test_var_base.py 69.9 KB
Newer Older
L
Leo Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
18 19
import numpy as np
import six
20
import copy
21

22
import paddle
L
Leo Chen 已提交
23 24
import paddle.fluid as fluid
import paddle.fluid.core as core
J
Jiabin Yang 已提交
25
from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph
L
Leo Chen 已提交
26 27 28


class TestVarBase(unittest.TestCase):
29

L
Leo Chen 已提交
30 31 32 33 34
    def setUp(self):
        self.shape = [512, 1234]
        self.dtype = np.float32
        self.array = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)

35
    def func_test_to_tensor(self):
36

37 38
        def _test_place(place):
            with fluid.dygraph.guard():
39
                paddle.set_default_dtype('float32')
40
                # set_default_dtype should not take effect on int
41 42 43 44
                x = paddle.to_tensor(1, place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1]))
                self.assertNotEqual(x.dtype, core.VarDesc.VarType.FP32)

45 46 47
                y = paddle.to_tensor(2, place=x.place)
                self.assertEqual(str(x.place), str(y.place))

48
                # set_default_dtype should not take effect on numpy
49 50 51
                x = paddle.to_tensor(np.array([1.2]).astype('float16'),
                                     place=place,
                                     stop_gradient=False)
52 53 54 55
                self.assertTrue(
                    np.array_equal(x.numpy(), np.array([1.2], 'float16')))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP16)

56 57 58 59
                # set_default_dtype take effect on int
                x = paddle.to_tensor(1, place=place)
                self.assertTrue(x.dtype, core.VarDesc.VarType.INT64)

60
                # set_default_dtype take effect on float
61 62
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
                self.assertTrue(
63 64
                    np.array_equal(x.numpy(),
                                   np.array([1.2]).astype('float32')))
65
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
Z
Zhou Wei 已提交
66 67 68 69 70 71 72 73
                clone_x = x.clone()
                self.assertTrue(
                    np.array_equal(clone_x.numpy(),
                                   np.array([1.2]).astype('float32')))
                self.assertEqual(clone_x.dtype, core.VarDesc.VarType.FP32)
                y = clone_x**2
                y.backward()
                self.assertTrue(
74 75
                    np.array_equal(x.grad.numpy(),
                                   np.array([2.4]).astype('float32')))
76
                y = x.cpu()
77
                self.assertEqual(y.place.__repr__(), "Place(cpu)")
78 79
                if core.is_compiled_with_cuda():
                    y = x.pin_memory()
80
                    self.assertEqual(y.place.__repr__(), "Place(gpu_pinned)")
81 82
                    y = x.cuda()
                    y = x.cuda(None)
83
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
84
                    y = x.cuda(device_id=0)
85
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
86
                    y = x.cuda(blocking=False)
87
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
88
                    y = x.cuda(blocking=True)
89
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
90 91
                    with self.assertRaises(ValueError):
                        y = x.cuda("test")
92

93 94 95 96 97
                # support 'dtype' is core.VarType
                x = paddle.rand((2, 2))
                y = paddle.to_tensor([2, 2], dtype=x.dtype)
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP32)

98
                # set_default_dtype take effect on complex
99 100
                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1 + 2j]))
C
chentianyu03 已提交
101
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX64)
102 103 104 105 106 107 108 109

                paddle.set_default_dtype('float64')
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1.2]))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP64)

                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1 + 2j]))
C
chentianyu03 已提交
110
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX128)
111

112 113 114 115
                x = paddle.to_tensor(1,
                                     dtype='float32',
                                     place=place,
                                     stop_gradient=False)
116 117 118 119 120 121
                self.assertTrue(np.array_equal(x.numpy(), [1.]))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, [1])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

122 123 124 125 126 127 128 129
                x = paddle.to_tensor((1, 2),
                                     dtype='float32',
                                     place=place,
                                     stop_gradient=False)
                x = paddle.to_tensor([1, 2],
                                     dtype='float32',
                                     place=place,
                                     stop_gradient=False)
130 131 132 133 134 135 136
                self.assertTrue(np.array_equal(x.numpy(), [1., 2.]))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.grad, None)
                self.assertEqual(x.shape, [2])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

137 138 139 140
                x = paddle.to_tensor(self.array,
                                     dtype='float32',
                                     place=place,
                                     stop_gradient=False)
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
                self.assertTrue(np.array_equal(x.numpy(), self.array))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, self.shape)
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

                y = paddle.to_tensor(x)
                y = paddle.to_tensor(y, dtype='float64', place=place)
                self.assertTrue(np.array_equal(y.numpy(), self.array))
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP64)
                self.assertEqual(y.shape, self.shape)
                self.assertEqual(y.stop_gradient, True)
                self.assertEqual(y.type, core.VarDesc.VarType.LOD_TENSOR)
                z = x + y
                self.assertTrue(np.array_equal(z.numpy(), 2 * self.array))

157 158 159
                x = paddle.to_tensor([1 + 2j, 1 - 2j],
                                     dtype='complex64',
                                     place=place)
160 161
                y = paddle.to_tensor(x)
                self.assertTrue(np.array_equal(x.numpy(), [1 + 2j, 1 - 2j]))
C
chentianyu03 已提交
162
                self.assertEqual(y.dtype, core.VarDesc.VarType.COMPLEX64)
163 164
                self.assertEqual(y.shape, [2])

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
                paddle.set_default_dtype('float32')
                x = paddle.randn([3, 4])
                x_array = np.array(x)
                self.assertEqual(x_array.shape, x.numpy().shape)
                self.assertEqual(x_array.dtype, x.numpy().dtype)
                self.assertTrue(np.array_equal(x_array, x.numpy()))

                x = paddle.to_tensor(1.0)
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.randn([3, 2, 2])
                self.assertTrue(isinstance(x.item(5), float))
                self.assertTrue(isinstance(x.item(1, 0, 1), float))
                self.assertEqual(x.item(5), x.item(1, 0, 1))
                self.assertTrue(
181 182
                    np.array_equal(x.item(1, 0, 1),
                                   x.numpy().item(1, 0, 1)))
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

                x = paddle.to_tensor([[1.111111, 2.222222, 3.333333]])
                self.assertEqual(x.item(0, 2), x.item(2))
                self.assertAlmostEqual(x.item(2), 3.333333)
                self.assertTrue(isinstance(x.item(0, 2), float))

                x = paddle.to_tensor(1.0, dtype='float64')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1.0, dtype='float16')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1, dtype='uint8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int16')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int32')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int64')
                self.assertEqual(x.item(), 1)
T
tianshuo78520a 已提交
215
                self.assertTrue(isinstance(x.item(), int))
216 217 218 219 220 221 222 223 224

                x = paddle.to_tensor(True)
                self.assertEqual(x.item(), True)
                self.assertTrue(isinstance(x.item(), bool))

                x = paddle.to_tensor(1 + 1j)
                self.assertEqual(x.item(), 1 + 1j)
                self.assertTrue(isinstance(x.item(), complex))

225 226 227 228 229 230 231
                # empty tensor
                x = paddle.to_tensor([])
                self.assertEqual(x.shape, [0])
                expected_result = np.array([], dtype='float32')
                self.assertEqual(x.numpy().shape, expected_result.shape)
                self.assertTrue(np.array_equal(x.numpy(), expected_result))

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
                numpy_array = np.random.randn(3, 4)
                # covert core.LoDTensor to paddle.Tensor
                lod_tensor = paddle.fluid.core.LoDTensor()
                place = paddle.fluid.framework._current_expected_place()
                lod_tensor.set(numpy_array, place)
                x = paddle.to_tensor(lod_tensor)
                self.assertTrue(np.array_equal(x.numpy(), numpy_array))
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)
                self.assertEqual(str(x.place), str(place))

