test_activation_nn_grad.py 21.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16 17

import gradient_checker
18
import numpy as np
19
from decorator_helper import prog_scope
20

21
import paddle
22
import paddle.nn.functional as F
23 24
from paddle import fluid
from paddle.fluid import core
25 26


27 28 29 30 31 32
class TestSigmoidTripleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
G
GGBond8488 已提交
33
        x = paddle.static.data('x', shape, dtype=dtype)
34
        x.persistable = True
35
        y = F.sigmoid(x)
36 37
        x_arr = np.random.random(shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
38 39 40
        gradient_checker.triple_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
41 42

    def test_grad(self):
43
        paddle.enable_static()
44 45 46 47 48 49 50
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


51
class TestSigmoidDoubleGradCheck(unittest.TestCase):
52
    def sigmoid_wrapper(self, x):
53
        return F.sigmoid(x[0])
54

55 56 57 58 59
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
G
GGBond8488 已提交
60
        x = paddle.static.data('x', shape, dtype=dtype)
61
        x.persistable = True
62
        y = F.sigmoid(x)
63 64
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
65 66 67 68 69 70
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.sigmoid_wrapper, [x], y, x_init=x_arr, place=place
        )
71 72

    def test_grad(self):
73
        paddle.enable_static()
74 75 76 77 78 79 80
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


81
class TestTanhTripleGradCheck(unittest.TestCase):
82 83 84
    def tanh_wrapper(self, x):
        return paddle.tanh(x[0])

85 86 87 88 89
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
G
GGBond8488 已提交
90
        x = paddle.static.data('x', shape, dtype=dtype)
91
        x.persistable = True
92
        y = paddle.tanh(x)
93 94
        x_arr = np.random.random(shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
95 96 97
        from paddle.fluid import core

        core._set_prim_backward_enabled(True)
98 99 100 101 102 103
        gradient_checker.triple_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.tanh_wrapper, [x], y, x_init=x_arr, place=place
        )
104
        core._set_prim_backward_enabled(False)
105 106

    def test_grad(self):
107
        paddle.enable_static()
108 109 110 111 112 113 114
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


115
class TestTanhDoubleGradCheck(unittest.TestCase):
116 117 118
    def tanh_wrapper(self, x):
        return paddle.tanh(x[0])

119 120 121 122 123
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
G
GGBond8488 已提交
124
        x = paddle.static.data('x', shape, dtype=dtype)
125 126 127 128
        x.persistable = True
        y = paddle.tanh(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
129 130 131
        from paddle.fluid import core

        core._set_prim_backward_enabled(True)
132 133 134 135 136 137
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.tanh_wrapper, [x], y, x_init=x_arr, place=place
        )
138
        core._set_prim_backward_enabled(False)
139 140

    def test_grad(self):
141
        paddle.enable_static()
142 143 144 145 146 147 148
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


149 150 151 152 153 154 155 156 157
class TestAbsDoubleGradCheck(unittest.TestCase):
    def abs_wrapper(self, x):
        return paddle.abs(x[0])

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
G
GGBond8488 已提交
158
        x = paddle.static.data('x', shape, dtype=dtype)
159 160 161 162
        x.persistable = True
        y = paddle.abs(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
163 164 165 166 167 168
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.abs_wrapper, [x], y, x_init=x_arr, place=place
        )
169 170 171 172 173 174 175 176 177 178

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


179 180 181 182 183 184 185
class TestReluDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.005
        dtype = np.float64

G
GGBond8488 已提交
186
        x = paddle.static.data('x', shape, dtype)
187
        x.persistable = True
188
        y = F.relu(x)
189 190 191
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.02

192 193 194
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
195 196

    def test_grad(self):
197
        paddle.enable_static()
198 199 200 201 202 203 204 205
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestLeakyReluDoubleGradCheck(unittest.TestCase):
206 207 208
    def leaky_relu_wrapper(self, x):
        return paddle.nn.functional.leaky_relu(x[0], negative_slope=0.2)

209 210 211 212 213 214 215
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.005
        alpha = 0.2
        dtype = np.float64

G
GGBond8488 已提交
216
        x = paddle.static.data('x', shape, dtype)
217 218
        x.persistable = True

219
        y = paddle.nn.functional.leaky_relu(x, alpha)
220 221 222
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.02

223 224 225 226 227 228
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.leaky_relu_wrapper, [x], y, x_init=x_arr, place=place
        )
229 230

    def test_grad(self):
231
        paddle.enable_static()
232 233 234 235 236 237 238
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places = [fluid.CUDAPlace(0)]
        for p in places:
            self.func(p)


D
Double_V 已提交
239
class TestELUDoubleGradCheck(unittest.TestCase):
240 241 242
    def elu_wrapper(self, x):
        return paddle.nn.functional.elu(x[0], alpha=0.2)

