {
522
  Flush();
523
  return &desc_;
F
fengjiayi 已提交
524 525
}

Y
Yu Yang 已提交
526
const std::vector<std::string> &OpDesc::Input(const std::string &name) const {
F
fengjiayi 已提交
527
  auto it = inputs_.find(name);
528
  PADDLE_ENFORCE_NE(
529 530 531 532
      it,
      inputs_.end(),
      platform::errors::NotFound(
          "Input %s cannot be found in operator %s.", name, Type()));
F
fengjiayi 已提交
533 534 535
  return it->second;
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
std::vector<std::string> OpDesc::Input(const std::string &name,
                                       bool with_attr_var) const {
  // Attribute with VarDesc type will consider as Input
  if (with_attr_var) {
    auto it = attrs_.find(name);
    if (it != attrs_.end() && HasAttrVar(it->second))
      return AttrVarNames(it->second);
  }
  return this->Input(name);
}

VariableNameMap OpDesc::Inputs(bool with_attr_var) const {
  if (!with_attr_var) {
    return inputs_;
  }
  VariableNameMap res = inputs_;
  for (auto &attr : FilterAttrVar(attrs_)) {
    res[attr.first] = AttrVarNames(attr.second);
  }
  return res;
}

std::vector<std::string> OpDesc::InputArgumentNames(bool with_attr_var) const {
F
Update  
fengjiayi 已提交
559
  std::vector<std::string> retv;
560
  for (auto &ipt : this->Inputs(with_attr_var)) {
F
Update  
fengjiayi 已提交
561 562 563 564 565
    retv.insert(retv.end(), ipt.second.begin(), ipt.second.end());
  }
  return retv;
}

Y
Yu Yang 已提交
566 567
void OpDesc::SetInput(const std::string &param_name,
                      const std::vector<std::string> &args) {
F
fengjiayi 已提交
568 569 570 571
  need_update_ = true;
  inputs_[param_name] = args;
}

Y
Yu Yang 已提交
572
const std::vector<std::string> &OpDesc::Output(const std::string &name) const {
F
fengjiayi 已提交
573
  auto it = outputs_.find(name);
574
  PADDLE_ENFORCE_NE(
575 576 577 578
      it,
      outputs_.end(),
      platform::errors::NotFound(
          "Output %s cannot be found in operator %s.", name, Type()));
F
fengjiayi 已提交
579 580 581
  return it->second;
}

582 583 584 585
bool OpDesc::HasOutput(const std::string &name) const {
  return outputs_.find(name) != outputs_.end();
}

586 587 588 589
bool OpDesc::HasInput(const std::string &name) const {
  return inputs_.find(name) != inputs_.end();
}

Y
Yu Yang 已提交
590
std::vector<std::string> OpDesc::OutputArgumentNames() const {
F
Update  
fengjiayi 已提交
591 592 593 594 595 596 597
  std::vector<std::string> retv;
  for (auto &ipt : this->outputs_) {
    retv.insert(retv.end(), ipt.second.begin(), ipt.second.end());
  }
  return retv;
}

Y
Yu Yang 已提交
598 599
void OpDesc::SetOutput(const std::string &param_name,
                       const std::vector<std::string> &args) {
F
fengjiayi 已提交
600 601 602 603
  need_update_ = true;
  this->outputs_[param_name] = args;
}

604 605 606 607 608
void OpDesc::RemoveOutput(const std::string &name) {
  outputs_.erase(name);
  need_update_ = true;
}

609 610 611 612 613
void OpDesc::RemoveInput(const std::string &name) {
  inputs_.erase(name);
  need_update_ = true;
}

614 615 616 617 618 619 620 621 622 623
bool OpDesc::HasProtoAttr(const std::string &name) const {
  auto &op_info = OpInfoMap::Instance();
  if (op_info.Has(desc_.type())) {
    auto op_info_ptr = op_info.Get(desc_.type());
    if (op_info_ptr.HasOpProtoAndChecker()) {
      const proto::OpProto &proto = op_info_ptr.Proto();
      for (int i = 0; i != proto.attrs_size(); ++i) {
        const proto::OpProto::Attr &attr = proto.attrs(i);
        if (attr.name() == name) {
          return true;
L
luotao1 已提交
624 625
        }
      }
L
luotao1 已提交
626 627 628 629 630
    }
  }
  return false;
}

631 632 633 634
proto::AttrType OpDesc::GetAttrType(const std::string &name,
                                    bool with_attr_var) const {
  auto attr = this->GetAttr(name, with_attr_var);
  return static_cast<proto::AttrType>(attr.index() - 1);
F
fengjiayi 已提交
635 636
}

