op_desc.cc 43.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
F
fengjiayi 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/op_desc.h"
16

17
#include <string>
18

19
#include "glog/logging.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/block_desc.h"
21
#include "paddle/fluid/framework/op_call_stack.h"
Y
yuyang18 已提交
22
#include "paddle/fluid/framework/op_proto_maker.h"
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/shape_inference.h"
M
minqiyang 已提交
25
#include "paddle/fluid/framework/var_type_inference.h"
26
#include "paddle/fluid/operators/ops_extra_info.h"
R
Ruibiao Chen 已提交
27
#include "paddle/utils/blank.h"
Y
Yu Yang 已提交
28

F
fengjiayi 已提交
29 30 31
namespace paddle {
namespace framework {

32 33
class CompileTimeInferShapeContext : public InferShapeContext {
 public:
Y
Yu Yang 已提交
34
  CompileTimeInferShapeContext(const OpDesc &op, const BlockDesc &block);
35 36 37 38 39

  bool HasInput(const std::string &name) const override;

  bool HasOutput(const std::string &name) const override;

40 41
  bool HasAttr(const std::string &name) const override;

42 43
  bool HasInputs(const std::string &name) const override;

44 45
  bool HasOutputs(const std::string &name,
                  bool allow_null = false) const override;
46 47 48

  AttrReader Attrs() const override;

H
hong 已提交
49
  std::vector<std::string> Inputs(const std::string &name) const override;
50

H
hong 已提交
51
  std::vector<std::string> Outputs(const std::string &name) const override;
52

53 54 55
  std::string GetInputNameByIdx(size_t idx) const override {
    auto &op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
56 57
    PADDLE_ENFORCE_LT(idx,
                      op_proto->inputs().size(),
58 59 60
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
61 62 63
                          op_.Type(),
                          idx,
                          op_proto->inputs().size()));
64 65 66 67 68 69 70
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto &op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
71 72
        idx,
        op_proto->outputs().size(),
73 74 75
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
76 77 78
            op_.Type(),
            idx,
            op_proto->outputs().size()));
79 80 81
    return op_proto->outputs()[idx].name();
  }

82 83 84
  void ShareDim(const std::string &in,
                const std::string &out,
                size_t i = 0,
85
                size_t j = 0) override {
86 87
    PADDLE_ENFORCE_LT(i,
                      Inputs(in).size(),
88 89 90
                      platform::errors::InvalidArgument(
                          "The input variable index is out of range, expected "
                          "index less than %d, but received index is %d.",
91 92 93 94
                          Inputs(in).size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      Outputs(out).size(),
95 96 97
                      platform::errors::InvalidArgument(
                          "The output variable index is out of range, expected "
                          "index less than %d, but received index is %d.",
98 99
                          Outputs(out).size(),
                          j));
100

H
hong 已提交
101 102
    std::string input_n = Inputs(in)[i];
    std::string output_n = Outputs(out)[j];
103

104 105
    PADDLE_ENFORCE_NE(input_n,
                      framework::kEmptyVarName,
106 107
                      platform::errors::InvalidArgument(
                          "The input variable %s[%d] is empty.", in, i));
108 109
    PADDLE_ENFORCE_NE(output_n,
                      framework::kEmptyVarName,
110 111
                      platform::errors::InvalidArgument(
                          "The output variable %s[%d] is empty.", out, j));
112 113 114 115

    auto *in_var = block_.FindVarRecursive(input_n);
    auto *out_var = block_.FindVarRecursive(output_n);

116
    PADDLE_ENFORCE_EQ(
117 118
        in_var->GetType(),
        out_var->GetType(),
119 120 121
        platform::errors::InvalidArgument(
            "The type of input %s and output %s do not match. The input type "
            "is %s, output type is %s.",
122 123 124
            input_n,
            output_n,
            DataTypeToString(in_var->GetType()),
125
            DataTypeToString(out_var->GetType())));
126 127 128 129

    SetDim(output_n, GetDim(input_n));
  }

H
hong 已提交
130 131 132 133 134 135
  void ShareAllLoD(const std::string &in,
                   const std::string &out) const override {
    auto &in_var_names = op_.Input(in);
    auto &out_var_names = op_.Output(out);

    PADDLE_ENFORCE_EQ(
136 137
        in_var_names.size(),
        out_var_names.size(),
H
hong 已提交
138
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
139
            "Op [%s]:  Input var number should be equal with output var number",
H
hong 已提交
140 141 142 143 144 145 146 147 148 149 150
            op_.Type()));

    for (size_t i = 0; i < in_var_names.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      auto *in_var = block_.FindVarRecursive(in_var_names[i]);
      auto *out_var = block_.FindVarRecursive(out_var_names[i]);
      if (in_var->GetType() != proto::VarType::LOD_TENSOR &&
          in_var->GetType() != proto::VarType::LOD_TENSOR_ARRAY) {
151 152
        VLOG(3) << "input " << in
                << " is not phi::DenseTensor or LoDTensorArray.";
H
hong 已提交
153 154 155 156 157 158
        return;
      }
      out_var->SetLoDLevel(in_var->GetLoDLevel());
    }
  }

159 160 161
  void ShareLoD(const std::string &in,
                const std::string &out,
                size_t i = 0,
Q
Qiao Longfei 已提交
162
                size_t j = 0) const override {
163 164
    PADDLE_ENFORCE_LT(i,
                      Inputs(in).size(),
165 166 167
                      platform::errors::InvalidArgument(
                          "The input variable index is out of range, expected "
                          "index less than %d, but received index is %d.",
168 169 170 171
                          Inputs(in).size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      Outputs(out).size(),
172 173 174
                      platform::errors::InvalidArgument(
                          "The output variable index is out of range, expected "
                          "index less than %d, but received index is %d.",
175 176 177 178
                          Outputs(out).size(),
                          j));
    PADDLE_ENFORCE_NE(Inputs(in)[i],
                      framework::kEmptyVarName,
179 180
                      platform::errors::InvalidArgument(
                          "The input variable %s[%d] is empty.", in, i));
181 182
    PADDLE_ENFORCE_NE(Outputs(out)[j],
                      framework::kEmptyVarName,
183 184
                      platform::errors::InvalidArgument(
                          "The output variable %s[%d] is empty.", out, j));
Q
Qiao Longfei 已提交
185 186
    auto *in_var = block_.FindVarRecursive(Inputs(in)[i]);
    auto *out_var = block_.FindVarRecursive(Outputs(out)[j]);
C
chengduo 已提交
187 188
    if (in_var->GetType() != proto::VarType::LOD_TENSOR &&
        in_var->GetType() != proto::VarType::LOD_TENSOR_ARRAY) {
189 190
      VLOG(3) << "input " << in
              << " is not phi::DenseTensor or LoDTensorArray.";
X
fix  
Xin Pan 已提交
191 192
      return;
    }
193
    out_var->SetLoDLevel(in_var->GetLoDLevel());
Q
Qiao Longfei 已提交
194
  }
D
dzhwinter 已提交
195

