test_activation_nn_grad.py 20.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16 17

import gradient_checker
18
import numpy as np
19
from decorator_helper import prog_scope
20

21
import paddle
22
import paddle.fluid as fluid
23
import paddle.fluid.core as core
24
import paddle.fluid.layers as layers
25
import paddle.nn.functional as F
26 27


28 29 30 31 32 33 34 35
class TestSigmoidTripleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype=dtype)
        x.persistable = True
36
        y = F.sigmoid(x)
37 38
        x_arr = np.random.random(shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
39 40 41
        gradient_checker.triple_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
42 43

    def test_grad(self):
44
        paddle.enable_static()
45 46 47 48 49 50 51
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


52
class TestSigmoidDoubleGradCheck(unittest.TestCase):
53
    def sigmoid_wrapper(self, x):
54
        return F.sigmoid(x[0])
55

56 57 58 59 60 61 62
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype=dtype)
        x.persistable = True
63
        y = F.sigmoid(x)
64 65
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
66 67 68 69 70 71
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.sigmoid_wrapper, [x], y, x_init=x_arr, place=place
        )
72 73

    def test_grad(self):
74
        paddle.enable_static()
75 76 77 78 79 80 81
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


82
class TestTanhTripleGradCheck(unittest.TestCase):
83 84 85
    def tanh_wrapper(self, x):
        return paddle.tanh(x[0])

86 87 88 89 90 91 92
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype=dtype)
        x.persistable = True
93
        y = paddle.tanh(x)
94 95
        x_arr = np.random.random(shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
96 97 98 99 100 101
        gradient_checker.triple_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.tanh_wrapper, [x], y, x_init=x_arr, place=place
        )
102 103

    def test_grad(self):
104
        paddle.enable_static()
105 106 107 108 109 110 111
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


112
class TestTanhDoubleGradCheck(unittest.TestCase):
113 114 115
    def tanh_wrapper(self, x):
        return paddle.tanh(x[0])

116 117 118 119 120 121 122 123 124 125
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype=dtype)
        x.persistable = True
        y = paddle.tanh(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
126 127 128 129 130 131
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.tanh_wrapper, [x], y, x_init=x_arr, place=place
        )
132 133

    def test_grad(self):
134
        paddle.enable_static()
135 136 137 138 139 140 141
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


142 143 144 145 146 147 148 149 150 151 152 153 154 155
class TestAbsDoubleGradCheck(unittest.TestCase):
    def abs_wrapper(self, x):
        return paddle.abs(x[0])

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype=dtype)
        x.persistable = True
        y = paddle.abs(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
156 157 158 159 160 161
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.abs_wrapper, [x], y, x_init=x_arr, place=place
        )
162 163 164 165 166 167 168 169 170 171

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


172 173 174 175 176 177 178 179 180
class TestReluDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
181
        y = F.relu(x)
182 183 184
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.02

185 186 187
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
188 189

    def test_grad(self):
190
        paddle.enable_static()
191 192 193 194 195 196 197 198
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestLeakyReluDoubleGradCheck(unittest.TestCase):
199 200 201
    def leaky_relu_wrapper(self, x):
        return paddle.nn.functional.leaky_relu(x[0], negative_slope=0.2)

202 203 204 205 206 207 208 209 210 211
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.005
        alpha = 0.2
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True

212
        y = paddle.nn.functional.leaky_relu(x, alpha)
213 214 215
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.02

216 217 218 219 220 221
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.leaky_relu_wrapper, [x], y, x_init=x_arr, place=place
        )
222 223

    def test_grad(self):
224
        paddle.enable_static()
225 226 227 228 229 230 231
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places = [fluid.CUDAPlace(0)]
        for p in places:
            self.func(p)


D
Double_V 已提交
232
class TestELUDoubleGradCheck(unittest.TestCase):
233 234 235
    def elu_wrapper(self, x):
        return paddle.nn.functional.elu(x[0], alpha=0.2)

D
Double_V 已提交
236 237
    @prog_scope()
    def func(self, place):
238
        shape = [2, 4, 4, 4]
D
Double_V 已提交
239
        eps = 1e-6
240
        alpha = 0.2
D
Double_V 已提交
241
        dtype = np.float64
242
        SEED = 0
D
Double_V 已提交
243 244 245 246

        x = layers.data('x', shape, False, dtype)
        x.persistable = True

247
        y = paddle.nn.functional.elu(x, alpha=alpha)
248
        np.random.RandomState(SEED)
D
Double_V 已提交
249
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
250 251 252 253 254 255
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.elu_wrapper, [x], y, x_init=x_arr, place=place
        )
D
Double_V 已提交
256 257

    def test_grad(self):
258
        paddle.enable_static()
D
Double_V 已提交
259 260 261 262 263 264 265
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


266
class TestCELUDoubleGradCheck(unittest.TestCase):
267 268 269
    def celu_wrapper(self, x):
        return paddle.nn.functional.celu(x[0], alpha=0.2)

270 271 272 273 274 275 276 277 278 279 280 281 282 283
    @prog_scope()
    def func(self, place):
        shape = [2, 4, 4, 4]
        eps = 1e-6
        alpha = 0.2
        dtype = np.float64
        SEED = 0

        x = layers.data('x', shape, False, dtype)
        x.persistable = True

        y = F.celu(x, alpha=alpha)
        np.random.RandomState(SEED)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
284 285 286 287 288 289
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.celu_wrapper, [x], y, x_init=x_arr, place=place
        )
290 291

    def test_grad(self):
292
        paddle.enable_static()
293 294 295 296 297 298 299
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