                # covert core.Tensor to paddle.Tensor
                x = paddle.to_tensor(numpy_array)
                dlpack = x.value().get_tensor()._to_dlpack()
                tensor_from_dlpack = paddle.fluid.core.from_dlpack(dlpack)
                x = paddle.to_tensor(tensor_from_dlpack)
                self.assertTrue(np.array_equal(x.numpy(), numpy_array))
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

250 251 252 253 254 255 256 257
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item()
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(18)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(1, 2)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(2, 1, 2)
258 259 260 261 262 263 264 265 266 267 268 269
                with self.assertRaises(TypeError):
                    paddle.to_tensor('test')
                with self.assertRaises(TypeError):
                    paddle.to_tensor(1, dtype='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]])
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place=1)

        _test_place(core.CPUPlace())
270
        _test_place("cpu")
271
        if core.is_compiled_with_cuda():
272
            _test_place(core.CUDAPinnedPlace())
273
            _test_place("gpu_pinned")
274
            _test_place(core.CUDAPlace(0))
275
            _test_place("gpu:0")
276 277 278
        if core.is_compiled_with_npu():
            _test_place(core.NPUPlace(0))
            _test_place("npu:0")
279

280 281 282 283 284 285
    def test_to_tensor(self):
        with _test_eager_guard():
            self.func_test_to_tensor()
        self.func_test_to_tensor()

    def func_test_to_tensor_not_change_input_stop_gradient(self):
286 287 288 289 290 291 292
        with paddle.fluid.dygraph.guard(core.CPUPlace()):
            a = paddle.zeros([1024])
            a.stop_gradient = False
            b = paddle.to_tensor(a)
            self.assertEqual(a.stop_gradient, False)
            self.assertEqual(b.stop_gradient, True)

293 294 295 296 297 298
    def test_to_tensor_not_change_input_stop_gradient(self):
        with _test_eager_guard():
            self.func_test_to_tensor_not_change_input_stop_gradient()
        self.func_test_to_tensor_not_change_input_stop_gradient()

    def func_test_to_tensor_change_place(self):
299 300 301 302 303
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
            with paddle.fluid.dygraph.guard(core.CPUPlace()):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
304
                self.assertEqual(a.place.__repr__(), "Place(cpu)")
305 306 307 308

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
309
                self.assertEqual(a.place.__repr__(), "Place(gpu:0)")
310 311 312 313

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CPUPlace())
                a = paddle.to_tensor(a, place=paddle.CUDAPinnedPlace())
314
                self.assertEqual(a.place.__repr__(), "Place(gpu_pinned)")
315

316 317 318 319 320 321
    def test_to_tensor_change_place(self):
        with _test_eager_guard():
            self.func_test_to_tensor_change_place()
        self.func_test_to_tensor_change_place()

    def func_test_to_tensor_with_lodtensor(self):
322 323 324 325 326 327 328 329 330 331 332
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
            with paddle.fluid.dygraph.guard(core.CPUPlace()):
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CPUPlace())
                a = paddle.to_tensor(lod_tensor)
                self.assertTrue(np.array_equal(a_np, a.numpy()))

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CUDAPlace(0))
333
                a = paddle.to_tensor(lod_tensor, place=core.CPUPlace())
334
                self.assertTrue(np.array_equal(a_np, a.numpy()))
335
                self.assertTrue(a.place.__repr__(), "Place(cpu)")
336

337 338 339 340 341 342
    def test_to_tensor_with_lodtensor(self):
        with _test_eager_guard():
            self.func_test_to_tensor_with_lodtensor()
        self.func_test_to_tensor_with_lodtensor()

    def func_test_to_variable(self):
L
Leo Chen 已提交
343 344 345 346 347 348 349 350 351 352
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array, name="abc")
            self.assertTrue(np.array_equal(var.numpy(), self.array))
            self.assertEqual(var.name, 'abc')
            # default value
            self.assertEqual(var.persistable, False)
            self.assertEqual(var.stop_gradient, True)
            self.assertEqual(var.shape, self.shape)
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)
353 354 355 356 357 358 359
            # The type of input must be 'ndarray' or 'Variable', it will raise TypeError
            with self.assertRaises(TypeError):
                var = fluid.dygraph.to_variable("test", name="abc")
            # test to_variable of LayerObjectHelper(LayerHelperBase)
            with self.assertRaises(TypeError):
                linear = fluid.dygraph.Linear(32, 64)
                var = linear._helper.to_variable("test", name="abc")
L
Leo Chen 已提交
360

361 362 363 364 365 366
    def test_to_variable(self):
        with _test_eager_guard():
            self.func_test_to_variable()
        self.func_test_to_variable()

    def func_test_list_to_variable(self):
367 368 369 370 371 372 373 374
        with fluid.dygraph.guard():
            array = [[[1, 2], [1, 2], [1.0, 2]], [[1, 2], [1, 2], [1, 2]]]
            var = fluid.dygraph.to_variable(array, dtype='int32')
            self.assertTrue(np.array_equal(var.numpy(), array))
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.INT32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

375 376 377 378 379 380
    def test_list_to_variable(self):
        with _test_eager_guard():
            self.func_test_list_to_variable()
        self.func_test_list_to_variable()

    def func_test_tuple_to_variable(self):
381 382 383 384 385 386 387 388
        with fluid.dygraph.guard():
            array = (((1, 2), (1, 2), (1, 2)), ((1, 2), (1, 2), (1, 2)))
            var = fluid.dygraph.to_variable(array, dtype='float32')
            self.assertTrue(np.array_equal(var.numpy(), array))
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

389 390 391 392 393 394
    def test_tuple_to_variable(self):
        with _test_eager_guard():
            self.func_test_tuple_to_variable()
        self.func_test_tuple_to_variable()

    def func_test_tensor_to_variable(self):
395 396
        with fluid.dygraph.guard():
            t = fluid.Tensor()
L
Leo Chen 已提交
397
            t.set(np.random.random((1024, 1024)), fluid.CPUPlace())
398 399 400
            var = fluid.dygraph.to_variable(t)
            self.assertTrue(np.array_equal(t, var.numpy()))

401 402 403 404 405 406
    def test_tensor_to_variable(self):
        with _test_eager_guard():
            self.func_test_tensor_to_variable()
        self.func_test_tensor_to_variable()

    def func_test_leaf_tensor(self):
407 408 409 410 411 412
        with fluid.dygraph.guard():
            x = paddle.to_tensor(np.random.uniform(-1, 1, size=[10, 10]))
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertTrue(y.is_leaf)

413 414
            x = paddle.to_tensor(np.random.uniform(-1, 1, size=[10, 10]),
                                 stop_gradient=False)
415 416 417 418 419
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertFalse(y.is_leaf)

            linear = paddle.nn.Linear(10, 10)
420 421 422
            input = paddle.to_tensor(np.random.uniform(
                -1, 1, size=[10, 10]).astype('float32'),
                                     stop_gradient=False)
423 424 425 426 427 428 429
            self.assertTrue(input.is_leaf)

            out = linear(input)
            self.assertTrue(linear.weight.is_leaf)
            self.assertTrue(linear.bias.is_leaf)
            self.assertFalse(out.is_leaf)

430 431 432 433 434 435
    def test_leaf_tensor(self):
        with _test_eager_guard():
            self.func_test_leaf_tensor()
        self.func_test_leaf_tensor()

    def func_test_detach(self):
Z
Zhou Wei 已提交
436 437 438 439 440
        with fluid.dygraph.guard():
            x = paddle.to_tensor(1.0, dtype="float64", stop_gradient=False)
            detach_x = x.detach()
            self.assertTrue(detach_x.stop_gradient, True)