196
  int32_t GetLoDLevel(const std::string &in, size_t i = 0) const override {
197 198
    PADDLE_ENFORCE_LT(i,
                      Inputs(in).size(),
199 200 201
                      platform::errors::InvalidArgument(
                          "The input variable index is out of range, input "
                          "variable %s of operator %s only has %d elements.",
202 203 204 205 206
                          in,
                          op_.Type(),
                          Inputs(in).size()));
    PADDLE_ENFORCE_NE(Inputs(in)[i],
                      framework::kEmptyVarName,
207 208
                      platform::errors::InvalidArgument(
                          "The input variable %s[%d] of operator %s is empty.",
209 210 211
                          in,
                          i,
                          op_.Type()));
C
chengduo 已提交
212
    auto *in_var = block_.FindVarRecursive(Inputs(in)[i]);
213
    PADDLE_ENFORCE_NOT_NULL(
214 215 216 217 218 219
        in_var,
        platform::errors::NotFound(
            "The input variable %s[%d] of operator %s is not found.",
            in,
            i,
            op_.Type()));
220
    return in_var->GetLoDLevel();
C
chengduo 已提交
221 222
  }

223 224
  void SetLoDLevel(const std::string &out,
                   int32_t lod_level,
225
                   size_t j = 0) const override {
226 227
    PADDLE_ENFORCE_LT(j,
                      Outputs(out).size(),
228 229 230
                      platform::errors::InvalidArgument(
                          "The output variable index is out of range, output "
                          "variable %s of operator %s only has %d elements.",
231 232 233 234 235
                          out,
                          op_.Type(),
                          Outputs(out).size()));
    PADDLE_ENFORCE_NE(Outputs(out)[j],
                      framework::kEmptyVarName,
236 237
                      platform::errors::InvalidArgument(
                          "The output variable %s[%d] of operator %s is empty.",
238 239 240
                          out,
                          j,
                          op_.Type()));
241
    auto *out_var = block_.FindVarRecursive(Outputs(out)[j]);
242
    PADDLE_ENFORCE_NOT_NULL(
243 244 245 246 247 248
        out_var,
        platform::errors::NotFound(
            "The output variable %s[%d] of operator %s is not found.",
            out,
            j,
            op_.Type()));
249 250 251
    if (lod_level >= 0) {
      out_var->SetLoDLevel(lod_level);
    }
252 253
  }

C
Chen Weihang 已提交
254
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
255
  GetInputVarPtrs(const std::string &name) const override {
256
    const std::vector<std::string> arg_names = Inputs(name);
C
Chen Weihang 已提交
257
    paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
258
    res.reserve(arg_names.size());
259 260 261
    std::transform(arg_names.begin(),
                   arg_names.end(),
                   std::back_inserter(res),
262 263 264 265 266 267
                   [this](const std::string &name) {
                     return block_.FindVarRecursive(name);
                   });
    return res;
  }

C
Chen Weihang 已提交
268
  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
269
  GetOutputVarPtrs(const std::string &name) const override {
270
    const std::vector<std::string> arg_names = Outputs(name);
C
Chen Weihang 已提交
271
    paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
272
    res.reserve(arg_names.size());
273 274 275
    std::transform(arg_names.begin(),
                   arg_names.end(),
                   std::back_inserter(res),
276 277 278 279 280 281
                   [this](const std::string &name) {
                     return block_.FindVarRecursive(name);
                   });
    return res;
  }

X
Xin Pan 已提交
282 283
  DDim GetInputDim(const std::string &name) const override {
    const std::vector<std::string> &arg_names = Inputs(name);
284 285
    PADDLE_ENFORCE_EQ(arg_names.size(),
                      1UL,
286 287 288
                      platform::errors::InvalidArgument(
                          "The input(%s) should hold only one element, but now "
                          "it holds %d elements.",
289 290
                          name,
                          arg_names.size()));
X
Xin Pan 已提交
291 292 293 294 295 296 297 298
    return this->GetDim(arg_names[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string &name) const override {
    const std::vector<std::string> &arg_names = Inputs(name);
    return GetDims(arg_names);
  }

299 300
  bool IsRuntime() const override;

301 302
  bool IsRunMKLDNNKernel() const override;

303 304 305 306
  proto::VarType::Type GetInputVarType(const std::string &name) const override {
    return GetVarType(Inputs(name).at(0));
  }

X
Xin Pan 已提交
307 308 309 310 311 312 313 314 315 316
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string &name) const override {
    return GetVarTypes(Inputs(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string &name) const override {
    return GetVarTypes(Outputs(name));
  }

X
Xin Pan 已提交
317
  void SetOutputDim(const std::string &name, const DDim &dim) override {
H
hong 已提交
318
    auto arg_names = Outputs(name);
319 320
    PADDLE_ENFORCE_EQ(arg_names.size(),
                      1UL,
321 322 323
                      platform::errors::InvalidArgument(
                          "The iutput(%s) should hold only one element, but "
                          "now it holds %d elements.",
324 325
                          name,
                          arg_names.size()));
X
Xin Pan 已提交
326 327 328 329 330
    SetDim(arg_names[0], dim);
  }

  void SetOutputsDim(const std::string &name,
                     const std::vector<DDim> &dims) override {
H
hong 已提交
331
    auto names = Outputs(name);
X
Xin Pan 已提交
332 333 334
    SetDims(names, dims);
  }

335 336 337 338 339 340 341 342
  const phi::ArgumentMappingFn *GetPhiArgumentMappingFn() const override {
    return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
  }

  const phi::KernelSignature *GetPhiDefaultKernelSignature() const override {
    return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
  }

343
 protected:
X
Xin Pan 已提交
344 345 346 347 348
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<std::string> &names) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(names.size());
    std::transform(
349 350 351 352 353
        names.begin(),
        names.end(),
        retv.begin(),
        std::bind(std::mem_fn(&CompileTimeInferShapeContext::GetVarType),
                  this,
X
Xin Pan 已提交
354 355 356 357 358
                  std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(const std::string &name) const;
Q
Qiao Longfei 已提交
359

X
Xin Pan 已提交
360 361
  DDim GetDim(const std::string &name) const {
    auto var = block_.FindVarRecursive(name);
362 363
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::NotFound("Variable %s is not found.", name));
X
Xin Pan 已提交
364 365 366
    DDim res;
    try {
      auto shape = var->GetShape();
367
      res = phi::make_ddim(shape);
X
Xin Pan 已提交
368 369 370 371 372 373 374 375 376 377 378
    } catch (...) {
      VLOG(5) << "GetDim of variable " << name << " error";
      std::rethrow_exception(std::current_exception());
    }
    return res;
  }

  std::vector<DDim> GetDims(const std::vector<std::string> &names) const {
    std::vector<DDim> ret;
    ret.reserve(names.size());
    std::transform(
379 380 381
        names.begin(),
        names.end(),
        std::back_inserter(ret),
X
Xin Pan 已提交
382 383 384
        [this](const std::string &name) { return this->GetDim(name); });
    return ret;
  }
385