D
Double_V 已提交
243 244
    @prog_scope()
    def func(self, place):
245
        shape = [2, 4, 4, 4]
D
Double_V 已提交
246
        eps = 1e-6
247
        alpha = 0.2
D
Double_V 已提交
248
        dtype = np.float64
249
        SEED = 0
D
Double_V 已提交
250

G
GGBond8488 已提交
251
        x = paddle.static.data('x', shape, dtype)
D
Double_V 已提交
252 253
        x.persistable = True

254
        y = paddle.nn.functional.elu(x, alpha=alpha)
255
        np.random.RandomState(SEED)
D
Double_V 已提交
256
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
257 258 259 260 261 262
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.elu_wrapper, [x], y, x_init=x_arr, place=place
        )
D
Double_V 已提交
263 264

    def test_grad(self):
265
        paddle.enable_static()
D
Double_V 已提交
266 267 268 269 270 271 272
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


273
class TestCELUDoubleGradCheck(unittest.TestCase):
274 275 276
    def celu_wrapper(self, x):
        return paddle.nn.functional.celu(x[0], alpha=0.2)

277 278 279 280 281 282 283 284
    @prog_scope()
    def func(self, place):
        shape = [2, 4, 4, 4]
        eps = 1e-6
        alpha = 0.2
        dtype = np.float64
        SEED = 0

G
GGBond8488 已提交
285
        x = paddle.static.data('x', shape, dtype)
286 287 288 289 290
        x.persistable = True

        y = F.celu(x, alpha=alpha)
        np.random.RandomState(SEED)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
291 292 293 294 295 296
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.celu_wrapper, [x], y, x_init=x_arr, place=place
        )
297 298

    def test_grad(self):
299
        paddle.enable_static()
300 301 302 303 304 305 306
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


W
will-jl944 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
class TestSoftplusDoubleGradCheck(unittest.TestCase):
    def softplus_wrapper(self, x):
        return F.softplus(x[0], beta=1, threshold=20)

    @prog_scope()
    def func(self, place):
        shape = [2, 4, 4, 4]
        eps = 1e-6
        beta = 1
        threshold = 20
        dtype = np.float64
        SEED = 0

        x = paddle.static.data('x', shape, dtype)
        x.persistable = True

        y = F.softplus(x, beta=beta, threshold=threshold)
        np.random.RandomState(SEED)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.softplus_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


342
class TestSqrtDoubleGradCheck(unittest.TestCase):
343 344 345
    def sqrt_wrapper(self, x):
        return paddle.sqrt(x[0])

346 347 348 349 350 351
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0001
        dtype = np.float64

G
GGBond8488 已提交
352
        x = paddle.static.data('x', shape, dtype)
353 354
        x.persistable = True

355
        y = paddle.sqrt(x)
356 357
        x_arr = np.random.uniform(0.1, 1, shape).astype(dtype)

358 359 360 361 362 363
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.sqrt_wrapper, [x], y, x_init=x_arr, place=place
        )
364 365

    def test_grad(self):
366
        paddle.enable_static()
367 368 369 370 371 372 373
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places = [fluid.CUDAPlace(0)]
        for p in places:
            self.func(p)


W
whs 已提交
374
class TestRsqrtDoubleGradCheck(unittest.TestCase):
375 376 377
    def rsqrt_wrapper(self, x):
        return paddle.rsqrt(x[0])

W
whs 已提交
378 379 380 381 382 383
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0001
        dtype = np.float64

G
GGBond8488 已提交
384
        x = paddle.static.data('x', shape, dtype)
W
whs 已提交
385 386
        x.persistable = True

387
        y = paddle.rsqrt(x)
W
whs 已提交
388 389
        x_arr = np.random.uniform(0.1, 1, shape).astype(dtype)

390 391 392 393 394 395
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.rsqrt_wrapper, [x], y, x_init=x_arr, place=place
        )
W
whs 已提交
396 397

    def test_grad(self):
398
        paddle.enable_static()
W
whs 已提交
399 400 401 402 403 404 405
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places = [fluid.CUDAPlace(0)]
        for p in places:
            self.func(p)


406
class TestSquareDoubleGradCheck(unittest.TestCase):
407 408 409
    def square_wrapper(self, x):
        return paddle.square(x[0])

410 411
    @prog_scope()
    def func(self, place):
C
co63oc 已提交
412
        # the shape of input variable should be clearly specified, not include -1.
413 414 415 416
        shape = [2, 3, 7, 9]
        eps = 0.005
        dtype = np.float64

G
GGBond8488 已提交
417
        x = paddle.static.data('x', shape, dtype)
418
        x.persistable = True
419
        y = paddle.square(x)
420 421
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