637
std::vector<std::string> OpDesc::AttrNames(bool with_attr_var) const {
F
fengjiayi 已提交
638 639 640
  std::vector<std::string> retv;
  retv.reserve(attrs_.size());
  for (auto &attr : attrs_) {
641
    if (!with_attr_var && HasAttrVar(attr.second)) continue;
F
fengjiayi 已提交
642 643 644 645 646
    retv.push_back(attr.first);
  }
  return retv;
}

647 648
bool OpDesc::HasAttr(const std::string &name, bool with_attr_var) const {
  auto iter = attrs_.find(name);
649 650 651 652 653 654 655
  bool is_found = true;
  if (iter == attrs_.end()) {
    iter = runtime_attrs_.find(name);
    if (iter == runtime_attrs_.end()) {
      is_found = false;
    }
  }
656 657 658 659 660 661
  if (with_attr_var) {
    return is_found;
  }
  return is_found && !HasAttrVar(iter->second);
}

662 663
void OpDesc::RemoveAttr(const std::string &name) {
  attrs_.erase(name);
664
  runtime_attrs_.erase(name);
665 666 667
  need_update_ = true;
}

Y
Yu Yang 已提交
668
void OpDesc::SetAttr(const std::string &name, const Attribute &v) {
669 670
  AttributeMap *attrs_ptr = &(this->attrs_);

671 672
  bool is_runtime_attr = false;

673 674 675 676
  const auto &extra_attr_map =
      operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(Type());
  auto extra_attr_iter = extra_attr_map.find(name);
  if (extra_attr_iter != extra_attr_map.end()) {
677
    is_runtime_attr = true;
678
    attrs_ptr = &(this->runtime_attrs_);
679 680 681 682 683
    // When an attribute is found in both attrs and runtime_attrs, it must
    // be a runtime attribute, so it's value in attrs should be removed.
    if (this->attrs_.find(name) != this->attrs_.end()) {
      this->attrs_.erase(name);
    }
684
  }
M
minqiyang 已提交
685 686 687
  // NOTICE(minqiyang): pybind11 will take the empty list in python as
  // the std::vector<int> type in C++; so we have to change the attr's type
  // here if we meet this issue
R
Ruibiao Chen 已提交
688
  proto::AttrType attr_type = static_cast<proto::AttrType>(v.index() - 1);
M
minqiyang 已提交
689
  if (attr_type == proto::AttrType::INTS &&
R
Ruibiao Chen 已提交
690
      PADDLE_GET_CONST(std::vector<int>, v).size() == 0u) {
M
minqiyang 已提交
691
    // Find current attr via attr name and set the correct attribute value
692 693 694 695 696 697
    if (is_runtime_attr) {
      attr_type =
          static_cast<proto::AttrType>(extra_attr_iter->second.index() - 1);
    } else if (HasProtoAttr(name)) {
      attr_type = GetProtoAttr(name).type();
    }
698
    switch (attr_type) {
M
minqiyang 已提交
699
      case proto::AttrType::BOOLEANS: {
M
minqiyang 已提交
700 701
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from INTS to BOOLEANS";
702
        attrs_ptr->operator[](name) = std::vector<bool>();
M
minqiyang 已提交
703 704 705
        break;
      }
      case proto::AttrType::INTS: {
M
minqiyang 已提交
706 707
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from INTS to INTS";
708
        attrs_ptr->operator[](name) = std::vector<int>();
M
minqiyang 已提交
709 710
        break;
      }
711
      case proto::AttrType::LONGS: {
M
minqiyang 已提交
712 713
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from LONGS to LONGS";
714
        attrs_ptr->operator[](name) = std::vector<int64_t>();
715 716
        break;
      }
M
minqiyang 已提交
717
      case proto::AttrType::FLOATS: {
M
minqiyang 已提交
718 719
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from INTS to FLOATS";
720
        attrs_ptr->operator[](name) = std::vector<float>();
M
minqiyang 已提交
721 722
        break;
      }
723 724 725 726 727 728
      case proto::AttrType::FLOAT64S: {
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from INTS to FLOAT64S";
        this->attrs_[name] = std::vector<double>();
        break;
      }
M
minqiyang 已提交
729
      case proto::AttrType::STRINGS: {
M
minqiyang 已提交
730 731
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from INTS to STRINGS";
732
        attrs_ptr->operator[](name) = std::vector<std::string>();
M
minqiyang 已提交
733 734 735
        break;
      }
      case proto::AttrType::BLOCKS: {
M
minqiyang 已提交
736 737
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from INTS to BLOCKS";
738
        attrs_ptr->operator[](name) = std::vector<BlockDesc *>();
M
minqiyang 已提交
739 740
        return;
      }
M
minqiyang 已提交
741
      default:
742
        PADDLE_THROW(platform::errors::Unimplemented(
743
            "Unsupported attribute type (code %d).", attr_type));
M
minqiyang 已提交
744
    }
M
minqiyang 已提交
745 746
    need_update_ = true;
    return;
M
minqiyang 已提交
747 748
  }