X
Xin Pan 已提交
386 387 388 389 390
  void SetDim(const std::string &name, const DDim &dim);

  void SetDims(const std::vector<std::string> &names,
               const std::vector<DDim> &dims) {
    size_t length = names.size();
391 392
    PADDLE_ENFORCE_EQ(length,
                      dims.size(),
393 394 395
                      platform::errors::InvalidArgument(
                          "The input variables number(%d) and input dimensions "
                          "number(%d) do not match.",
396 397
                          length,
                          dims.size()));
X
Xin Pan 已提交
398 399 400 401 402 403 404
    for (size_t i = 0; i < length; ++i) {
      if (names[i] == framework::kEmptyVarName) {
        continue;
      }
      SetDim(names[i], dims[i]);
    }
  }
405

F
fengjiayi 已提交
406 407 408 409
  std::vector<DDim> GetRepeatedDims(const std::string &name) const override;

  void SetRepeatedDims(const std::string &name,
                       const std::vector<DDim> &dims) override;
F
fengjiayi 已提交
410

Y
Yu Yang 已提交
411 412
  const OpDesc &op_;
  const BlockDesc &block_;
413 414
};

415 416 417 418 419 420 421
static void InitRuntimeAttributeMapByOpExtraInfo(const std::string &op_type,
                                                 AttributeMap *runtime_attrs) {
  const auto &extra_attr_map =
      operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
  runtime_attrs->insert(extra_attr_map.begin(), extra_attr_map.end());
}

422 423 424 425
OpDesc::OpDesc(const std::string &type,
               const VariableNameMap &inputs,
               const VariableNameMap &outputs,
               const AttributeMap &attrs) {
426
  desc_.set_type(type);
F
fengjiayi 已提交
427 428 429
  inputs_ = inputs;
  outputs_ = outputs;
  attrs_ = attrs;
F
Fix bug  
fengjiayi 已提交
430
  need_update_ = true;
L
liuwei1031 已提交
431
  block_ = nullptr;
432
  InitRuntimeAttributeMapByOpExtraInfo(type, &runtime_attrs_);
F
fengjiayi 已提交
433 434
}

435 436 437 438 439 440
OpDesc::OpDesc(const OpDesc &other) {
  CopyFrom(other);
  block_ = other.block_;
  need_update_ = true;
}

X
Xin Pan 已提交
441 442 443 444
OpDesc::OpDesc(const OpDesc &other, BlockDesc *block) {
  CopyFrom(other);
  block_ = block;
  need_update_ = true;
445 446 447
  for (auto &iter : attrs_) {
    UpdateVarAttr(iter.first, iter.second);
  }
X
Xin Pan 已提交
448 449
}

450
void OpDesc::CopyFrom(const OpDesc &op_desc) {
F
fengjiayi 已提交
451 452 453 454
  desc_.set_type(op_desc.Type());
  inputs_ = op_desc.inputs_;
  outputs_ = op_desc.outputs_;
  attrs_ = op_desc.attrs_;
455 456
  runtime_attrs_ = op_desc.runtime_attrs_;
  // The record of original_id_ is only for auto parallel.
457
  original_id_ = op_desc.original_id_;
458 459 460
  if (op_desc.dist_attr_) {
    dist_attr_.reset(new OperatorDistAttr(*op_desc.dist_attr_));
  }
F
fengjiayi 已提交
461 462 463
  need_update_ = true;
}

F
fengjiayi 已提交
464
OpDesc::OpDesc(const proto::OpDesc &desc, BlockDesc *block)
465 466 467 468
    : desc_(desc), need_update_(false) {
  // restore inputs_
  int input_size = desc_.inputs_size();
  for (int i = 0; i < input_size; ++i) {
469
    const proto::OpDesc::Var &var = desc_.inputs(i);
470 471 472 473 474 475 476 477 478 479
    std::vector<std::string> &args = inputs_[var.parameter()];
    int argu_size = var.arguments_size();
    args.reserve(argu_size);
    for (int j = 0; j < argu_size; ++j) {
      args.push_back(var.arguments(j));
    }
  }
  // restore outputs_
  int output_size = desc_.outputs_size();
  for (int i = 0; i < output_size; ++i) {
480
    const proto::OpDesc::Var &var = desc_.outputs(i);
481 482 483 484 485 486 487 488
    std::vector<std::string> &args = outputs_[var.parameter()];
    int argu_size = var.arguments_size();
    args.reserve(argu_size);
    for (int j = 0; j < argu_size; ++j) {
      args.push_back(var.arguments(j));
    }
  }
  // restore attrs_
489
  InitRuntimeAttributeMapByOpExtraInfo(desc.type(), &runtime_attrs_);
490
  for (const proto::OpDesc::Attr &attr : desc_.attrs()) {
491
    const std::string &attr_name = attr.name();
492
    // The sub_block referred to by the BLOCK attr hasn't been added
493 494 495 496 497 498 499
    // to ProgramDesc class yet, we skip setting BLOCK/BLOCKS/VAR/VARS attr
    // here.
    auto attr_type = attr.type();
    if (attr_type != proto::AttrType::BLOCK &&
        attr_type != proto::AttrType::BLOCKS &&
        attr_type != proto::AttrType::VAR &&
        attr_type != proto::AttrType::VARS) {
500 501 502 503 504 505
      auto iter = runtime_attrs_.find(attr_name);
      if (iter == runtime_attrs_.end()) {
        attrs_[attr_name] = GetAttrValue(attr);
      } else {
        iter->second = GetAttrValue(attr);
      }
506
    }
507
  }
508
  this->block_ = block;
509 510
}

511 512 513 514 515 516 517 518 519
// Explicitly implement the assign operator, Since the added
// unique_ptr data member does not have the implicit assign operator.
OpDesc &OpDesc::operator=(const OpDesc &other) {
  CopyFrom(other);
  block_ = other.block_;
  need_update_ = true;
  return *this;
}

Y
Yu Yang 已提交
520
proto::OpDesc *OpDesc::Proto() {
521
  Flush();
522
  return &desc_;
F
fengjiayi 已提交
523 524
}

Y
Yu Yang 已提交
525
const std::vector<std::string> &OpDesc::Input(const std::string &name) const {
F
fengjiayi 已提交
526
  auto it = inputs_.find(name);
527
  PADDLE_ENFORCE_NE(
528 529 530 531
      it,
      inputs_.end(),
      platform::errors::NotFound(
          "Input %s cannot be found in operator %s.", name, Type()));
F
fengjiayi 已提交
532 533 534
  return it->second;
}

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
std::vector<std::string> OpDesc::Input(const std::string &name,
                                       bool with_attr_var) const {
  // Attribute with VarDesc type will consider as Input
  if (with_attr_var) {
    auto it = attrs_.find(name);
    if (it != attrs_.end() && HasAttrVar(it->second))
      return AttrVarNames(it->second);
  }
  return this->Input(name);
}