Z
zhulei 已提交
441 442
            cmp_float = np.allclose if core.is_compiled_with_rocm(
            ) else np.array_equal
Z
Zhou Wei 已提交
443
            detach_x[:] = 10.0
Z
zhulei 已提交
444
            self.assertTrue(cmp_float(x.numpy(), [10.0]))
Z
Zhou Wei 已提交
445 446 447

            y = x**2
            y.backward()
Z
zhulei 已提交
448
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
Z
Zhou Wei 已提交
449 450 451 452 453
            self.assertEqual(detach_x.grad, None)

            detach_x.stop_gradient = False  # Set stop_gradient to be False, supported auto-grad
            z = 3 * detach_x**2
            z.backward()
Z
zhulei 已提交
454 455
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
            self.assertTrue(cmp_float(detach_x.grad.numpy(), [60.0]))
456

457 458 459 460 461
            with self.assertRaises(ValueError):
                detach_x[:] = 5.0

            detach_x.stop_gradient = True

Z
Zhou Wei 已提交
462
            # Due to sharing of data with origin Tensor, There are some unsafe operations:
463 464 465 466
            with self.assertRaises(RuntimeError):
                y = 2**x
                detach_x[:] = 5.0
                y.backward()
Z
Zhou Wei 已提交
467

468 469 470 471 472 473
    def test_detach(self):
        with _test_eager_guard():
            self.func_test_detach()
        self.func_test_detach()

    def func_test_write_property(self):
L
Leo Chen 已提交
474 475 476
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)

477
            self.assertEqual(var.name, 'generated_tensor_0')
L
Leo Chen 已提交
478 479 480 481 482 483 484 485 486 487 488
            var.name = 'test'
            self.assertEqual(var.name, 'test')

            self.assertEqual(var.persistable, False)
            var.persistable = True
            self.assertEqual(var.persistable, True)

            self.assertEqual(var.stop_gradient, True)
            var.stop_gradient = False
            self.assertEqual(var.stop_gradient, False)

489 490 491 492 493 494
    def test_write_property(self):
        with _test_eager_guard():
            self.func_test_write_property()
        self.func_test_write_property()

    def func_test_deep_copy(self):
495
        with fluid.dygraph.guard():
496 497 498 499
            if _in_legacy_dygraph():
                empty_var = core.VarBase()
            else:
                empty_var = core.eager.Tensor()
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
            empty_var_copy = copy.deepcopy(empty_var)
            self.assertEqual(empty_var.stop_gradient,
                             empty_var_copy.stop_gradient)
            self.assertEqual(empty_var.persistable, empty_var_copy.persistable)
            self.assertEqual(empty_var.type, empty_var_copy.type)
            self.assertEqual(empty_var.dtype, empty_var_copy.dtype)

            x = paddle.to_tensor([2.], stop_gradient=False)
            y = paddle.to_tensor([3.], stop_gradient=False)
            z = x * y
            memo = {}
            x_copy = copy.deepcopy(x, memo)
            y_copy = copy.deepcopy(y, memo)

            self.assertEqual(x_copy.stop_gradient, y_copy.stop_gradient)
            self.assertEqual(x_copy.persistable, y_copy.persistable)
            self.assertEqual(x_copy.type, y_copy.type)
            self.assertEqual(x_copy.dtype, y_copy.dtype)
            self.assertTrue(np.array_equal(x.numpy(), x_copy.numpy()))
            self.assertTrue(np.array_equal(y.numpy(), y_copy.numpy()))

            self.assertNotEqual(id(x), id(x_copy))
            self.assertTrue(np.array_equal(x.numpy(), [2.]))

524 525 526
            with self.assertRaises(ValueError):
                x_copy[:] = 5.

527 528 529 530 531 532 533 534 535
            with self.assertRaises(RuntimeError):
                copy.deepcopy(z)

            x_copy2 = copy.deepcopy(x, memo)
            y_copy2 = copy.deepcopy(y, memo)
            self.assertEqual(id(x_copy), id(x_copy2))
            self.assertEqual(id(y_copy), id(y_copy2))

            # test copy selected rows
536 537 538 539 540 541 542 543 544
            if _in_legacy_dygraph():
                x = core.VarBase(core.VarDesc.VarType.FP32, [3, 100],
                                 "selected_rows",
                                 core.VarDesc.VarType.SELECTED_ROWS, True)
            else:
                x = core.eager.Tensor(core.VarDesc.VarType.FP32, [3, 100],
                                      "selected_rows",
                                      core.VarDesc.VarType.SELECTED_ROWS, True)

545
            selected_rows = x.value().get_selected_rows()
546 547
            selected_rows.get_tensor().set(np.random.rand(3, 100),
                                           core.CPUPlace())
548 549 550 551 552 553 554 555 556 557 558 559 560 561
            selected_rows.set_height(10)
            selected_rows.set_rows([3, 5, 7])
            x_copy = copy.deepcopy(x)

            self.assertEqual(x_copy.stop_gradient, x.stop_gradient)
            self.assertEqual(x_copy.persistable, x.persistable)
            self.assertEqual(x_copy.type, x.type)
            self.assertEqual(x_copy.dtype, x.dtype)

            copy_selected_rows = x_copy.value().get_selected_rows()
            self.assertEqual(copy_selected_rows.height(),
                             selected_rows.height())
            self.assertEqual(copy_selected_rows.rows(), selected_rows.rows())
            self.assertTrue(
562 563
                np.array_equal(np.array(copy_selected_rows.get_tensor()),
                               np.array(selected_rows.get_tensor())))
564

565 566 567 568 569
    def test_deep_copy(self):
        with _test_eager_guard():
            self.func_test_deep_copy()
        self.func_test_deep_copy()

L
Leo Chen 已提交
570
    # test some patched methods
571
    def func_test_set_value(self):
L
Leo Chen 已提交
572 573 574 575 576 577 578 579 580
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            tmp1 = np.random.uniform(0.1, 1, [2, 2, 3]).astype(self.dtype)
            self.assertRaises(AssertionError, var.set_value, tmp1)

            tmp2 = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
            var.set_value(tmp2)
            self.assertTrue(np.array_equal(var.numpy(), tmp2))

581 582 583 584 585 586
    def test_set_value(self):
        with _test_eager_guard():
            self.func_test_set_value()
        self.func_test_set_value()

    def func_test_to_string(self):
L
Leo Chen 已提交
587 588
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
589
            self.assertTrue(isinstance(str(var), str))
L
Leo Chen 已提交
590

591 592 593 594 595 596
    def test_to_string(self):
        with _test_eager_guard():
            self.func_test_to_string()
        self.func_test_to_string()

    def func_test_element_size(self):
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
        with fluid.dygraph.guard():
            x = paddle.to_tensor(1, dtype='bool')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='float16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.to_tensor(1, dtype='float32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.to_tensor(1, dtype='float64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='int8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='int16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.to_tensor(1, dtype='int32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.to_tensor(1, dtype='int64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='uint8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='complex64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='complex128')
            self.assertEqual(x.element_size(), 16)

631 632 633 634 635 636
    def test_element_size(self):
        with _test_eager_guard():
            self.func_test_element_size()
        self.func_test_element_size()

    def func_test_backward(self):
L
Leo Chen 已提交
637 638 639 640 641 642 643 644
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
            loss = fluid.layers.relu(var)
            loss.backward()
            grad_var = var._grad_ivar()
            self.assertEqual(grad_var.shape, self.shape)

645 646 647 648 649 650
    def test_backward(self):
        with _test_eager_guard():
            self.func_test_backward()
        self.func_test_backward()

    def func_test_gradient(self):
L
Leo Chen 已提交
651 652 653 654 655 656 657 658
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
            loss = fluid.layers.relu(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, self.array.shape)

