test_activation_nn_grad.py 15.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np

import paddle.fluid as fluid
19
import paddle
20 21 22
import paddle.fluid.layers as layers
import paddle.fluid.core as core
import gradient_checker
23
import paddle.nn.functional as F
24 25 26 27

from decorator_helper import prog_scope


28 29 30 31 32 33 34 35 36 37 38
class TestSigmoidTripleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype=dtype)
        x.persistable = True
        y = layers.sigmoid(x)
        x_arr = np.random.random(shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
39 40 41
        gradient_checker.triple_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
42 43

    def test_grad(self):
44
        paddle.enable_static()
45 46 47 48 49 50 51
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


52
class TestSigmoidDoubleGradCheck(unittest.TestCase):
53 54 55
    def sigmoid_wrapper(self, x):
        return fluid.layers.sigmoid(x[0])

56 57 58 59 60 61 62 63 64 65
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype=dtype)
        x.persistable = True
        y = layers.sigmoid(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
66 67 68
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
69
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
70 71 72
        gradient_checker.double_grad_check_for_dygraph(
            self.sigmoid_wrapper, [x], y, x_init=x_arr, place=place
        )
73
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
74 75

    def test_grad(self):
76
        paddle.enable_static()
77 78 79 80 81 82 83
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


84
class TestTanhTripleGradCheck(unittest.TestCase):
85 86 87
    def tanh_wrapper(self, x):
        return paddle.tanh(x[0])

88 89 90 91 92 93 94 95 96 97
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype=dtype)
        x.persistable = True
        y = layers.tanh(x)
        x_arr = np.random.random(shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
98 99 100
        gradient_checker.triple_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
101
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
102 103 104
        gradient_checker.triple_grad_check_for_dygraph(
            self.tanh_wrapper, [x], y, x_init=x_arr, place=place
        )
105
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
106 107

    def test_grad(self):
108
        paddle.enable_static()
109 110 111 112 113 114 115
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


116
class TestTanhDoubleGradCheck(unittest.TestCase):
117 118 119
    def tanh_wrapper(self, x):
        return paddle.tanh(x[0])

120 121 122 123 124 125 126 127 128 129
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype=dtype)
        x.persistable = True
        y = paddle.tanh(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
130 131 132
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
133
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
134 135 136
        gradient_checker.double_grad_check_for_dygraph(
            self.tanh_wrapper, [x], y, x_init=x_arr, place=place
        )
137
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
138 139

    def test_grad(self):
140
        paddle.enable_static()
141 142 143 144 145 146 147
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


148 149 150 151 152 153 154 155 156 157 158 159 160 161
class TestAbsDoubleGradCheck(unittest.TestCase):
    def abs_wrapper(self, x):
        return paddle.abs(x[0])

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype=dtype)
        x.persistable = True
        y = paddle.abs(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
162 163 164
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
165
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
166 167 168
        gradient_checker.double_grad_check_for_dygraph(
            self.abs_wrapper, [x], y, x_init=x_arr, place=place
        )
169
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
170 171 172 173 174 175 176 177 178 179

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


180 181 182 183 184 185 186 187 188 189 190 191 192
class TestReluDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
        y = layers.relu(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.02

193 194 195
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
196 197

    def test_grad(self):
198
        paddle.enable_static()
199 200 201 202 203 204 205 206
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestLeakyReluDoubleGradCheck(unittest.TestCase):
207 208 209
    def leaky_relu_wrapper(self, x):
        return paddle.nn.functional.leaky_relu(x[0], negative_slope=0.2)

210 211 212 213 214 215 216 217 218 219 220 221 222 223
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.005
        alpha = 0.2
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True

        y = layers.leaky_relu(x, alpha=alpha)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.02

224 225 226 227 228 229
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.leaky_relu_wrapper, [x], y, x_init=x_arr, place=place
        )
230 231

    def test_grad(self):
232
        paddle.enable_static()
233 234 235 236 237 238 239
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places = [fluid.CUDAPlace(0)]
        for p in places:
            self.func(p)


D
Double_V 已提交
240
class TestELUDoubleGradCheck(unittest.TestCase):
241 242 243
    def elu_wrapper(self, x):
        return paddle.nn.functional.elu(x[0], alpha=0.2)

D
Double_V 已提交
244 245
    @prog_scope()
    def func(self, place):
246
        shape = [2, 4, 4, 4]
D
Double_V 已提交
247
        eps = 1e-6
248
        alpha = 0.2
D
Double_V 已提交
249
        dtype = np.float64
250
        SEED = 0
D
Double_V 已提交
251 252 253 254 255

        x = layers.data('x', shape, False, dtype)
        x.persistable = True

        y = layers.elu(x, alpha=alpha)
256
        np.random.RandomState(SEED)
D
Double_V 已提交
257
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
258 259 260
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
261
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
262 263 264
        gradient_checker.double_grad_check_for_dygraph(
            self.elu_wrapper, [x], y, x_init=x_arr, place=place
        )
265
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
D
Double_V 已提交
266 267

    def test_grad(self):
268
        paddle.enable_static()
D
Double_V 已提交
269 270 271 272 273 274 275
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