749
  // In order to set bool attr properly
750 751 752 753 754 755 756 757 758 759 760 761 762 763
  if (attr_type == proto::AttrType::INT) {
    if (HasProtoAttr(name) &&
        GetProtoAttr(name).type() == proto::AttrType::BOOLEAN) {
      attrs_ptr->operator[](name) = static_cast<bool>(PADDLE_GET_CONST(int, v));
      need_update_ = true;
      return;
    }
    if (extra_attr_iter != extra_attr_map.end() &&
        static_cast<proto::AttrType>(extra_attr_iter->second.index() - 1) ==
            proto::AttrType::BOOLEAN) {
      attrs_ptr->operator[](name) = static_cast<bool>(PADDLE_GET_CONST(int, v));
      need_update_ = true;
      return;
    }
764 765
  }

766
  attrs_ptr->operator[](name) = v;
767 768 769
  VLOG(10) << "op_type: " << Type() << ", attr name: " << name
           << " , type index: "
           << TransToPhiDataType(this->attrs_[name].index());
F
fengjiayi 已提交
770 771 772
  need_update_ = true;
}

773 774 775 776 777 778 779 780 781 782
void OpDesc::SetVarAttr(const std::string &name, VarDesc *var) {
  this->attrs_[name] = var;
  need_update_ = true;
}

void OpDesc::SetVarsAttr(const std::string &name, std::vector<VarDesc *> vars) {
  this->attrs_[name] = vars;
  need_update_ = true;
}

A
Abhinav Arora 已提交
783 784
void OpDesc::SetBlockAttr(const std::string &name, BlockDesc *block) {
  this->attrs_[name] = block;
F
fengjiayi 已提交
785
  need_update_ = true;
F
fengjiayi 已提交
786 787
}

788 789 790 791 792 793
void OpDesc::SetBlocksAttr(const std::string &name,
                           std::vector<BlockDesc *> blocks) {
  this->attrs_[name] = blocks;
  need_update_ = true;
}

Y
Yu Yang 已提交
794
void OpDesc::SetAttrMap(
F
fengjiayi 已提交
795 796 797 798 799
    const std::unordered_map<std::string, Attribute> &attr_map) {
  attrs_ = attr_map;
  need_update_ = true;
}

800 801 802 803 804 805
void OpDesc::SetRuntimeAttrMap(
    const std::unordered_map<std::string, Attribute> &attr_map) {
  runtime_attrs_ = attr_map;
  need_update_ = true;
}

806
Attribute OpDesc::GetAttr(const std::string &name, bool with_attr_var) const {
F
fengjiayi 已提交
807
  auto it = attrs_.find(name);
808 809
  if (it == attrs_.end()) {
    it = runtime_attrs_.find(name);
810 811 812 813
    PADDLE_ENFORCE_NE(
        it,
        runtime_attrs_.end(),
        platform::errors::NotFound("Attribute %s is not found.", name));
814
  }
815 816 817 818
  if (!with_attr_var) {
    PADDLE_ENFORCE_EQ(
        HasAttrVar(it->second),
        false,
819 820 821 822 823
        platform::errors::NotFound(
            "Attribute %s with constant value is not found, but found it with "
            "Variable(s) type, which maybe not supported in some scenarios "
            "currently, such as TensorRT et.al",
            name));
824
  }
F
fengjiayi 已提交
825 826 827
  return it->second;
}

M
minqiyang 已提交
828 829 830
const proto::OpProto::Attr &OpDesc::GetProtoAttr(
    const std::string &name) const {
  const proto::OpProto &proto = OpInfoMap::Instance().Get(Type()).Proto();
M
minqiyang 已提交
831 832 833 834 835 836 837
  for (int i = 0; i != proto.attrs_size(); ++i) {
    const proto::OpProto::Attr &attr = proto.attrs(i);
    if (attr.name() == name) {
      return attr;
    }
  }

838 839
  PADDLE_THROW(platform::errors::NotFound(
      "Attribute %s is not found in proto %s.", name, proto.type()));
M
minqiyang 已提交
840 841
}

Y
yuyang18 已提交
842
Attribute OpDesc::GetNullableAttr(const std::string &name) const {
Y
Fix bug  
yuyang18 已提交
843 844 845 846
  auto it = attrs_.find(name);
  if (it != attrs_.end()) {
    return it->second;
  } else {
Y
yuyang18 已提交
847
    return Attribute();
Y
Fix bug  
yuyang18 已提交
848 849 850
  }
}