659 660 661 662 663 664
    def test_gradient(self):
        with _test_eager_guard():
            self.func_test_gradient()
        self.func_test_gradient()

    def func_test_block(self):
L
Leo Chen 已提交
665 666 667 668 669
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            self.assertEqual(var.block,
                             fluid.default_main_program().global_block())

670 671 672 673 674
    def test_block(self):
        with _test_eager_guard():
            self.func_test_block()
        self.func_test_block()

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
    def _test_slice(self):
        w = fluid.dygraph.to_variable(
            np.random.random((784, 100, 100)).astype('float64'))

        for i in range(3):
            nw = w[i]
            self.assertEqual((100, 100), tuple(nw.shape))

        nw = w[:]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :, -1]
        self.assertEqual((784, 100), tuple(nw.shape))

        nw = w[1, 1, 1]

        self.assertEqual(len(nw.shape), 1)
        self.assertEqual(nw.shape[0], 1)

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), tuple(nw.shape))

700 701 702 703
        tensor_array = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                                 [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                                 [[19, 20, 21], [22, 23, 24],
                                  [25, 26, 27]]]).astype('float32')
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, 1, 1]
        var2 = var[1:]
        var3 = var[0:1]
        var4 = var[::-1]
        var5 = var[1, 1:, 1:]
        var_reshape = fluid.layers.reshape(var, [3, -1, 3])
        var6 = var_reshape[:, :, -1]
        var7 = var[:, :, :-1]
        var8 = var[:1, :1, :1]
        var9 = var[:-1, :-1, :-1]
        var10 = var[::-1, :1, :-1]
        var11 = var[:-1, ::-1, -1:]
        var12 = var[1:2, 2:, ::-1]
        var13 = var[2:10, 2:, -2:-1]
        var14 = var[1:-1, 0:2, ::-1]
        var15 = var[::-1, ::-1, ::-1]
721
        var16 = var[-4:4]
722 723
        var17 = var[:, 0, 0:0]
        var18 = var[:, 1:1:2]
724 725 726

        vars = [
            var, var1, var2, var3, var4, var5, var6, var7, var8, var9, var10,
727
            var11, var12, var13, var14, var15, var16, var17, var18
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
        ]
        local_out = [var.numpy() for var in vars]

        self.assertTrue(np.array_equal(local_out[1], tensor_array[0, 1, 1:2]))
        self.assertTrue(np.array_equal(local_out[2], tensor_array[1:]))
        self.assertTrue(np.array_equal(local_out[3], tensor_array[0:1]))
        self.assertTrue(np.array_equal(local_out[4], tensor_array[::-1]))
        self.assertTrue(np.array_equal(local_out[5], tensor_array[1, 1:, 1:]))
        self.assertTrue(
            np.array_equal(local_out[6],
                           tensor_array.reshape((3, -1, 3))[:, :, -1]))
        self.assertTrue(np.array_equal(local_out[7], tensor_array[:, :, :-1]))
        self.assertTrue(np.array_equal(local_out[8], tensor_array[:1, :1, :1]))
        self.assertTrue(
            np.array_equal(local_out[9], tensor_array[:-1, :-1, :-1]))
        self.assertTrue(
            np.array_equal(local_out[10], tensor_array[::-1, :1, :-1]))
        self.assertTrue(
            np.array_equal(local_out[11], tensor_array[:-1, ::-1, -1:]))
        self.assertTrue(
            np.array_equal(local_out[12], tensor_array[1:2, 2:, ::-1]))
        self.assertTrue(
            np.array_equal(local_out[13], tensor_array[2:10, 2:, -2:-1]))
        self.assertTrue(
            np.array_equal(local_out[14], tensor_array[1:-1, 0:2, ::-1]))
        self.assertTrue(
            np.array_equal(local_out[15], tensor_array[::-1, ::-1, ::-1]))
755
        self.assertTrue(np.array_equal(local_out[16], tensor_array[-4:4]))
756 757
        self.assertTrue(np.array_equal(local_out[17], tensor_array[:, 0, 0:0]))
        self.assertTrue(np.array_equal(local_out[18], tensor_array[:, 1:1:2]))
758

759
    def _test_slice_for_tensor_attr(self):
760 761 762 763
        tensor_array = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                                 [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                                 [[19, 20, 21], [22, 23, 24],
                                  [25, 26, 27]]]).astype('float32')
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822

        var = paddle.to_tensor(tensor_array)

        one = paddle.ones(shape=[1], dtype="int32")
        two = paddle.full(shape=[1], fill_value=2, dtype="int32")
        negative_one = paddle.full(shape=[1], fill_value=-1, dtype="int32")
        four = paddle.full(shape=[1], fill_value=4, dtype="int32")

        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, one, one]
        var2 = var[one:]
        var3 = var[0:one]
        var4 = var[::negative_one]
        var5 = var[one, one:, one:]
        var_reshape = fluid.layers.reshape(var, [3, negative_one, 3])
        var6 = var_reshape[:, :, negative_one]
        var7 = var[:, :, :negative_one]
        var8 = var[:one, :one, :1]
        var9 = var[:-1, :negative_one, :negative_one]
        var10 = var[::negative_one, :one, :negative_one]
        var11 = var[:negative_one, ::-1, negative_one:]
        var12 = var[one:2, 2:, ::negative_one]
        var13 = var[two:10, 2:, -2:negative_one]
        var14 = var[1:negative_one, 0:2, ::negative_one]
        var15 = var[::negative_one, ::-1, ::negative_one]
        var16 = var[-4:4]

        vars = [
            var, var1, var2, var3, var4, var5, var6, var7, var8, var9, var10,
            var11, var12, var13, var14, var15, var16
        ]
        local_out = [var.numpy() for var in vars]

        self.assertTrue(np.array_equal(local_out[1], tensor_array[0, 1, 1:2]))
        self.assertTrue(np.array_equal(local_out[2], tensor_array[1:]))
        self.assertTrue(np.array_equal(local_out[3], tensor_array[0:1]))
        self.assertTrue(np.array_equal(local_out[4], tensor_array[::-1]))
        self.assertTrue(np.array_equal(local_out[5], tensor_array[1, 1:, 1:]))
        self.assertTrue(
            np.array_equal(local_out[6],
                           tensor_array.reshape((3, -1, 3))[:, :, -1]))
        self.assertTrue(np.array_equal(local_out[7], tensor_array[:, :, :-1]))
        self.assertTrue(np.array_equal(local_out[8], tensor_array[:1, :1, :1]))
        self.assertTrue(
            np.array_equal(local_out[9], tensor_array[:-1, :-1, :-1]))
        self.assertTrue(
            np.array_equal(local_out[10], tensor_array[::-1, :1, :-1]))
        self.assertTrue(
            np.array_equal(local_out[11], tensor_array[:-1, ::-1, -1:]))
        self.assertTrue(
            np.array_equal(local_out[12], tensor_array[1:2, 2:, ::-1]))
        self.assertTrue(
            np.array_equal(local_out[13], tensor_array[2:10, 2:, -2:-1]))
        self.assertTrue(
            np.array_equal(local_out[14], tensor_array[1:-1, 0:2, ::-1]))
        self.assertTrue(
            np.array_equal(local_out[15], tensor_array[::-1, ::-1, ::-1]))
        self.assertTrue(np.array_equal(local_out[16], tensor_array[-4:4]))