422 423 424 425 426 427
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.square_wrapper, [x], y, x_init=x_arr, place=place
        )
428 429

    def test_grad(self):
430
        paddle.enable_static()
431 432 433 434 435 436 437
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


438
class TestLogDoubleGradCheck(unittest.TestCase):
439 440 441
    def log_wrapper(self, x):
        return paddle.log(x[0])

442 443 444 445 446 447
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 1e-6
        dtype = np.float64

G
GGBond8488 已提交
448
        x = paddle.static.data('x', shape, dtype)
449
        x.persistable = True
450
        y = paddle.log(x)
451 452 453

        x_arr = np.random.uniform(0.1, 1, shape).astype(dtype)

454 455 456 457 458 459
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.log_wrapper, [x], y, x_init=x_arr, place=place
        )
460 461

    def test_grad(self):
462
        paddle.enable_static()
463 464 465 466 467 468 469
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


470 471 472 473 474 475 476 477 478
class TestSinDoubleGradCheck(unittest.TestCase):
    def sin_wrapper(self, x):
        return paddle.sin(x[0])

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
G
GGBond8488 已提交
479
        x = paddle.static.data('x', shape, dtype=dtype)
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
        x.persistable = True
        y = paddle.sin(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.sin_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


500 501 502 503 504 505 506 507 508
class TestCosDoubleGradCheck(unittest.TestCase):
    def cos_wrapper(self, x):
        return paddle.cos(x[0])

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
G
GGBond8488 已提交
509
        x = paddle.static.data('x', shape, dtype=dtype)
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
        x.persistable = True
        y = paddle.cos(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.cos_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


C
Charles-hit 已提交
530 531 532 533 534 535 536 537 538
class TestPowDoubleGradCheck1(unittest.TestCase):
    def pow_wrapper(self, x):
        return paddle.pow(x[0], 2)

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 1e-6
        dtype = np.float64
G
GGBond8488 已提交
539
        x = paddle.static.data('x', shape, dtype=dtype)
C
Charles-hit 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
        x.persistable = True
        y = paddle.pow(x, 2)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.pow_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestPowDoubleGradCheck2(unittest.TestCase):
    def pow_wrapper(self, x):
        return paddle.pow(x[0], 1)

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 1e-6
        dtype = np.float64
G
GGBond8488 已提交
568
        x = paddle.static.data('x', shape, dtype=dtype)
C
Charles-hit 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
        x.persistable = True
        y = paddle.pow(x, 1)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.pow_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


588 589 590 591 592 593 594 595 596
class TestSinTripleGradCheck(unittest.TestCase):
    def sin_wrapper(self, x):
        return paddle.sin(x[0])

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
G
GGBond8488 已提交
597
        x = paddle.static.data('x', shape, dtype=dtype)
598
        x.persistable = True
599
        y = paddle.sin(x)
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
        x_arr = np.random.random(shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
        gradient_checker.triple_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.sin_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


C
Charles-hit 已提交
618 619 620 621 622 623 624 625 626
class TestPowTripleGradCheck1(unittest.TestCase):
    def pow_wrapper(self, x):
        return paddle.pow(x[0], 1)

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 1e-6
        dtype = np.float64
G
GGBond8488 已提交
627
        x = paddle.static.data('x', shape, dtype=dtype)
C
Charles-hit 已提交
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
        x.persistable = True
        y = paddle.pow(x, 1)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        gradient_checker.triple_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.pow_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestPowTripleGradCheck2(unittest.TestCase):
    def pow_wrapper(self, x):
        return paddle.pow(x[0], 2)

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 1e-6
        dtype = np.float64
G
GGBond8488 已提交
656
        x = paddle.static.data('x', shape, dtype=dtype)
C
Charles-hit 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
        x.persistable = True
        y = paddle.pow(x, 2)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        gradient_checker.triple_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.pow_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestPowTripleGradCheck3(unittest.TestCase):
    def pow_wrapper(self, x):
        return paddle.pow(x[0], 4)

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 1e-6
        dtype = np.float64
G
GGBond8488 已提交
685
        x = paddle.static.data('x', shape, dtype=dtype)
C
Charles-hit 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
        x.persistable = True
        y = paddle.pow(x, 4)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        gradient_checker.triple_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.pow_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


705 706 707 708 709 710 711 712 713
class TestCosTripleGradCheck(unittest.TestCase):
    def cos_wrapper(self, x):
        return paddle.cos(x[0])

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
G
GGBond8488 已提交
714
        x = paddle.static.data('x', shape, dtype=dtype)
715
        x.persistable = True
716
        y = paddle.cos(x)
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
        x_arr = np.random.random(shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
        gradient_checker.triple_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.cos_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


735 736
if __name__ == "__main__":
    unittest.main()