300
class TestSqrtDoubleGradCheck(unittest.TestCase):
301 302 303
    def sqrt_wrapper(self, x):
        return paddle.sqrt(x[0])

304 305 306 307 308 309 310 311 312
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0001
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True

313
        y = paddle.sqrt(x)
314 315
        x_arr = np.random.uniform(0.1, 1, shape).astype(dtype)

316 317 318 319 320 321
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.sqrt_wrapper, [x], y, x_init=x_arr, place=place
        )
322 323

    def test_grad(self):
324
        paddle.enable_static()
325 326 327 328 329 330 331
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places = [fluid.CUDAPlace(0)]
        for p in places:
            self.func(p)


W
whs 已提交
332
class TestRsqrtDoubleGradCheck(unittest.TestCase):
333 334 335
    def rsqrt_wrapper(self, x):
        return paddle.rsqrt(x[0])

W
whs 已提交
336 337 338 339 340 341 342 343 344
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0001
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True

345
        y = paddle.rsqrt(x)
W
whs 已提交
346 347
        x_arr = np.random.uniform(0.1, 1, shape).astype(dtype)

348 349 350 351 352 353
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.rsqrt_wrapper, [x], y, x_init=x_arr, place=place
        )
W
whs 已提交
354 355

    def test_grad(self):
356
        paddle.enable_static()
W
whs 已提交
357 358 359 360 361 362 363
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places = [fluid.CUDAPlace(0)]
        for p in places:
            self.func(p)


364
class TestSquareDoubleGradCheck(unittest.TestCase):
365 366 367
    def square_wrapper(self, x):
        return paddle.square(x[0])

368 369
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
370
        # the shape of input variable should be clearly specified, not inlcude -1.
371 372 373 374 375 376
        shape = [2, 3, 7, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
377
        y = paddle.square(x)
378 379
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

380 381 382 383 384 385
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.square_wrapper, [x], y, x_init=x_arr, place=place
        )
386 387

    def test_grad(self):
388
        paddle.enable_static()
389 390 391 392 393 394 395
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


396
class TestLogDoubleGradCheck(unittest.TestCase):
397 398 399
    def log_wrapper(self, x):
        return paddle.log(x[0])

400 401 402 403 404 405 406 407
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 1e-6
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
408
        y = paddle.log(x)
409 410 411

        x_arr = np.random.uniform(0.1, 1, shape).astype(dtype)

412 413 414 415 416 417
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.log_wrapper, [x], y, x_init=x_arr, place=place
        )
418 419

    def test_grad(self):
420
        paddle.enable_static()
421 422 423 424 425 426 427
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
class TestSinDoubleGradCheck(unittest.TestCase):
    def sin_wrapper(self, x):
        return paddle.sin(x[0])

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype=dtype)
        x.persistable = True
        y = paddle.sin(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.sin_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
class TestCosDoubleGradCheck(unittest.TestCase):
    def cos_wrapper(self, x):
        return paddle.cos(x[0])

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype=dtype)
        x.persistable = True
        y = paddle.cos(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.cos_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


C
Charles-hit 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
class TestPowDoubleGradCheck1(unittest.TestCase):
    def pow_wrapper(self, x):
        return paddle.pow(x[0], 2)

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 1e-6
        dtype = np.float64
        x = layers.data('x', shape, False, dtype=dtype)
        x.persistable = True
        y = paddle.pow(x, 2)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.pow_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestPowDoubleGradCheck2(unittest.TestCase):
    def pow_wrapper(self, x):
        return paddle.pow(x[0], 1)

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 1e-6
        dtype = np.float64
        x = layers.data('x', shape, False, dtype=dtype)
        x.persistable = True
        y = paddle.pow(x, 1)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.pow_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


546 547 548 549 550 551 552 553 554 555 556
class TestSinTripleGradCheck(unittest.TestCase):
    def sin_wrapper(self, x):
        return paddle.sin(x[0])

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype=dtype)
        x.persistable = True
557
        y = paddle.sin(x)
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
        x_arr = np.random.random(shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
        gradient_checker.triple_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.sin_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


C
Charles-hit 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
class TestPowTripleGradCheck1(unittest.TestCase):
    def pow_wrapper(self, x):
        return paddle.pow(x[0], 1)

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 1e-6
        dtype = np.float64
        x = layers.data('x', shape, False, dtype=dtype)
        x.persistable = True
        y = paddle.pow(x, 1)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        gradient_checker.triple_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.pow_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestPowTripleGradCheck2(unittest.TestCase):
    def pow_wrapper(self, x):
        return paddle.pow(x[0], 2)

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 1e-6
        dtype = np.float64
        x = layers.data('x', shape, False, dtype=dtype)
        x.persistable = True
        y = paddle.pow(x, 2)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        gradient_checker.triple_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.pow_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestPowTripleGradCheck3(unittest.TestCase):
    def pow_wrapper(self, x):
        return paddle.pow(x[0], 4)

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 1e-6
        dtype = np.float64
        x = layers.data('x', shape, False, dtype=dtype)
        x.persistable = True
        y = paddle.pow(x, 4)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        gradient_checker.triple_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.pow_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


663 664 665 666 667 668 669 670 671 672 673
class TestCosTripleGradCheck(unittest.TestCase):
    def cos_wrapper(self, x):
        return paddle.cos(x[0])

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype=dtype)
        x.persistable = True
674
        y = paddle.cos(x)
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
        x_arr = np.random.random(shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
        gradient_checker.triple_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.cos_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


693 694
if __name__ == "__main__":
    unittest.main()