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
    def _test_for_getitem_ellipsis_index(self):
        shape = (64, 3, 5, 256)
        np_fp32_value = np.random.random(shape).astype('float32')
        np_int_value = np.random.randint(1, 100, shape)

        var_fp32 = paddle.to_tensor(np_fp32_value)
        var_int = paddle.to_tensor(np_int_value)

        def assert_getitem_ellipsis_index(var_tensor, var_np):
            var = [
                var_tensor[..., 0].numpy(),
                var_tensor[..., 1, 0].numpy(),
                var_tensor[0, ..., 1, 0].numpy(),
                var_tensor[1, ..., 1].numpy(),
                var_tensor[2, ...].numpy(),
                var_tensor[2, 0, ...].numpy(),
                var_tensor[2, 0, 1, ...].numpy(),
                var_tensor[...].numpy(),
                var_tensor[:, ..., 100].numpy(),
            ]

            self.assertTrue(np.array_equal(var[0], var_np[..., 0]))
            self.assertTrue(np.array_equal(var[1], var_np[..., 1, 0]))
            self.assertTrue(np.array_equal(var[2], var_np[0, ..., 1, 0]))
            self.assertTrue(np.array_equal(var[3], var_np[1, ..., 1]))
            self.assertTrue(np.array_equal(var[4], var_np[2, ...]))
            self.assertTrue(np.array_equal(var[5], var_np[2, 0, ...]))
            self.assertTrue(np.array_equal(var[6], var_np[2, 0, 1, ...]))
            self.assertTrue(np.array_equal(var[7], var_np[...]))
            self.assertTrue(np.array_equal(var[8], var_np[:, ..., 100]))

        var_fp32 = paddle.to_tensor(np_fp32_value)
        var_int = paddle.to_tensor(np_int_value)

        assert_getitem_ellipsis_index(var_fp32, np_fp32_value)
        assert_getitem_ellipsis_index(var_int, np_int_value)

860 861 862 863 864
        # test 1 dim tensor
        var_one_dim = paddle.to_tensor([1, 2, 3, 4])
        self.assertTrue(
            np.array_equal(var_one_dim[..., 0].numpy(), np.array([1])))

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
    def _test_none_index(self):
        shape = (8, 64, 5, 256)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)

        var = [
            var_tensor[1, 0, None].numpy(),
            var_tensor[None, ..., 1, 0].numpy(),
            var_tensor[:, :, :, None].numpy(),
            var_tensor[1, ..., 1, None].numpy(),
            var_tensor[2, ..., None, None].numpy(),
            var_tensor[None, 2, 0, ...].numpy(),
            var_tensor[None, 2, None, 1].numpy(),
            var_tensor[None].numpy(),
            var_tensor[0, 0, None, 0, 0, None].numpy(),
880
            var_tensor[None, None, 0, ..., None].numpy(),
881
            var_tensor[..., None, :, None].numpy(),
882 883 884 885 886 887 888 889 890 891 892
            var_tensor[0, 1:10:2, None, None, ...].numpy(),
        ]

        self.assertTrue(np.array_equal(var[0], np_value[1, 0, None]))
        self.assertTrue(np.array_equal(var[1], np_value[None, ..., 1, 0]))
        self.assertTrue(np.array_equal(var[2], np_value[:, :, :, None]))
        self.assertTrue(np.array_equal(var[3], np_value[1, ..., 1, None]))
        self.assertTrue(np.array_equal(var[4], np_value[2, ..., None, None]))
        self.assertTrue(np.array_equal(var[5], np_value[None, 2, 0, ...]))
        self.assertTrue(np.array_equal(var[6], np_value[None, 2, None, 1]))
        self.assertTrue(np.array_equal(var[7], np_value[None]))
893 894
        self.assertTrue(np.array_equal(var[8], np_value[0, 0, None, 0, 0,
                                                        None]))
895 896
        self.assertTrue(
            np.array_equal(var[9], np_value[None, None, 0, ..., None]))
897
        self.assertTrue(np.array_equal(var[10], np_value[..., None, :, None]))
898

899 900
        # TODO(zyfncg) there is a bug of dimensions when slice step > 1 and
        #              indexs has int type
901
        # self.assertTrue(
902
        #     np.array_equal(var[11], np_value[0, 1:10:2, None, None, ...]))
903

Z
zyfncg 已提交
904 905 906 907 908
    def _test_bool_index(self):
        shape = (4, 2, 5, 64)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)
        index = [[True, True, True, True], [True, False, True, True],
909 910
                 [True, False, False, True], [False, 0, 1, True, True],
                 [False, False, False, False]]
Z
zyfncg 已提交
911 912 913 914
        index2d = np.array([[True, True], [False, False], [True, False],
                            [True, True]])
        tensor_index = paddle.to_tensor(index2d)
        var = [
915 916
            var_tensor[index[0]].numpy(), var_tensor[index[1]].numpy(),
            var_tensor[index[2]].numpy(), var_tensor[index[3]].numpy(),
Z
zyfncg 已提交
917 918
            var_tensor[paddle.to_tensor(index[0])].numpy(),
            var_tensor[tensor_index].numpy(),
919
            var_tensor[paddle.to_tensor(index[4])].numpy()
Z
zyfncg 已提交
920 921 922 923 924 925 926
        ]
        self.assertTrue(np.array_equal(var[0], np_value[index[0]]))
        self.assertTrue(np.array_equal(var[1], np_value[index[1]]))
        self.assertTrue(np.array_equal(var[2], np_value[index[2]]))
        self.assertTrue(np.array_equal(var[3], np_value[index[3]]))
        self.assertTrue(np.array_equal(var[4], np_value[index[0]]))
        self.assertTrue(np.array_equal(var[5], np_value[index2d]))
927
        self.assertTrue(np.array_equal(var[6], np_value[index[4]]))
Z
zyfncg 已提交
928
        self.assertTrue(
929 930
            np.array_equal(var_tensor[var_tensor > 0.67],
                           np_value[np_value > 0.67]))
Z
zyfncg 已提交
931
        self.assertTrue(
932 933
            np.array_equal(var_tensor[var_tensor < 0.55],
                           np_value[np_value < 0.55]))
Z
zyfncg 已提交
934 935 936 937 938 939 940 941 942 943

        with self.assertRaises(ValueError):
            var_tensor[[False, False, False, False]]
        with self.assertRaises(ValueError):
            var_tensor[[True, False]]
        with self.assertRaises(ValueError):
            var_tensor[[True, False, False, False, False]]
        with self.assertRaises(IndexError):
            var_tensor[paddle.to_tensor([[True, False, False, False]])]

944 945 946 947 948 949
    def _test_scalar_bool_index(self):
        shape = (1, 2, 5, 64)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)
        index = [True]
        tensor_index = paddle.to_tensor(index)
950 951 952
        var = [
            var_tensor[tensor_index].numpy(),
        ]
953 954
        self.assertTrue(np.array_equal(var[0], np_value[index]))

H
hong 已提交
955 956 957 958 959 960 961
    def _test_for_var(self):
        np_value = np.random.random((30, 100, 100)).astype('float32')
        w = fluid.dygraph.to_variable(np_value)

        for i, e in enumerate(w):
            self.assertTrue(np.array_equal(e.numpy(), np_value[i]))