G
gongweibao 已提交
851 852
std::vector<int> OpDesc::GetBlocksAttrIds(const std::string &name) const {
  auto it = attrs_.find(name);
853
  PADDLE_ENFORCE_NE(
854 855
      it,
      attrs_.end(),
856 857
      platform::errors::NotFound(
          "Attribute `%s` is not found in operator `%s`.", name, desc_.type()));
R
Ruibiao Chen 已提交
858
  auto blocks = PADDLE_GET_CONST(std::vector<BlockDesc *>, it->second);
G
gongweibao 已提交
859 860 861 862 863 864 865 866 867 868

  std::vector<int> ids;
  for (auto n : blocks) {
    ids.push_back(n->ID());
  }

  return ids;
}

int OpDesc::GetBlockAttrId(const std::string &name) const {
F
fengjiayi 已提交
869
  auto it = attrs_.find(name);
870
  PADDLE_ENFORCE_NE(
871 872
      it,
      attrs_.end(),
873 874
      platform::errors::NotFound(
          "Attribute `%s` is not found in operator `%s`.", name, desc_.type()));
R
Ruibiao Chen 已提交
875
  return PADDLE_GET_CONST(BlockDesc *, it->second)->ID();
F
fengjiayi 已提交
876 877
}

Y
Yu Yang 已提交
878
const std::unordered_map<std::string, Attribute> &OpDesc::GetAttrMap() const {
F
fengjiayi 已提交
879 880 881
  return attrs_;
}

882 883
const AttributeMap &OpDesc::GetRuntimeAttrMap() const { return runtime_attrs_; }

Y
Yu Yang 已提交
884
void OpDesc::Rename(const std::string &old_name, const std::string &new_name) {
Y
Yancey1989 已提交
885 886
  RenameInput(old_name, new_name);
  RenameOutput(old_name, new_name);
F
fengjiayi 已提交
887 888 889
  need_update_ = true;
}

Y
Yu Yang 已提交
890 891
void OpDesc::RenameOutput(const std::string &old_name,
                          const std::string &new_name) {
Y
Yang Yang(Tony) 已提交
892
  for (auto &output : outputs_) {
893 894
    std::replace(
        output.second.begin(), output.second.end(), old_name, new_name);
Y
Yang Yang(Tony) 已提交
895
  }
Y
yuyang18 已提交
896 897 898

  auto it = attrs_.find(framework::OpProtoAndCheckerMaker::OpRoleVarAttrName());
  if (it != attrs_.end()) {
R
Ruibiao Chen 已提交
899
    auto &op_vars = PADDLE_GET(std::vector<std::string>, it->second);
Y
yuyang18 已提交
900 901 902
    std::replace(op_vars.begin(), op_vars.end(), old_name, new_name);
  }

903 904 905 906
  if (dist_attr_) {
    dist_attr_->rename_output(old_name, new_name);
  }

Y
Yang Yang(Tony) 已提交
907 908 909
  need_update_ = true;
}

Y
Yu Yang 已提交
910 911
void OpDesc::RenameInput(const std::string &old_name,
                         const std::string &new_name) {
Y
Yang Yang(Tony) 已提交
912 913 914
  for (auto &input : inputs_) {
    std::replace(input.second.begin(), input.second.end(), old_name, new_name);
  }
Y
Yancey1989 已提交
915 916 917

  auto it = attrs_.find(framework::OpProtoAndCheckerMaker::OpRoleVarAttrName());
  if (it != attrs_.end()) {
R
Ruibiao Chen 已提交
918
    auto &op_vars = PADDLE_GET(std::vector<std::string>, it->second);
Y
Yancey1989 已提交
919 920 921
    std::replace(op_vars.begin(), op_vars.end(), old_name, new_name);
  }

922 923 924 925
  if (dist_attr_) {
    dist_attr_->rename_input(old_name, new_name);
  }

Y
Yang Yang(Tony) 已提交
926 927 928
  need_update_ = true;
}

929
struct SetAttrDescVisitor {
930 931
  explicit SetAttrDescVisitor(proto::OpDesc::Attr *attr) : attr_(attr) {}
  mutable proto::OpDesc::Attr *attr_;
Y
Yu Yang 已提交
932 933
  void operator()(int v) const { attr_->set_i(v); }
  void operator()(float v) const { attr_->set_f(v); }
934
  void operator()(double v) const { attr_->set_float64(v); }
Y
Yu Yang 已提交
935
  void operator()(const std::string &v) const { attr_->set_s(v); }
936 937 938 939 940
  void operator()(const paddle::experimental::Scalar &v) const {
    auto *s = new proto::Scalar;
    *s = make_scalar_proto(v);
    attr_->set_allocated_scalar(s);
  }
Q
QI JUN 已提交
941 942 943 944 945 946 947