VariableNameMap OpDesc::Inputs(bool with_attr_var) const {
  if (!with_attr_var) {
    return inputs_;
  }
  VariableNameMap res = inputs_;
  for (auto &attr : FilterAttrVar(attrs_)) {
    res[attr.first] = AttrVarNames(attr.second);
  }
  return res;
}

std::vector<std::string> OpDesc::InputArgumentNames(bool with_attr_var) const {
F
Update  
fengjiayi 已提交
558
  std::vector<std::string> retv;
559
  for (auto &ipt : this->Inputs(with_attr_var)) {
F
Update  
fengjiayi 已提交
560 561 562 563 564
    retv.insert(retv.end(), ipt.second.begin(), ipt.second.end());
  }
  return retv;
}

Y
Yu Yang 已提交
565 566
void OpDesc::SetInput(const std::string &param_name,
                      const std::vector<std::string> &args) {
F
fengjiayi 已提交
567 568 569 570
  need_update_ = true;
  inputs_[param_name] = args;
}

Y
Yu Yang 已提交
571
const std::vector<std::string> &OpDesc::Output(const std::string &name) const {
F
fengjiayi 已提交
572
  auto it = outputs_.find(name);
573
  PADDLE_ENFORCE_NE(
574 575 576 577
      it,
      outputs_.end(),
      platform::errors::NotFound(
          "Output %s cannot be found in operator %s.", name, Type()));
F
fengjiayi 已提交
578 579 580
  return it->second;
}

581 582 583 584
bool OpDesc::HasOutput(const std::string &name) const {
  return outputs_.find(name) != outputs_.end();
}

585 586 587 588
bool OpDesc::HasInput(const std::string &name) const {
  return inputs_.find(name) != inputs_.end();
}

Y
Yu Yang 已提交
589
std::vector<std::string> OpDesc::OutputArgumentNames() const {
F
Update  
fengjiayi 已提交
590 591 592 593 594 595 596
  std::vector<std::string> retv;
  for (auto &ipt : this->outputs_) {
    retv.insert(retv.end(), ipt.second.begin(), ipt.second.end());
  }
  return retv;
}

Y
Yu Yang 已提交
597 598
void OpDesc::SetOutput(const std::string &param_name,
                       const std::vector<std::string> &args) {
F
fengjiayi 已提交
599 600 601 602
  need_update_ = true;
  this->outputs_[param_name] = args;
}

603 604 605 606 607
void OpDesc::RemoveOutput(const std::string &name) {
  outputs_.erase(name);
  need_update_ = true;
}

608 609 610 611 612
void OpDesc::RemoveInput(const std::string &name) {
  inputs_.erase(name);
  need_update_ = true;
}

613 614 615 616 617 618 619 620 621 622
bool OpDesc::HasProtoAttr(const std::string &name) const {
  auto &op_info = OpInfoMap::Instance();
  if (op_info.Has(desc_.type())) {
    auto op_info_ptr = op_info.Get(desc_.type());
    if (op_info_ptr.HasOpProtoAndChecker()) {
      const proto::OpProto &proto = op_info_ptr.Proto();
      for (int i = 0; i != proto.attrs_size(); ++i) {
        const proto::OpProto::Attr &attr = proto.attrs(i);
        if (attr.name() == name) {
          return true;
L
luotao1 已提交
623 624
        }
      }
L
luotao1 已提交
625 626 627 628 629
    }
  }
  return false;
}

630 631 632 633
proto::AttrType OpDesc::GetAttrType(const std::string &name,
                                    bool with_attr_var) const {
  auto attr = this->GetAttr(name, with_attr_var);
  return static_cast<proto::AttrType>(attr.index() - 1);
F
fengjiayi 已提交
634 635
}

636
std::vector<std::string> OpDesc::AttrNames(bool with_attr_var) const {
F
fengjiayi 已提交
637 638 639
  std::vector<std::string> retv;
  retv.reserve(attrs_.size());
  for (auto &attr : attrs_) {
640
    if (!with_attr_var && HasAttrVar(attr.second)) continue;
F
fengjiayi 已提交
641 642 643 644 645
    retv.push_back(attr.first);
  }
  return retv;
}

646 647
bool OpDesc::HasAttr(const std::string &name, bool with_attr_var) const {
  auto iter = attrs_.find(name);
648 649 650 651 652 653 654
  bool is_found = true;
  if (iter == attrs_.end()) {
    iter = runtime_attrs_.find(name);
    if (iter == runtime_attrs_.end()) {
      is_found = false;
    }
  }
655 656 657 658 659 660
  if (with_attr_var) {
    return is_found;
  }
  return is_found && !HasAttrVar(iter->second);
}

661 662
void OpDesc::RemoveAttr(const std::string &name) {
  attrs_.erase(name);
663
  runtime_attrs_.erase(name);
664 665 666
  need_update_ = true;
}

Y
Yu Yang 已提交
667
void OpDesc::SetAttr(const std::string &name, const Attribute &v) {
668 669
  AttributeMap *attrs_ptr = &(this->attrs_);

670 671
  bool is_runtime_attr = false;

672 673 674 675
  const auto &extra_attr_map =
      operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(Type());
  auto extra_attr_iter = extra_attr_map.find(name);
  if (extra_attr_iter != extra_attr_map.end()) {
676
    is_runtime_attr = true;
677
    attrs_ptr = &(this->runtime_attrs_);
678 679 680 681 682
    // When an attribute is found in both attrs and runtime_attrs, it must
    // be a runtime attribute, so it's value in attrs should be removed.
    if (this->attrs_.find(name) != this->attrs_.end()) {
      this->attrs_.erase(name);
    }
683
  }
M
minqiyang 已提交
684 685 686
  // NOTICE(minqiyang): pybind11 will take the empty list in python as
  // the std::vector<int> type in C++; so we have to change the attr's type
  // here if we meet this issue
R
Ruibiao Chen 已提交
687
  proto::AttrType attr_type = static_cast<proto::AttrType>(v.index() - 1);
M
minqiyang 已提交
688
  if (attr_type == proto::AttrType::INTS &&
R
Ruibiao Chen 已提交
689
      PADDLE_GET_CONST(std::vector<int>, v).size() == 0u) {
M
minqiyang 已提交
690
    // Find current attr via attr name and set the correct attribute value
691 692 693 694 695
    auto attr_type =
        is_runtime_attr
            ? static_cast<proto::AttrType>(extra_attr_iter->second.index() - 1)
            : GetProtoAttr(name).type();
    switch (attr_type) {
M
minqiyang 已提交
696
      case proto::AttrType::BOOLEANS: {
M
minqiyang 已提交
697 698
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from INTS to BOOLEANS";
699
        attrs_ptr->operator[](name) = std::vector<bool>();
M
minqiyang 已提交
700 701 702
        break;
      }
      case proto::AttrType::INTS: {
M
minqiyang 已提交
703 704
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from INTS to INTS";
705
        attrs_ptr->operator[](name) = std::vector<int>();
M
minqiyang 已提交
706 707
        break;
      }
708
      case proto::AttrType::LONGS: {
M
minqiyang 已提交
709 710
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from LONGS to LONGS";
711
        attrs_ptr->operator[](name) = std::vector<int64_t>();
712 713
        break;
      }
M
minqiyang 已提交
714
      case proto::AttrType::FLOATS: {
M
minqiyang 已提交
715 716
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from INTS to FLOATS";
717
        attrs_ptr->operator[](name) = std::vector<float>();
M
minqiyang 已提交
718 719
        break;
      }
720 721 722 723 724 725
      case proto::AttrType::FLOAT64S: {
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from INTS to FLOAT64S";
        this->attrs_[name] = std::vector<double>();
        break;
      }
M
minqiyang 已提交
726
      case proto::AttrType::STRINGS: {
M
minqiyang 已提交
727 728
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from INTS to STRINGS";
729
        attrs_ptr->operator[](name) = std::vector<std::string>();
M
minqiyang 已提交
730 731 732
        break;
      }
      case proto::AttrType::BLOCKS: {
M
minqiyang 已提交
733 734
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from INTS to BLOCKS";
735
        attrs_ptr->operator[](name) = std::vector<BlockDesc *>();
M
minqiyang 已提交
736 737
        return;
      }
M
minqiyang 已提交
738
      default:
739
        PADDLE_THROW(platform::errors::Unimplemented(
740
            "Unsupported attribute type (code %d).", attr_type));
M
minqiyang 已提交
741
    }
M
minqiyang 已提交
742 743
    need_update_ = true;
    return;
M
minqiyang 已提交
744 745
  }