276
class TestCELUDoubleGradCheck(unittest.TestCase):
277 278 279
    def celu_wrapper(self, x):
        return paddle.nn.functional.celu(x[0], alpha=0.2)

280 281 282 283 284 285 286 287 288 289 290 291 292 293
    @prog_scope()
    def func(self, place):
        shape = [2, 4, 4, 4]
        eps = 1e-6
        alpha = 0.2
        dtype = np.float64
        SEED = 0

        x = layers.data('x', shape, False, dtype)
        x.persistable = True

        y = F.celu(x, alpha=alpha)
        np.random.RandomState(SEED)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
294 295 296
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
297
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
298 299 300
        gradient_checker.double_grad_check_for_dygraph(
            self.celu_wrapper, [x], y, x_init=x_arr, place=place
        )
301
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
302 303

    def test_grad(self):
304
        paddle.enable_static()
305 306 307 308 309 310 311
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


312
class TestSqrtDoubleGradCheck(unittest.TestCase):
313 314 315
    def sqrt_wrapper(self, x):
        return paddle.sqrt(x[0])

316 317 318 319 320 321 322 323 324 325 326 327
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0001
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True

        y = layers.sqrt(x)
        x_arr = np.random.uniform(0.1, 1, shape).astype(dtype)

328 329 330 331 332 333
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.sqrt_wrapper, [x], y, x_init=x_arr, place=place
        )
334 335

    def test_grad(self):
336
        paddle.enable_static()
337 338 339 340 341 342 343
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places = [fluid.CUDAPlace(0)]
        for p in places:
            self.func(p)


W
whs 已提交
344
class TestRsqrtDoubleGradCheck(unittest.TestCase):
345 346 347
    def rsqrt_wrapper(self, x):
        return paddle.rsqrt(x[0])

W
whs 已提交
348 349 350 351 352 353 354 355 356 357 358 359
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0001
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True

        y = layers.rsqrt(x)
        x_arr = np.random.uniform(0.1, 1, shape).astype(dtype)

360 361 362 363 364 365
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.rsqrt_wrapper, [x], y, x_init=x_arr, place=place
        )
W
whs 已提交
366 367

    def test_grad(self):
368
        paddle.enable_static()
W
whs 已提交
369 370 371 372 373 374 375
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places = [fluid.CUDAPlace(0)]
        for p in places:
            self.func(p)


376
class TestSquareDoubleGradCheck(unittest.TestCase):
377 378 379
    def square_wrapper(self, x):
        return paddle.square(x[0])

380 381
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
382
        # the shape of input variable should be clearly specified, not inlcude -1.
383 384 385 386 387 388 389 390 391
        shape = [2, 3, 7, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
        y = layers.square(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

392 393 394
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
395
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
396 397 398
        gradient_checker.double_grad_check_for_dygraph(
            self.square_wrapper, [x], y, x_init=x_arr, place=place
        )
399
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
400 401

    def test_grad(self):
402
        paddle.enable_static()
403 404 405 406 407 408 409
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Z
Zhong Hui 已提交
410 411 412 413 414 415 416 417 418 419 420 421
class TestAbsDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        shape = [2, 3, 7, 9]
        eps = 1e-6
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
        y = layers.abs(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
Z
Zhong Hui 已提交
422 423 424 425
        # Because we set delta = 0.005 in calculating numeric gradient,
        # if x is too small, the numeric gradient is inaccurate.
        # we should avoid this
        x_arr[np.abs(x_arr) < 0.005] = 0.02
Z
Zhong Hui 已提交
426

427 428 429
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
Z
Zhong Hui 已提交
430 431

    def test_grad(self):
432
        paddle.enable_static()
Z
Zhong Hui 已提交
433 434 435 436 437 438 439
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


440
class TestLogDoubleGradCheck(unittest.TestCase):
441 442 443
    def log_wrapper(self, x):
        return paddle.log(x[0])

444 445 446 447 448 449 450 451 452 453 454 455
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 1e-6
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
        y = layers.log(x)

        x_arr = np.random.uniform(0.1, 1, shape).astype(dtype)

456 457 458
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
459
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
460 461 462
        gradient_checker.double_grad_check_for_dygraph(
            self.log_wrapper, [x], y, x_init=x_arr, place=place
        )
463
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
464 465

    def test_grad(self):
466
        paddle.enable_static()
467 468 469 470 471 472 473
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
class TestSinDoubleGradCheck(unittest.TestCase):
    def sin_wrapper(self, x):
        return paddle.sin(x[0])

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype=dtype)
        x.persistable = True
        y = paddle.sin(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(
            self.sin_wrapper, [x], y, x_init=x_arr, place=place
        )
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


506 507
if __name__ == "__main__":
    unittest.main()