962 963 964 965 966
    def _test_numpy_index(self):
        array = np.arange(120).reshape([4, 5, 6])
        t = paddle.to_tensor(array)
        self.assertTrue(np.array_equal(t[np.longlong(0)].numpy(), array[0]))
        self.assertTrue(
967 968 969
            np.array_equal(
                t[np.longlong(0):np.longlong(4):np.longlong(2)].numpy(),
                array[0:4:2]))
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
        self.assertTrue(np.array_equal(t[np.int64(0)].numpy(), array[0]))
        self.assertTrue(
            np.array_equal(t[np.int32(1):np.int32(4):np.int32(2)].numpy(),
                           array[1:4:2]))
        self.assertTrue(
            np.array_equal(t[np.int16(0):np.int16(4):np.int16(2)].numpy(),
                           array[0:4:2]))

    def _test_list_index(self):
        # case1:
        array = np.arange(120).reshape([6, 5, 4])
        x = paddle.to_tensor(array)
        py_idx = [[0, 2, 0, 1, 3], [0, 0, 1, 2, 0]]
        idx = [paddle.to_tensor(py_idx[0]), paddle.to_tensor(py_idx[1])]
        self.assertTrue(np.array_equal(x[idx].numpy(), array[py_idx]))
        self.assertTrue(np.array_equal(x[py_idx].numpy(), array[py_idx]))
        # case2:
        tensor_x = paddle.to_tensor(
            np.zeros(12).reshape(2, 6).astype(np.float32))
989 990
        tensor_y1 = paddle.zeros([1], dtype='int32') + 2
        tensor_y2 = paddle.zeros([1], dtype='int32') + 5
991 992 993 994 995 996
        tensor_x[:, tensor_y1:tensor_y2] = 42
        res = tensor_x.numpy()
        exp = np.array([[0., 0., 42., 42., 42., 0.],
                        [0., 0., 42., 42., 42., 0.]])
        self.assertTrue(np.array_equal(res, exp))

W
WeiXin 已提交
997 998 999 1000 1001
        # case3:
        row = np.array([0, 1, 2])
        col = np.array([2, 1, 3])
        self.assertTrue(np.array_equal(array[row, col], x[row, col].numpy()))

W
wanghuancoder 已提交
1002
    def func_test_slice(self):
L
Leo Chen 已提交
1003
        with fluid.dygraph.guard():
1004
            self._test_slice()
1005
            self._test_slice_for_tensor_attr()
H
hong 已提交
1006
            self._test_for_var()
1007
            self._test_for_getitem_ellipsis_index()
1008
            self._test_none_index()
Z
zyfncg 已提交
1009
            self._test_bool_index()
1010
            self._test_scalar_bool_index()
1011 1012
            self._test_numpy_index()
            self._test_list_index()
1013

L
Leo Chen 已提交
1014 1015
            var = fluid.dygraph.to_variable(self.array)
            self.assertTrue(np.array_equal(var[1, :].numpy(), self.array[1, :]))
1016
            self.assertTrue(np.array_equal(var[::-1].numpy(), self.array[::-1]))
L
Leo Chen 已提交
1017

H
hong 已提交
1018 1019 1020
            with self.assertRaises(IndexError):
                y = var[self.shape[0]]

1021 1022 1023
            with self.assertRaises(IndexError):
                y = var[0 - self.shape[0] - 1]

W
WeiXin 已提交
1024 1025 1026 1027
            with self.assertRaises(IndexError):
                mask = np.array([1, 0, 1, 0], dtype=bool)
                var[paddle.to_tensor([0, 1]), mask]

W
wanghuancoder 已提交
1028 1029 1030 1031 1032
    def test_slice(self):
        with _test_eager_guard():
            self.func_test_slice()
        self.func_test_slice()

1033
    def func_test_var_base_to_np(self):
L
Leo Chen 已提交
1034 1035 1036 1037 1038 1039
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            self.assertTrue(
                np.array_equal(var.numpy(),
                               fluid.framework._var_base_to_np(var)))

1040 1041 1042 1043 1044 1045
    def test_var_base_to_np(self):
        with _test_eager_guard():
            self.func_test_var_base_to_np()
        self.func_test_var_base_to_np()

    def func_test_var_base_as_np(self):
1046 1047 1048 1049
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            self.assertTrue(np.array_equal(var.numpy(), np.array(var)))
            self.assertTrue(
1050
                np.array_equal(var.numpy(), np.array(var, dtype=np.float32)))
1051

1052 1053 1054 1055 1056 1057
    def test_var_base_as_np(self):
        with _test_eager_guard():
            self.func_test_var_base_as_np()
        self.func_test_var_base_as_np()

    def func_test_if(self):
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
        with fluid.dygraph.guard():
            var1 = fluid.dygraph.to_variable(np.array([[[0]]]))
            var2 = fluid.dygraph.to_variable(np.array([[[1]]]))

            var1_bool = False
            var2_bool = False

            if var1:
                var1_bool = True

            if var2:
                var2_bool = True

            assert var1_bool == False, "if var1 should be false"
            assert var2_bool == True, "if var2 should be true"
            assert bool(var1) == False, "bool(var1) is False"
            assert bool(var2) == True, "bool(var2) is True"

1076 1077 1078 1079 1080 1081
    def test_if(self):
        with _test_eager_guard():
            self.func_test_if()
        self.func_test_if()

    def func_test_to_static_var(self):
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
        with fluid.dygraph.guard():
            # Convert VarBase into Variable or Parameter
            var_base = fluid.dygraph.to_variable(self.array, name="var_base_1")
            static_var = var_base._to_static_var()
            self._assert_to_static(var_base, static_var)

            var_base = fluid.dygraph.to_variable(self.array, name="var_base_2")
            static_param = var_base._to_static_var(to_parameter=True)
            self._assert_to_static(var_base, static_param, True)

            # Convert ParamBase into Parameter
            fc = fluid.dygraph.Linear(
                10,
                20,
                param_attr=fluid.ParamAttr(
                    learning_rate=0.001,
                    do_model_average=True,
                    regularizer=fluid.regularizer.L1Decay()))
            weight = fc.parameters()[0]
            static_param = weight._to_static_var()
            self._assert_to_static(weight, static_param, True)

1104 1105 1106 1107 1108
    def test_to_static_var(self):
        with _test_eager_guard():
            self.func_test_to_static_var()
        self.func_test_to_static_var()

1109 1110 1111 1112 1113 1114
    def _assert_to_static(self, var_base, static_var, is_param=False):
        if is_param:
            self.assertTrue(isinstance(static_var, fluid.framework.Parameter))
            self.assertTrue(static_var.persistable, True)
            if isinstance(var_base, fluid.framework.ParamBase):
                for attr in ['trainable', 'is_distributed', 'do_model_average']:
1115 1116
                    self.assertEqual(getattr(var_base, attr),
                                     getattr(static_var, attr))
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

                self.assertEqual(static_var.optimize_attr['learning_rate'],
                                 0.001)
                self.assertTrue(
                    isinstance(static_var.regularizer,
                               fluid.regularizer.L1Decay))
        else:
            self.assertTrue(isinstance(static_var, fluid.framework.Variable))

        attr_keys = ['block', 'dtype', 'type', 'name']
        for attr in attr_keys:
            self.assertEqual(getattr(var_base, attr), getattr(static_var, attr))

        self.assertListEqual(list(var_base.shape), list(static_var.shape))

1132
    def func_test_tensor_str(self):
Z
Zhou Wei 已提交
1133
        paddle.enable_static()
1134
        paddle.disable_static(paddle.CPUPlace())
C
cnn 已提交
1135
        paddle.seed(10)
1136 1137 1138 1139
        a = paddle.rand([10, 20])
        paddle.set_printoptions(4, 100, 3)
        a_str = str(a)

1140
        expected = '''Tensor(shape=[10, 20], dtype=float32, place=Place(cpu), stop_gradient=True,
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
       [[0.2727, 0.5489, 0.8655, ..., 0.2916, 0.8525, 0.9000],
        [0.3806, 0.8996, 0.0928, ..., 0.9535, 0.8378, 0.6409],
        [0.1484, 0.4038, 0.8294, ..., 0.0148, 0.6520, 0.4250],
        ...,
        [0.3426, 0.1909, 0.7240, ..., 0.4218, 0.2676, 0.5679],
        [0.5561, 0.2081, 0.0676, ..., 0.9778, 0.3302, 0.9559],
        [0.2665, 0.8483, 0.5389, ..., 0.4956, 0.6862, 0.9178]])'''

        self.assertEqual(a_str, expected)