746
  // In order to set bool attr properly
747 748 749 750 751 752 753 754 755 756 757 758 759 760
  if (attr_type == proto::AttrType::INT) {
    if (HasProtoAttr(name) &&
        GetProtoAttr(name).type() == proto::AttrType::BOOLEAN) {
      attrs_ptr->operator[](name) = static_cast<bool>(PADDLE_GET_CONST(int, v));
      need_update_ = true;
      return;
    }
    if (extra_attr_iter != extra_attr_map.end() &&
        static_cast<proto::AttrType>(extra_attr_iter->second.index() - 1) ==
            proto::AttrType::BOOLEAN) {
      attrs_ptr->operator[](name) = static_cast<bool>(PADDLE_GET_CONST(int, v));
      need_update_ = true;
      return;
    }
761 762
  }

763
  attrs_ptr->operator[](name) = v;
F
fengjiayi 已提交
764 765 766
  need_update_ = true;
}

767 768 769 770 771 772 773 774 775 776
void OpDesc::SetVarAttr(const std::string &name, VarDesc *var) {
  this->attrs_[name] = var;
  need_update_ = true;
}

void OpDesc::SetVarsAttr(const std::string &name, std::vector<VarDesc *> vars) {
  this->attrs_[name] = vars;
  need_update_ = true;
}

A
Abhinav Arora 已提交
777 778
void OpDesc::SetBlockAttr(const std::string &name, BlockDesc *block) {
  this->attrs_[name] = block;
F
fengjiayi 已提交
779
  need_update_ = true;
F
fengjiayi 已提交
780 781
}

782 783 784 785 786 787
void OpDesc::SetBlocksAttr(const std::string &name,
                           std::vector<BlockDesc *> blocks) {
  this->attrs_[name] = blocks;
  need_update_ = true;
}

Y
Yu Yang 已提交
788
void OpDesc::SetAttrMap(
F
fengjiayi 已提交
789 790 791 792 793
    const std::unordered_map<std::string, Attribute> &attr_map) {
  attrs_ = attr_map;
  need_update_ = true;
}

794 795 796 797 798 799
void OpDesc::SetRuntimeAttrMap(
    const std::unordered_map<std::string, Attribute> &attr_map) {
  runtime_attrs_ = attr_map;
  need_update_ = true;
}

800
Attribute OpDesc::GetAttr(const std::string &name, bool with_attr_var) const {
F
fengjiayi 已提交
801
  auto it = attrs_.find(name);
802 803
  if (it == attrs_.end()) {
    it = runtime_attrs_.find(name);
804 805 806 807
    PADDLE_ENFORCE_NE(
        it,
        runtime_attrs_.end(),
        platform::errors::NotFound("Attribute %s is not found.", name));
808
  }
809 810 811 812
  if (!with_attr_var) {
    PADDLE_ENFORCE_EQ(
        HasAttrVar(it->second),
        false,
813 814 815 816 817
        platform::errors::NotFound(
            "Attribute %s with constant value is not found, but found it with "
            "Variable(s) type, which maybe not supported in some scenarios "
            "currently, such as TensorRT et.al",
            name));
818
  }
F
fengjiayi 已提交
819 820 821
  return it->second;
}

M
minqiyang 已提交
822 823 824
const proto::OpProto::Attr &OpDesc::GetProtoAttr(
    const std::string &name) const {
  const proto::OpProto &proto = OpInfoMap::Instance().Get(Type()).Proto();
M
minqiyang 已提交
825 826 827 828 829 830 831
  for (int i = 0; i != proto.attrs_size(); ++i) {
    const proto::OpProto::Attr &attr = proto.attrs(i);
    if (attr.name() == name) {
      return attr;
    }
  }

832 833
  PADDLE_THROW(platform::errors::NotFound(
      "Attribute %s is not found in proto %s.", name, proto.type()));
M
minqiyang 已提交
834 835
}

Y
yuyang18 已提交
836
Attribute OpDesc::GetNullableAttr(const std::string &name) const {
Y
Fix bug  
yuyang18 已提交
837 838 839 840
  auto it = attrs_.find(name);
  if (it != attrs_.end()) {
    return it->second;
  } else {
Y
yuyang18 已提交
841
    return Attribute();
Y
Fix bug  
yuyang18 已提交
842 843 844
  }
}

G
gongweibao 已提交
845 846
std::vector<int> OpDesc::GetBlocksAttrIds(const std::string &name) const {
  auto it = attrs_.find(name);
847
  PADDLE_ENFORCE_NE(
848 849
      it,
      attrs_.end(),
850 851
      platform::errors::NotFound(
          "Attribute `%s` is not found in operator `%s`.", name, desc_.type()));
R
Ruibiao Chen 已提交
852
  auto blocks = PADDLE_GET_CONST(std::vector<BlockDesc *>, it->second);
G
gongweibao 已提交
853 854 855 856 857 858 859 860 861 862

  std::vector<int> ids;
  for (auto n : blocks) {
    ids.push_back(n->ID());
  }

  return ids;
}

int OpDesc::GetBlockAttrId(const std::string &name) const {
F
fengjiayi 已提交
863
  auto it = attrs_.find(name);
864
  PADDLE_ENFORCE_NE(
865 866
      it,
      attrs_.end(),
867 868
      platform::errors::NotFound(
          "Attribute `%s` is not found in operator `%s`.", name, desc_.type()));
R
Ruibiao Chen 已提交
869
  return PADDLE_GET_CONST(BlockDesc *, it->second)->ID();
F
fengjiayi 已提交
870 871
}

Y
Yu Yang 已提交
872
const std::unordered_map<std::string, Attribute> &OpDesc::GetAttrMap() const {
F
fengjiayi 已提交
873 874 875
  return attrs_;
}

876 877
const AttributeMap &OpDesc::GetRuntimeAttrMap() const { return runtime_attrs_; }