  // Please refer to https://github.com/PaddlePaddle/Paddle/issues/7162
  template <class T,
            class = typename std::enable_if<std::is_same<bool, T>::value>::type>
  void operator()(T b) const {
    attr_->set_b(b);
  }
Y
Yu Yang 已提交
948 949 950 951 952 953 954 955 956 957 958 959 960

  void operator()(const std::vector<int> &v) const {
    VectorToRepeated(v, attr_->mutable_ints());
  }
  void operator()(const std::vector<float> &v) const {
    VectorToRepeated(v, attr_->mutable_floats());
  }
  void operator()(const std::vector<std::string> &v) const {
    VectorToRepeated(v, attr_->mutable_strings());
  }
  void operator()(const std::vector<bool> &v) const {
    VectorToRepeated(v, attr_->mutable_bools());
  }
961 962 963 964 965 966 967 968 969 970 971 972 973

  void operator()(const std::vector<VarDesc *> &v) const {
    std::vector<std::string> var_names;
    for (auto var : v) {
      var_names.emplace_back(var->Name());
    }
    VectorToRepeated(var_names, attr_->mutable_vars_name());
  }

  void operator()(const VarDesc *desc) const {
    attr_->set_var_name(desc->Name());
  }

974 975 976
  void operator()(const std::vector<BlockDesc *> &v) const {
    std::vector<int> blocks_idx;
    for (auto blk : v) {
T
tangwei12 已提交
977
      blocks_idx.push_back(blk->ID());
978 979 980
    }
    VectorToRepeated(blocks_idx, attr_->mutable_blocks_idx());
  }
T
tangwei12 已提交
981 982 983

  void operator()(BlockDesc *desc) const { attr_->set_block_idx(desc->ID()); }

984
  void operator()(int64_t v) const { attr_->set_l(v); }
T
tangwei12 已提交
985 986 987 988 989

  void operator()(const std::vector<int64_t> &v) const {
    VectorToRepeated(v, attr_->mutable_longs());
  }

990 991 992 993
  void operator()(const std::vector<double> &v) const {
    VectorToRepeated(v, attr_->mutable_float64s());
  }

994 995 996 997 998 999 1000 1001 1002
  void operator()(const std::vector<paddle::experimental::Scalar> &v) const {
    std::vector<proto::Scalar> scalars;
    scalars.reserve(v.size());
    for (const auto &item : v) {
      scalars.emplace_back(make_scalar_proto(item));
    }
    VectorToRepeated(scalars, attr_->mutable_scalars());
  }

R
Ruibiao Chen 已提交
1003
  void operator()(paddle::blank) const {
1004 1005 1006 1007
    PADDLE_THROW(platform::errors::Unavailable(
        "Unsupported calling method of SetAttrDescVisitor object for "
        "`boosst::blank` type."));
  }
Y
Yu Yang 已提交
1008 1009
};

Y
Yu Yang 已提交
1010
void OpDesc::Flush() {
1011
  VLOG(8) << "Flush "
L
Leo Chen 已提交
1012
          << " " << Type() << " " << need_update_;
F
fengjiayi 已提交
1013
  if (need_update_) {
1014
    this->desc_.mutable_inputs()->Clear();
F
fengjiayi 已提交
1015
    for (auto &ipt : inputs_) {
1016
      auto *input = desc_.add_inputs();
F
fengjiayi 已提交
1017 1018 1019 1020
      input->set_parameter(ipt.first);
      VectorToRepeated(ipt.second, input->mutable_arguments());
    }

1021
    this->desc_.mutable_outputs()->Clear();
F
fengjiayi 已提交
1022
    for (auto &opt : outputs_) {
1023
      auto *output = desc_.add_outputs();
F
fengjiayi 已提交
1024 1025 1026 1027
      output->set_parameter(opt.first);
      VectorToRepeated(opt.second, output->mutable_arguments());
    }

1028
    this->desc_.mutable_attrs()->Clear();
1029 1030 1031 1032 1033 1034 1035 1036 1037
    auto set_attr_desc = [this](const std::string &attr_name,
                                const Attribute &attr) -> void {
      auto *attr_desc = desc_.add_attrs();
      attr_desc->set_name(attr_name);
      attr_desc->set_type(static_cast<proto::AttrType>(attr.index() - 1));
      SetAttrDescVisitor visitor(attr_desc);
      paddle::visit(visitor, attr);
    };

L
Leo Chen 已提交
1038 1039
    std::vector<std::pair<std::string, Attribute>> sorted_attrs{attrs_.begin(),
                                                                attrs_.end()};
1040 1041 1042 1043

    std::vector<std::pair<std::string, Attribute>> sorted_runtime_attrs{
        runtime_attrs_.begin(), runtime_attrs_.end()};