1151 1152 1153 1154 1155 1156
    def test_tensor_str(self):
        with _test_eager_guard():
            self.func_test_tensor_str()
        self.func_test_tensor_str()

    def func_test_tensor_str2(self):
1157 1158 1159 1160
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[1.5111111, 1.0], [0, 0]])
        a_str = str(a)

1161
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
1162 1163 1164 1165 1166
       [[1.5111, 1.    ],
        [0.    , 0.    ]])'''

        self.assertEqual(a_str, expected)

1167 1168 1169 1170 1171 1172
    def test_tensor_str2(self):
        with _test_eager_guard():
            self.func_test_tensor_str2()
        self.func_test_tensor_str2()

    def func_test_tensor_str3(self):
1173 1174 1175 1176
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[-1.5111111, 1.0], [0, -0.5]])
        a_str = str(a)

1177
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
1178 1179 1180 1181 1182
       [[-1.5111,  1.    ],
        [ 0.    , -0.5000]])'''

        self.assertEqual(a_str, expected)

1183 1184 1185 1186 1187 1188
    def test_tensor_str3(self):
        with _test_eager_guard():
            self.func_test_tensor_str3()
        self.func_test_tensor_str3()

    def func_test_tensor_str_scaler(self):
1189 1190 1191 1192
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor(np.array(False))
        a_str = str(a)

1193
        expected = '''Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True,
1194 1195 1196 1197
       False)'''

        self.assertEqual(a_str, expected)

1198 1199 1200 1201 1202 1203
    def test_tensor_str_scaler(self):
        with _test_eager_guard():
            self.func_test_tensor_str_scaler()
        self.func_test_tensor_str_scaler()

    def func_test_tensor_str_shape_with_zero(self):
1204 1205 1206 1207 1208
        paddle.disable_static(paddle.CPUPlace())
        x = paddle.ones((10, 10))
        y = paddle.fluid.layers.where(x == 0)
        a_str = str(y)

1209
        expected = '''Tensor(shape=[0, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
1210 1211 1212 1213
       [])'''

        self.assertEqual(a_str, expected)

1214 1215 1216 1217 1218 1219
    def test_tensor_str_shape_with_zero(self):
        with _test_eager_guard():
            self.func_test_tensor_str_shape_with_zero()
        self.func_test_tensor_str_shape_with_zero()

    def func_test_tensor_str_linewidth(self):
1220 1221 1222
        paddle.disable_static(paddle.CPUPlace())
        paddle.seed(2021)
        x = paddle.rand([128])
1223 1224 1225 1226
        paddle.set_printoptions(precision=4,
                                threshold=1000,
                                edgeitems=3,
                                linewidth=80)
1227 1228
        a_str = str(x)

1229
        expected = '''Tensor(shape=[128], dtype=float32, place=Place(cpu), stop_gradient=True,
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
       [0.3759, 0.0278, 0.2489, 0.3110, 0.9105, 0.7381, 0.1905, 0.4726, 0.2435,
        0.9142, 0.3367, 0.7243, 0.7664, 0.9915, 0.2921, 0.1363, 0.8096, 0.2915,
        0.9564, 0.9972, 0.2573, 0.2597, 0.3429, 0.2484, 0.9579, 0.7003, 0.4126,
        0.4274, 0.0074, 0.9686, 0.9910, 0.0144, 0.6564, 0.2932, 0.7114, 0.9301,
        0.6421, 0.0538, 0.1273, 0.5771, 0.9336, 0.6416, 0.1832, 0.9311, 0.7702,
        0.7474, 0.4479, 0.3382, 0.5579, 0.0444, 0.9802, 0.9874, 0.3038, 0.5640,
        0.2408, 0.5489, 0.8866, 0.1006, 0.5881, 0.7560, 0.7928, 0.8604, 0.4670,
        0.9285, 0.1482, 0.4541, 0.1307, 0.6221, 0.4902, 0.1147, 0.4415, 0.2987,
        0.7276, 0.2077, 0.7551, 0.9652, 0.4369, 0.2282, 0.0047, 0.2934, 0.4308,
        0.4190, 0.1442, 0.3650, 0.3056, 0.6535, 0.1211, 0.8721, 0.7408, 0.4220,
        0.5937, 0.3123, 0.9198, 0.0275, 0.5338, 0.4622, 0.7521, 0.3609, 0.4703,
        0.1736, 0.8976, 0.7616, 0.3756, 0.2416, 0.2907, 0.3246, 0.4305, 0.5717,
        0.0735, 0.0361, 0.5534, 0.4399, 0.9260, 0.6525, 0.3064, 0.4573, 0.9210,
        0.8269, 0.2424, 0.7494, 0.8945, 0.7098, 0.8078, 0.4707, 0.5715, 0.7232,
        0.4678, 0.5047])'''

        self.assertEqual(a_str, expected)

1248 1249 1250 1251 1252 1253
    def test_tensor_str_linewidth(self):
        with _test_eager_guard():
            self.func_test_tensor_str_linewidth()
        self.func_test_tensor_str_linewidth()

    def func_test_tensor_str_linewidth2(self):
1254 1255 1256 1257 1258 1259
        paddle.disable_static(paddle.CPUPlace())
        paddle.seed(2021)
        x = paddle.rand([128])
        paddle.set_printoptions(precision=4, linewidth=160, sci_mode=True)
        a_str = str(x)

1260
        expected = '''Tensor(shape=[128], dtype=float32, place=Place(cpu), stop_gradient=True,
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
       [3.7587e-01, 2.7798e-02, 2.4891e-01, 3.1097e-01, 9.1053e-01, 7.3811e-01, 1.9045e-01, 4.7258e-01, 2.4354e-01, 9.1415e-01, 3.3666e-01, 7.2428e-01,
        7.6640e-01, 9.9146e-01, 2.9215e-01, 1.3625e-01, 8.0957e-01, 2.9153e-01, 9.5642e-01, 9.9718e-01, 2.5732e-01, 2.5973e-01, 3.4292e-01, 2.4841e-01,
        9.5794e-01, 7.0029e-01, 4.1260e-01, 4.2737e-01, 7.3788e-03, 9.6863e-01, 9.9102e-01, 1.4416e-02, 6.5640e-01, 2.9318e-01, 7.1136e-01, 9.3008e-01,
        6.4209e-01, 5.3849e-02, 1.2730e-01, 5.7712e-01, 9.3359e-01, 6.4155e-01, 1.8320e-01, 9.3110e-01, 7.7021e-01, 7.4736e-01, 4.4793e-01, 3.3817e-01,
        5.5794e-01, 4.4412e-02, 9.8023e-01, 9.8735e-01, 3.0376e-01, 5.6397e-01, 2.4082e-01, 5.4893e-01, 8.8659e-01, 1.0065e-01, 5.8812e-01, 7.5600e-01,
        7.9280e-01, 8.6041e-01, 4.6701e-01, 9.2852e-01, 1.4821e-01, 4.5410e-01, 1.3074e-01, 6.2210e-01, 4.9024e-01, 1.1466e-01, 4.4154e-01, 2.9868e-01,
        7.2758e-01, 2.0766e-01, 7.5508e-01, 9.6522e-01, 4.3688e-01, 2.2823e-01, 4.7394e-03, 2.9342e-01, 4.3083e-01, 4.1902e-01, 1.4416e-01, 3.6500e-01,
        3.0560e-01, 6.5350e-01, 1.2115e-01, 8.7206e-01, 7.4081e-01, 4.2203e-01, 5.9372e-01, 3.1230e-01, 9.1979e-01, 2.7486e-02, 5.3383e-01, 4.6224e-01,
        7.5211e-01, 3.6094e-01, 4.7034e-01, 1.7355e-01, 8.9763e-01, 7.6165e-01, 3.7557e-01, 2.4157e-01, 2.9074e-01, 3.2458e-01, 4.3049e-01, 5.7171e-01,
        7.3509e-02, 3.6087e-02, 5.5341e-01, 4.3993e-01, 9.2601e-01, 6.5248e-01, 3.0640e-01, 4.5727e-01, 9.2104e-01, 8.2688e-01, 2.4243e-01, 7.4937e-01,
        8.9448e-01, 7.0981e-01, 8.0783e-01, 4.7065e-01, 5.7154e-01, 7.2319e-01, 4.6777e-01, 5.0465e-01])'''

        self.assertEqual(a_str, expected)