Y
Yu Yang 已提交
878
void OpDesc::Rename(const std::string &old_name, const std::string &new_name) {
Y
Yancey1989 已提交
879 880
  RenameInput(old_name, new_name);
  RenameOutput(old_name, new_name);
F
fengjiayi 已提交
881 882 883
  need_update_ = true;
}

Y
Yu Yang 已提交
884 885
void OpDesc::RenameOutput(const std::string &old_name,
                          const std::string &new_name) {
Y
Yang Yang(Tony) 已提交
886
  for (auto &output : outputs_) {
887 888
    std::replace(
        output.second.begin(), output.second.end(), old_name, new_name);
Y
Yang Yang(Tony) 已提交
889
  }
Y
yuyang18 已提交
890 891 892

  auto it = attrs_.find(framework::OpProtoAndCheckerMaker::OpRoleVarAttrName());
  if (it != attrs_.end()) {
R
Ruibiao Chen 已提交
893
    auto &op_vars = PADDLE_GET(std::vector<std::string>, it->second);
Y
yuyang18 已提交
894 895 896
    std::replace(op_vars.begin(), op_vars.end(), old_name, new_name);
  }

897 898 899 900
  if (dist_attr_) {
    dist_attr_->rename_output(old_name, new_name);
  }

Y
Yang Yang(Tony) 已提交
901 902 903
  need_update_ = true;
}

Y
Yu Yang 已提交
904 905
void OpDesc::RenameInput(const std::string &old_name,
                         const std::string &new_name) {
Y
Yang Yang(Tony) 已提交
906 907 908
  for (auto &input : inputs_) {
    std::replace(input.second.begin(), input.second.end(), old_name, new_name);
  }
Y
Yancey1989 已提交
909 910 911

  auto it = attrs_.find(framework::OpProtoAndCheckerMaker::OpRoleVarAttrName());
  if (it != attrs_.end()) {
R
Ruibiao Chen 已提交
912
    auto &op_vars = PADDLE_GET(std::vector<std::string>, it->second);
Y
Yancey1989 已提交
913 914 915
    std::replace(op_vars.begin(), op_vars.end(), old_name, new_name);
  }

916 917 918 919
  if (dist_attr_) {
    dist_attr_->rename_input(old_name, new_name);
  }

Y
Yang Yang(Tony) 已提交
920 921 922
  need_update_ = true;
}

923
struct SetAttrDescVisitor {
924 925
  explicit SetAttrDescVisitor(proto::OpDesc::Attr *attr) : attr_(attr) {}
  mutable proto::OpDesc::Attr *attr_;
Y
Yu Yang 已提交
926 927
  void operator()(int v) const { attr_->set_i(v); }
  void operator()(float v) const { attr_->set_f(v); }
928
  void operator()(double v) const { attr_->set_float64(v); }
Y
Yu Yang 已提交
929
  void operator()(const std::string &v) const { attr_->set_s(v); }
Q
QI JUN 已提交
930 931 932 933 934 935 936

  // Please refer to https://github.com/PaddlePaddle/Paddle/issues/7162
  template <class T,
            class = typename std::enable_if<std::is_same<bool, T>::value>::type>
  void operator()(T b) const {
    attr_->set_b(b);
  }
Y
Yu Yang 已提交
937 938 939 940 941 942 943 944 945 946 947 948 949

  void operator()(const std::vector<int> &v) const {
    VectorToRepeated(v, attr_->mutable_ints());
  }
  void operator()(const std::vector<float> &v) const {
    VectorToRepeated(v, attr_->mutable_floats());
  }
  void operator()(const std::vector<std::string> &v) const {
    VectorToRepeated(v, attr_->mutable_strings());
  }
  void operator()(const std::vector<bool> &v) const {
    VectorToRepeated(v, attr_->mutable_bools());
  }
950 951 952 953 954 955 956 957 958 959 960 961 962

  void operator()(const std::vector<VarDesc *> &v) const {
    std::vector<std::string> var_names;
    for (auto var : v) {
      var_names.emplace_back(var->Name());
    }
    VectorToRepeated(var_names, attr_->mutable_vars_name());
  }

  void operator()(const VarDesc *desc) const {
    attr_->set_var_name(desc->Name());
  }

963 964 965
  void operator()(const std::vector<BlockDesc *> &v) const {
    std::vector<int> blocks_idx;
    for (auto blk : v) {
T
tangwei12 已提交
966
      blocks_idx.push_back(blk->ID());
967 968 969
    }
    VectorToRepeated(blocks_idx, attr_->mutable_blocks_idx());
  }
T
tangwei12 已提交
970 971 972

  void operator()(BlockDesc *desc) const { attr_->set_block_idx(desc->ID()); }

973
  void operator()(int64_t v) const { attr_->set_l(v); }
T
tangwei12 已提交
974 975 976 977 978

  void operator()(const std::vector<int64_t> &v) const {
    VectorToRepeated(v, attr_->mutable_longs());
  }

979 980 981 982
  void operator()(const std::vector<double> &v) const {
    VectorToRepeated(v, attr_->mutable_float64s());
  }

R
Ruibiao Chen 已提交
983
  void operator()(paddle::blank) const {
984 985 986 987
    PADDLE_THROW(platform::errors::Unavailable(
        "Unsupported calling method of SetAttrDescVisitor object for "
        "`boosst::blank` type."));
  }
Y
Yu Yang 已提交
988 989
};

Y
Yu Yang 已提交
990
void OpDesc::Flush() {
991
  VLOG(8) << "Flush "
L
Leo Chen 已提交
992
          << " " << Type() << " " << need_update_;
F
fengjiayi 已提交
993
  if (need_update_) {
994
    this->desc_.mutable_inputs()->Clear();
F
fengjiayi 已提交
995
    for (auto &ipt : inputs_) {
996
      auto *input = desc_.add_inputs();
F
fengjiayi 已提交
997 998 999 1000
      input->set_parameter(ipt.first);
      VectorToRepeated(ipt.second, input->mutable_arguments());
    }

1001
    this->desc_.mutable_outputs()->Clear();
F
fengjiayi 已提交
1002
    for (auto &opt : outputs_) {
1003
      auto *output = desc_.add_outputs();
F
fengjiayi 已提交
1004 1005 1006 1007
      output->set_parameter(opt.first);
      VectorToRepeated(opt.second, output->mutable_arguments());
    }

1008
    this->desc_.mutable_attrs()->Clear();
1009 1010 1011 1012 1013 1014 1015 1016 1017
    auto set_attr_desc = [this](const std::string &attr_name,
                                const Attribute &attr) -> void {
      auto *attr_desc = desc_.add_attrs();
      attr_desc->set_name(attr_name);
      attr_desc->set_type(static_cast<proto::AttrType>(attr.index() - 1));
      SetAttrDescVisitor visitor(attr_desc);
      paddle::visit(visitor, attr);
    };

L
Leo Chen 已提交
1018 1019
    std::vector<std::pair<std::string, Attribute>> sorted_attrs{attrs_.begin(),
                                                                attrs_.end()};
1020 1021 1022 1023

    std::vector<std::pair<std::string, Attribute>> sorted_runtime_attrs{
        runtime_attrs_.begin(), runtime_attrs_.end()};