L
Leo Chen 已提交
1044 1045 1046 1047 1048
    std::sort(
        sorted_attrs.begin(),
        sorted_attrs.end(),
        [](std::pair<std::string, Attribute> a,
           std::pair<std::string, Attribute> b) { return a.first < b.first; });
1049 1050 1051 1052 1053
    std::sort(
        sorted_runtime_attrs.begin(),
        sorted_runtime_attrs.end(),
        [](std::pair<std::string, Attribute> a,
           std::pair<std::string, Attribute> b) { return a.first < b.first; });
1054

Z
zyfncg 已提交
1055
    for (auto &attr : sorted_runtime_attrs) {
1056 1057
      set_attr_desc(attr.first, attr.second);
    }
Z
zyfncg 已提交
1058
    for (auto &attr : sorted_attrs) {
1059
      set_attr_desc(attr.first, attr.second);
F
fengjiayi 已提交
1060 1061 1062 1063 1064
    }

    need_update_ = false;
  }
}
Y
Yu Yang 已提交
1065

Y
Yu Yang 已提交
1066
void OpDesc::CheckAttrs() {
1067 1068
  PADDLE_ENFORCE_EQ(Type().empty(),
                    false,
1069 1070
                    platform::errors::PreconditionNotMet(
                        "CheckAttrs() can not be called before type is set."));
Y
Yu Yang 已提交
1071 1072 1073 1074 1075 1076
  auto *checker = OpInfoMap::Instance().Get(Type()).Checker();
  if (checker == nullptr) {
    // checker is not configured. That operator could be generated by Paddle,
    // not by users.
    return;
  }
1077
  VLOG(10) << "begin to check attribute of " << Type();
T
tangwei12 已提交
1078
  checker->Check(&attrs_);
1079 1080 1081 1082 1083 1084 1085
  const auto &extra_attr_checkers =
      operators::ExtraInfoUtils::Instance().GetExtraAttrsChecker(Type());
  if (!extra_attr_checkers.empty()) {
    for (const auto &extra_checker : extra_attr_checkers) {
      extra_checker(&runtime_attrs_, false);
    }
  }
F
fengjiayi 已提交
1086 1087
}

H
hong 已提交
1088
void OpDesc::InferShape(const BlockDesc &block) {
1089 1090
  try {
    VLOG(3) << "CompileTime infer shape on " << Type();
H
hong 已提交
1091
    auto &op_info = OpInfoMap::Instance().Get(this->Type());
1092
    this->CheckAttrs();
H
hong 已提交
1093
    auto &infer_shape = op_info.infer_shape_;
1094
    PADDLE_ENFORCE_EQ(
1095 1096
        static_cast<bool>(infer_shape),
        true,
1097 1098
        platform::errors::NotFound(
            "Operator %s's infer_shape is not registered.", this->Type()));
1099 1100 1101 1102 1103
    CompileTimeInferShapeContext ctx(*this, block);
    if (VLOG_IS_ON(10)) {
      std::ostringstream sout;
      auto inames = this->InputArgumentNames();
      sout << " From [";
1104 1105
      std::copy(inames.begin(),
                inames.end(),
1106 1107 1108
                std::ostream_iterator<std::string>(sout, ", "));
      sout << "] to [";
      auto onames = this->OutputArgumentNames();
1109 1110
      std::copy(onames.begin(),
                onames.end(),
1111 1112 1113 1114 1115
                std::ostream_iterator<std::string>(sout, ", "));
      sout << "]";
      VLOG(10) << sout.str();
    }
    infer_shape(&ctx);
1116
  } catch (platform::EnforceNotMet &exception) {
1117
    framework::AppendErrorOpHint(Type(), &exception);
1118 1119 1120 1121
    throw std::move(exception);
  } catch (...) {
    std::rethrow_exception(std::current_exception());
  }
Y
Yu Yang 已提交
1122 1123
}

Y
Yu Yang 已提交
1124
void OpDesc::InferVarType(BlockDesc *block) const {
X
Xin Pan 已提交
1125 1126
  // There are a few places that var type can be set.
  // When VarDesc is created, default set to LOD_TENSOR.
T
tianshuo78520a 已提交
1127
  // When output variable is created, default is default set to LOD_TENSOR.
X
Xin Pan 已提交
1128 1129
  // We limit here to be the only place that operator defines its customized
  // var type inference. Hence, we don't do any "default" setting here.
Y
Yu Yang 已提交
1130 1131
  auto &info = OpInfoMap::Instance().Get(this->Type());
  if (info.infer_var_type_) {
M
minqiyang 已提交
1132
    InferVarTypeContext context(this, block);
M
minqiyang 已提交
1133
    info.infer_var_type_(&context);
Y
Yu Yang 已提交
1134 1135 1136
  }
}