L
Leo Chen 已提交
1024 1025 1026 1027 1028
    std::sort(
        sorted_attrs.begin(),
        sorted_attrs.end(),
        [](std::pair<std::string, Attribute> a,
           std::pair<std::string, Attribute> b) { return a.first < b.first; });
1029 1030 1031 1032 1033
    std::sort(
        sorted_runtime_attrs.begin(),
        sorted_runtime_attrs.end(),
        [](std::pair<std::string, Attribute> a,
           std::pair<std::string, Attribute> b) { return a.first < b.first; });
1034

Z
zyfncg 已提交
1035
    for (auto &attr : sorted_runtime_attrs) {
1036 1037
      set_attr_desc(attr.first, attr.second);
    }
Z
zyfncg 已提交
1038
    for (auto &attr : sorted_attrs) {
1039
      set_attr_desc(attr.first, attr.second);
F
fengjiayi 已提交
1040 1041 1042 1043 1044
    }

    need_update_ = false;
  }
}
Y
Yu Yang 已提交
1045

Y
Yu Yang 已提交
1046
void OpDesc::CheckAttrs() {
1047 1048
  PADDLE_ENFORCE_EQ(Type().empty(),
                    false,
1049 1050
                    platform::errors::PreconditionNotMet(
                        "CheckAttrs() can not be called before type is set."));
Y
Yu Yang 已提交
1051 1052 1053 1054 1055 1056
  auto *checker = OpInfoMap::Instance().Get(Type()).Checker();
  if (checker == nullptr) {
    // checker is not configured. That operator could be generated by Paddle,
    // not by users.
    return;
  }
1057
  VLOG(10) << "begin to check attribute of " << Type();
T
tangwei12 已提交
1058
  checker->Check(&attrs_);
1059 1060 1061 1062 1063 1064 1065
  const auto &extra_attr_checkers =
      operators::ExtraInfoUtils::Instance().GetExtraAttrsChecker(Type());
  if (!extra_attr_checkers.empty()) {
    for (const auto &extra_checker : extra_attr_checkers) {
      extra_checker(&runtime_attrs_, false);
    }
  }
F
fengjiayi 已提交
1066 1067
}

H
hong 已提交
1068
void OpDesc::InferShape(const BlockDesc &block) {
1069 1070
  try {
    VLOG(3) << "CompileTime infer shape on " << Type();
H
hong 已提交
1071
    auto &op_info = OpInfoMap::Instance().Get(this->Type());
1072
    this->CheckAttrs();
H
hong 已提交
1073
    auto &infer_shape = op_info.infer_shape_;
1074
    PADDLE_ENFORCE_EQ(
1075 1076
        static_cast<bool>(infer_shape),
        true,
1077 1078
        platform::errors::NotFound(
            "Operator %s's infer_shape is not registered.", this->Type()));
1079 1080 1081 1082 1083
    CompileTimeInferShapeContext ctx(*this, block);
    if (VLOG_IS_ON(10)) {
      std::ostringstream sout;
      auto inames = this->InputArgumentNames();
      sout << " From [";
1084 1085
      std::copy(inames.begin(),
                inames.end(),
1086 1087 1088
                std::ostream_iterator<std::string>(sout, ", "));
      sout << "] to [";
      auto onames = this->OutputArgumentNames();
1089 1090
      std::copy(onames.begin(),
                onames.end(),
1091 1092 1093 1094 1095
                std::ostream_iterator<std::string>(sout, ", "));
      sout << "]";
      VLOG(10) << sout.str();
    }
    infer_shape(&ctx);
1096
  } catch (platform::EnforceNotMet &exception) {
1097
    framework::AppendErrorOpHint(Type(), &exception);
1098 1099 1100 1101
    throw std::move(exception);
  } catch (...) {
    std::rethrow_exception(std::current_exception());
  }
Y
Yu Yang 已提交
1102 1103
}

Y
Yu Yang 已提交
1104
void OpDesc::InferVarType(BlockDesc *block) const {
X
Xin Pan 已提交
1105 1106
  // There are a few places that var type can be set.
  // When VarDesc is created, default set to LOD_TENSOR.
T
tianshuo78520a 已提交
1107
  // When output variable is created, default is default set to LOD_TENSOR.
X
Xin Pan 已提交
1108 1109
  // We limit here to be the only place that operator defines its customized
  // var type inference. Hence, we don't do any "default" setting here.
Y
Yu Yang 已提交
1110 1111
  auto &info = OpInfoMap::Instance().Get(this->Type());
  if (info.infer_var_type_) {
M
minqiyang 已提交
1112
    InferVarTypeContext context(this, block);
M
minqiyang 已提交
1113
    info.infer_var_type_(&context);
Y
Yu Yang 已提交
1114 1115 1116
  }
}

1117 1118 1119 1120
const OperatorDistAttr *OpDesc::DistAttr() const {
  return dist_attr_ ? dist_attr_.get() : nullptr;
}

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
OperatorDistAttr *OpDesc::MutableDistAttr() {
  if (dist_attr_) {
    return dist_attr_.get();
  } else {
    dist_attr_.reset(new OperatorDistAttr(*this));
    return dist_attr_.get();
  }
}

void OpDesc::SetDistAttr(const OperatorDistAttr &dist_attr) {
  MutableDistAttr();
  *dist_attr_ = dist_attr;
}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
void OpDesc::UpdateVarAttr(const std::string &name, const Attribute &attr) {
  auto attr_type = static_cast<proto::AttrType>(attr.index() - 1);
  auto type = GetAttrType(name, true);
  if (type == proto::AttrType::VAR) {
    PADDLE_ENFORCE_EQ(
        attr_type,
        type,
        platform::errors::InvalidArgument(
            "Required attr.type == proto::AttrType::VAR, but received %s",
            attr_type));
    auto *var_desc = PADDLE_GET_CONST(VarDesc *, attr);
    VLOG(3) << "Update AttrVar " << name << " with " << var_desc->Name();
    attrs_[name] = FindVarRecursive(var_desc->Name());
  } else if (type == proto::AttrType::VARS) {
    PADDLE_ENFORCE_EQ(
        attr_type,
        type,
        platform::errors::InvalidArgument(
            "Required attr.type == proto::AttrType::VARS, but received %s",
            attr_type));
    auto vars_desc = PADDLE_GET_CONST(std::vector<VarDesc *>, attr);
    std::vector<VarDesc *> new_val;
    for (auto &var_desc : vars_desc) {
      VLOG(3) << "Update AttrVars " << name << " with " << var_desc->Name();
      new_val.emplace_back(FindVarRecursive(var_desc->Name()));
    }
    attrs_[name] = std::move(new_val);
  }
}

VarDesc *OpDesc::FindVarRecursive(const std::string &name) {
  auto *cur_block = block_;
  while (cur_block != nullptr && cur_block->ID() >= 0) {
    auto *var = block_->FindVar(name);
    if (var != nullptr) {
      return var;
    }
    cur_block = cur_block->ParentBlock();
  }
  PADDLE_THROW(platform::errors::NotFound(
      "Not found Var(%s) from Block(%d) back into global Block.",
      name,
      block_->ID()));
}

1180
CompileTimeInferShapeContext::CompileTimeInferShapeContext(
Y
Yu Yang 已提交
1181
    const OpDesc &op, const BlockDesc &block)
1182 1183 1184
    : op_(op), block_(block) {}

bool CompileTimeInferShapeContext::HasInput(const std::string &name) const {
1185 1186
  auto inputs = op_.Inputs(/*with_attr_var=*/true);
  if (inputs.find(name) == inputs.end()) {
1187 1188
    return false;
  }
1189 1190
  const std::vector<std::string> &input_names =
      op_.Input(name, /*with_attr_var=*/true);
1191 1192 1193 1194
  auto length = input_names.size();
  if (length == 0) {
    return false;
  }
1195
  PADDLE_ENFORCE_EQ(
1196 1197
      length,
      1UL,
1198 1199
      platform::errors::InvalidArgument("Input(%s) should have only one value, "
                                        "but it has %d values now.",
1200 1201
                                        name,
                                        length));
1202 1203 1204 1205
  return block_.HasVarRecursive(input_names[0]);
}

bool CompileTimeInferShapeContext::HasOutput(const std::string &name) const {
1206 1207 1208
  if (op_.Outputs().find(name) == op_.Outputs().end()) {
    return false;
  }
1209 1210 1211 1212 1213
  const std::vector<std::string> &output_names = op_.Output(name);
  auto length = output_names.size();
  if (length == 0) {
    return false;
  }
1214 1215
  PADDLE_ENFORCE_EQ(length,
                    1UL,
1216 1217 1218
                    platform::errors::InvalidArgument(
                        "Output(%s) should have only one value, "
                        "but it has %d values now.",
1219 1220
                        name,
                        length));
1221 1222 1223
  return block_.HasVarRecursive(output_names[0]);
}

1224
bool CompileTimeInferShapeContext::HasAttr(const std::string &name) const {
1225
  return op_.HasAttr(name, /*with_attr_var=*/false);
1226 1227
}

1228
bool CompileTimeInferShapeContext::HasInputs(const std::string &name) const {
1229 1230
  auto inputs = op_.Inputs(/*with_attr_var=*/true);
  if (inputs.find(name) == inputs.end()) {
1231 1232
    return false;
  }
1233 1234
  const std::vector<std::string> &input_names =
      op_.Input(name, /*with_attr_var=*/true);
1235 1236 1237 1238 1239 1240 1241 1242 1243
  if (input_names.empty()) {
    return false;
  }
  for (auto &input : input_names) {
    if (!block_.HasVarRecursive(input)) return false;
  }
  return true;
}

1244 1245
bool CompileTimeInferShapeContext::HasOutputs(const std::string &name,
                                              bool allow_null) const {
1246 1247 1248
  if (op_.Outputs().find(name) == op_.Outputs().end()) {
    return false;
  }
1249 1250 1251 1252
  const std::vector<std::string> &output_names = op_.Output(name);
  if (output_names.empty()) {
    return false;
  }
Y
YuanRisheng 已提交
1253
  if (!allow_null) {
1254 1255 1256
    for (auto &output : output_names) {
      if (!block_.HasVarRecursive(output)) return false;
    }
1257
  }
Y
YuanRisheng 已提交
1258
  return true;
1259 1260 1261
}

AttrReader CompileTimeInferShapeContext::Attrs() const {
1262
  return AttrReader(op_.GetAttrMap(), op_.GetRuntimeAttrMap());
1263 1264
}

H
hong 已提交
1265
std::vector<std::string> CompileTimeInferShapeContext::Inputs(
1266
    const std::string &name) const {
1267
  return op_.Input(name, /*with_attr_var=*/true);
1268 1269
}

H
hong 已提交
1270
std::vector<std::string> CompileTimeInferShapeContext::Outputs(
1271 1272 1273 1274
    const std::string &name) const {
  return op_.Output(name);
}

F
fengjiayi 已提交
1275
std::vector<DDim> CompileTimeInferShapeContext::GetRepeatedDims(
F
fengjiayi 已提交
1276 1277
    const std::string &name) const {
  auto var = block_.FindVarRecursive(name);
1278 1279
  PADDLE_ENFORCE_NOT_NULL(
      var, platform::errors::NotFound("Variable %s is not found.", name));
F
fengjiayi 已提交
1280 1281 1282 1283
  std::vector<DDim> res;
  try {
    auto shapes = var->GetShapes();
    for (const auto &s : shapes) {
1284
      res.push_back(phi::make_ddim(s));
F
fengjiayi 已提交
1285 1286
    }
  } catch (...) {
M
minqiyang 已提交
1287
    VLOG(5) << "GetRepeatedDim of variable " << name << " error.";
F
fengjiayi 已提交
1288 1289 1290
    std::rethrow_exception(std::current_exception());
  }
  return res;
1291 1292 1293 1294
}

void CompileTimeInferShapeContext::SetDim(const std::string &name,
                                          const DDim &dim) {
F
fengjiayi 已提交
1295
  block_.FindVarRecursive(name)->SetShape(vectorize(dim));
1296
}
F
fengjiayi 已提交
1297 1298 1299 1300

void CompileTimeInferShapeContext::SetRepeatedDims(
    const std::string &name, const std::vector<DDim> &dims) {
  auto var = block_.FindVarRecursive(name);
1301 1302
  PADDLE_ENFORCE_NOT_NULL(
      var, platform::errors::NotFound("Variable %s is not found.", name));
F
fengjiayi 已提交
1303
  std::vector<std::vector<int64_t>> dim_vec(dims.size());
1304
  std::transform(dims.begin(), dims.end(), dim_vec.begin(), phi::vectorize<>);
F
fengjiayi 已提交
1305
  var->SetShapes(dim_vec);
1306
}
F
fengjiayi 已提交
1307

1308 1309
bool CompileTimeInferShapeContext::IsRuntime() const { return false; }

1310 1311
bool CompileTimeInferShapeContext::IsRunMKLDNNKernel() const { return false; }

1312
proto::VarType::Type CompileTimeInferShapeContext::GetVarType(
1313 1314 1315
    const std::string &name) const {
  return block_.FindVarRecursive(name)->GetType();
}
1316

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
std::vector<std::string> AttrVarNames(const Attribute &attr) {
  std::vector<std::string> vars_name;
  if (IsAttrVar(attr)) {
    vars_name.emplace_back(PADDLE_GET_CONST(VarDesc *, attr)->Name());
  } else if (IsAttrVars(attr)) {
    for (auto &iter : PADDLE_GET_CONST(std::vector<VarDesc *>, attr)) {
      vars_name.emplace_back(iter->Name());
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported Attribute value type `%s` for AttrVarNames",
        platform::demangle(attr.type().name())));
  }
  return vars_name;
}

F
fengjiayi 已提交
1333 1334
}  // namespace framework
}  // namespace paddle