1137 1138 1139 1140
const OperatorDistAttr *OpDesc::DistAttr() const {
  return dist_attr_ ? dist_attr_.get() : nullptr;
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
OperatorDistAttr *OpDesc::MutableDistAttr() {
  if (dist_attr_) {
    return dist_attr_.get();
  } else {
    dist_attr_.reset(new OperatorDistAttr(*this));
    return dist_attr_.get();
  }
}

void OpDesc::SetDistAttr(const OperatorDistAttr &dist_attr) {
  MutableDistAttr();
  *dist_attr_ = dist_attr;
}

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
void OpDesc::UpdateVarAttr(const std::string &name, const Attribute &attr) {
  auto attr_type = static_cast<proto::AttrType>(attr.index() - 1);
  auto type = GetAttrType(name, true);
  if (type == proto::AttrType::VAR) {
    PADDLE_ENFORCE_EQ(
        attr_type,
        type,
        platform::errors::InvalidArgument(
            "Required attr.type == proto::AttrType::VAR, but received %s",
            attr_type));
    auto *var_desc = PADDLE_GET_CONST(VarDesc *, attr);
    VLOG(3) << "Update AttrVar " << name << " with " << var_desc->Name();
    attrs_[name] = FindVarRecursive(var_desc->Name());
  } else if (type == proto::AttrType::VARS) {
    PADDLE_ENFORCE_EQ(
        attr_type,
        type,
        platform::errors::InvalidArgument(
            "Required attr.type == proto::AttrType::VARS, but received %s",
            attr_type));
    auto vars_desc = PADDLE_GET_CONST(std::vector<VarDesc *>, attr);
    std::vector<VarDesc *> new_val;
    for (auto &var_desc : vars_desc) {
      VLOG(3) << "Update AttrVars " << name << " with " << var_desc->Name();
      new_val.emplace_back(FindVarRecursive(var_desc->Name()));
    }
    attrs_[name] = std::move(new_val);
  }
}

VarDesc *OpDesc::FindVarRecursive(const std::string &name) {
  auto *cur_block = block_;
  while (cur_block != nullptr && cur_block->ID() >= 0) {
    auto *var = block_->FindVar(name);
    if (var != nullptr) {
      return var;
    }
    cur_block = cur_block->ParentBlock();
  }
  PADDLE_THROW(platform::errors::NotFound(
      "Not found Var(%s) from Block(%d) back into global Block.",
      name,
      block_->ID()));
}

1200
CompileTimeInferShapeContext::CompileTimeInferShapeContext(
Y
Yu Yang 已提交
1201
    const OpDesc &op, const BlockDesc &block)
1202 1203 1204
    : op_(op), block_(block) {}

bool CompileTimeInferShapeContext::HasInput(const std::string &name) const {
1205 1206
  auto inputs = op_.Inputs(/*with_attr_var=*/true);
  if (inputs.find(name) == inputs.end()) {
1207 1208
    return false;
  }
1209 1210
  const std::vector<std::string> &input_names =
      op_.Input(name, /*with_attr_var=*/true);
1211 1212 1213 1214
  auto length = input_names.size();
  if (length == 0) {
    return false;
  }
1215
  PADDLE_ENFORCE_EQ(
1216 1217
      length,
      1UL,
1218 1219
      platform::errors::InvalidArgument("Input(%s) should have only one value, "
                                        "but it has %d values now.",
1220 1221
                                        name,
                                        length));
1222 1223 1224 1225
  return block_.HasVarRecursive(input_names[0]);
}

bool CompileTimeInferShapeContext::HasOutput(const std::string &name) const {
1226 1227 1228
  if (op_.Outputs().find(name) == op_.Outputs().end()) {
    return false;
  }
1229 1230 1231 1232 1233
  const std::vector<std::string> &output_names = op_.Output(name);
  auto length = output_names.size();
  if (length == 0) {
    return false;
  }
1234 1235
  PADDLE_ENFORCE_EQ(length,
                    1UL,
1236 1237 1238
                    platform::errors::InvalidArgument(
                        "Output(%s) should have only one value, "
                        "but it has %d values now.",
1239 1240
                        name,
                        length));
1241 1242 1243
  return block_.HasVarRecursive(output_names[0]);
}

1244
bool CompileTimeInferShapeContext::HasAttr(const std::string &name) const {
1245
  return op_.HasAttr(name, /*with_attr_var=*/false);
1246 1247
}

1248
bool CompileTimeInferShapeContext::HasInputs(const std::string &name) const {
1249 1250
  auto inputs = op_.Inputs(/*with_attr_var=*/true);
  if (inputs.find(name) == inputs.end()) {
1251 1252
    return false;
  }
1253 1254
  const std::vector<std::string> &input_names =
      op_.Input(name, /*with_attr_var=*/true);
1255 1256 1257 1258 1259 1260 1261 1262 1263
  if (input_names.empty()) {
    return false;
  }
  for (auto &input : input_names) {
    if (!block_.HasVarRecursive(input)) return false;
  }
  return true;
}

1264 1265
bool CompileTimeInferShapeContext::HasOutputs(const std::string &name,
                                              bool allow_null) const {
1266 1267 1268
  if (op_.Outputs().find(name) == op_.Outputs().end()) {
    return false;
  }
1269 1270 1271 1272
  const std::vector<std::string> &output_names = op_.Output(name);
  if (output_names.empty()) {
    return false;
  }
Y
YuanRisheng 已提交
1273
  if (!allow_null) {
1274 1275 1276
    for (auto &output : output_names) {
      if (!block_.HasVarRecursive(output)) return false;
    }
1277
  }
Y
YuanRisheng 已提交
1278
  return true;
1279 1280 1281
}

AttrReader CompileTimeInferShapeContext::Attrs() const {
1282
  return AttrReader(op_.GetAttrMap(), op_.GetRuntimeAttrMap());
1283 1284
}

H
hong 已提交
1285
std::vector<std::string> CompileTimeInferShapeContext::Inputs(
1286
    const std::string &name) const {
1287
  return op_.Input(name, /*with_attr_var=*/true);
1288 1289
}

H
hong 已提交
1290
std::vector<std::string> CompileTimeInferShapeContext::Outputs(
1291 1292 1293 1294
    const std::string &name) const {
  return op_.Output(name);
}

F
fengjiayi 已提交
1295
std::vector<DDim> CompileTimeInferShapeContext::GetRepeatedDims(
F
fengjiayi 已提交
1296 1297
    const std::string &name) const {
  auto var = block_.FindVarRecursive(name);
1298 1299
  PADDLE_ENFORCE_NOT_NULL(
      var, platform::errors::NotFound("Variable %s is not found.", name));
F
fengjiayi 已提交
1300 1301 1302 1303
  std::vector<DDim> res;
  try {
    auto shapes = var->GetShapes();
    for (const auto &s : shapes) {
1304
      res.push_back(phi::make_ddim(s));
F
fengjiayi 已提交
1305 1306
    }
  } catch (...) {
M
minqiyang 已提交
1307
    VLOG(5) << "GetRepeatedDim of variable " << name << " error.";
F
fengjiayi 已提交
1308 1309 1310
    std::rethrow_exception(std::current_exception());
  }
  return res;
1311 1312 1313 1314
}

void CompileTimeInferShapeContext::SetDim(const std::string &name,
                                          const DDim &dim) {
F
fengjiayi 已提交
1315
  block_.FindVarRecursive(name)->SetShape(vectorize(dim));
1316
}
F
fengjiayi 已提交
1317 1318 1319 1320

void CompileTimeInferShapeContext::SetRepeatedDims(
    const std::string &name, const std::vector<DDim> &dims) {
  auto var = block_.FindVarRecursive(name);
1321 1322
  PADDLE_ENFORCE_NOT_NULL(
      var, platform::errors::NotFound("Variable %s is not found.", name));
F
fengjiayi 已提交
1323
  std::vector<std::vector<int64_t>> dim_vec(dims.size());
1324
  std::transform(dims.begin(), dims.end(), dim_vec.begin(), phi::vectorize<>);
F
fengjiayi 已提交
1325
  var->SetShapes(dim_vec);
1326
}
F
fengjiayi 已提交
1327

1328 1329
bool CompileTimeInferShapeContext::IsRuntime() const { return false; }

1330 1331
bool CompileTimeInferShapeContext::IsRunMKLDNNKernel() const { return false; }

1332
proto::VarType::Type CompileTimeInferShapeContext::GetVarType(
1333 1334 1335
    const std::string &name) const {
  return block_.FindVarRecursive(name)->GetType();
}
1336

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
std::vector<std::string> AttrVarNames(const Attribute &attr) {
  std::vector<std::string> vars_name;
  if (IsAttrVar(attr)) {
    vars_name.emplace_back(PADDLE_GET_CONST(VarDesc *, attr)->Name());
  } else if (IsAttrVars(attr)) {
    for (auto &iter : PADDLE_GET_CONST(std::vector<VarDesc *>, attr)) {
      vars_name.emplace_back(iter->Name());
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported Attribute value type `%s` for AttrVarNames",
        platform::demangle(attr.type().name())));
  }
  return vars_name;
}

F
fengjiayi 已提交
1353 1354
}  // namespace framework
}  // namespace paddle