1275 1276 1277 1278 1279 1280
    def test_tensor_str_linewidth2(self):
        with _test_eager_guard():
            self.func_test_tensor_str_linewidth2()
        self.func_test_tensor_str_linewidth2()

    def func_tensor_str_bf16(self):
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[1.5, 1.0], [0, 0]])
        a = paddle.cast(a, dtype=core.VarDesc.VarType.BF16)
        paddle.set_printoptions(precision=4)
        a_str = str(a)

        expected = '''Tensor(shape=[2, 2], dtype=bfloat16, place=Place(cpu), stop_gradient=True,
       [[1.5000, 1.    ],
        [0.    , 0.    ]])'''

        self.assertEqual(a_str, expected)

1293 1294 1295 1296 1297
    def test_tensor_str_bf16(self):
        with _test_eager_guard():
            self.func_tensor_str_bf16()
        self.func_tensor_str_bf16()

1298 1299 1300 1301 1302 1303
    def test_tensor_str_bf16(self):
        with _test_eager_guard():
            self.func_tensor_str_bf16()
        self.func_tensor_str_bf16()

    def func_test_print_tensor_dtype(self):
L
Leo Chen 已提交
1304 1305 1306 1307 1308 1309 1310
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.rand([1])
        a_str = str(a.dtype)

        expected = 'paddle.float32'

        self.assertEqual(a_str, expected)
1311 1312 1313 1314 1315

    def test_print_tensor_dtype(self):
        with _test_eager_guard():
            self.func_test_print_tensor_dtype()
        self.func_test_print_tensor_dtype()
L
Leo Chen 已提交
1316

L
Leo Chen 已提交
1317

1318
class TestVarBaseSetitem(unittest.TestCase):
1319

1320
    def func_setUp(self):
1321 1322 1323
        self.set_dtype()
        self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
1324 1325
        self.tensor_value = paddle.to_tensor(self.np_value)

1326 1327 1328
    def set_dtype(self):
        self.dtype = "int32"

1329
    def _test(self, value):
J
Jiabin Yang 已提交
1330
        if _in_legacy_dygraph():
W
wanghuancoder 已提交
1331
            self.assertEqual(self.tensor_x.inplace_version, 0)
1332

1333
        id_origin = id(self.tensor_x)
1334
        self.tensor_x[0] = value
J
Jiabin Yang 已提交
1335
        if _in_legacy_dygraph():
W
wanghuancoder 已提交
1336
            self.assertEqual(self.tensor_x.inplace_version, 1)
1337 1338

        if isinstance(value, (six.integer_types, float)):
1339
            result = np.zeros((2, 3)).astype(self.dtype) + value
1340 1341 1342 1343 1344 1345 1346 1347

        else:
            result = self.np_value

        self.assertTrue(np.array_equal(self.tensor_x[0].numpy(), result))
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[1:2] = value
J
Jiabin Yang 已提交
1348
        if _in_legacy_dygraph():
W
wanghuancoder 已提交
1349
            self.assertEqual(self.tensor_x.inplace_version, 2)
1350 1351 1352 1353
        self.assertTrue(np.array_equal(self.tensor_x[1].numpy(), result))
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[...] = value
J
Jiabin Yang 已提交
1354
        if _in_legacy_dygraph():
W
wanghuancoder 已提交
1355
            self.assertEqual(self.tensor_x.inplace_version, 3)
1356 1357 1358
        self.assertTrue(np.array_equal(self.tensor_x[3].numpy(), result))
        self.assertEqual(id_origin, id(self.tensor_x))

W
wanghuancoder 已提交
1359
    def func_test_value_tensor(self):
1360 1361
        self._test(self.tensor_value)

W
wanghuancoder 已提交
1362 1363
    def test_value_tensor(self):
        with _test_eager_guard():
1364
            self.func_setUp()
W
wanghuancoder 已提交
1365
            self.func_test_value_tensor()
1366
        self.func_setUp()
W
wanghuancoder 已提交
1367 1368 1369
        self.func_test_value_tensor()

    def func_test_value_numpy(self):
1370 1371
        self._test(self.np_value)

W
wanghuancoder 已提交
1372 1373
    def test_value_numpy(self):
        with _test_eager_guard():
1374
            self.func_setUp()
W
wanghuancoder 已提交
1375
            self.func_test_value_numpy()
1376
        self.func_setUp()
W
wanghuancoder 已提交
1377 1378 1379
        self.func_test_value_numpy()

    def func_test_value_int(self):
1380 1381
        self._test(10)

W
wanghuancoder 已提交
1382 1383
    def test_value_int(self):
        with _test_eager_guard():
1384
            self.func_setUp()
W
wanghuancoder 已提交
1385
            self.func_test_value_int()
1386
        self.func_setUp()
W
wanghuancoder 已提交
1387 1388
        self.func_test_value_int()

1389 1390

class TestVarBaseSetitemInt64(TestVarBaseSetitem):
1391

1392 1393 1394 1395 1396
    def set_dtype(self):
        self.dtype = "int64"


class TestVarBaseSetitemFp32(TestVarBaseSetitem):
1397

1398 1399 1400
    def set_dtype(self):
        self.dtype = "float32"

1401
    def func_test_value_float(self):
1402 1403 1404
        paddle.disable_static()
        self._test(3.3)

1405 1406 1407 1408 1409 1410 1411
    def test_value_float(self):
        with _test_eager_guard():
            self.func_setUp()
            self.func_test_value_float()
        self.func_setUp()
        self.func_test_value_float()

1412

1413
class TestVarBaseSetitemFp64(TestVarBaseSetitem):
1414

1415 1416 1417 1418
    def set_dtype(self):
        self.dtype = "float64"


1419
class TestVarBaseSetitemBoolIndex(unittest.TestCase):
1420

1421
    def func_setUp(self):
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
        paddle.disable_static()
        self.set_dtype()
        self.set_input()

    def set_input(self):
        self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
        self.tensor_value = paddle.to_tensor(self.np_value)

    def set_dtype(self):
        self.dtype = "int32"

    def _test(self, value):
        paddle.disable_static()
        self.assertEqual(self.tensor_x.inplace_version, 0)

        id_origin = id(self.tensor_x)
        index_1 = paddle.to_tensor(np.array([True, False, False, False]))
        self.tensor_x[index_1] = value
        self.assertEqual(self.tensor_x.inplace_version, 1)

        if isinstance(value, (six.integer_types, float)):
            result = np.zeros((2, 3)).astype(self.dtype) + value

        else:
            result = self.np_value

        self.assertTrue(np.array_equal(self.tensor_x[0].numpy(), result))
        self.assertEqual(id_origin, id(self.tensor_x))

        index_2 = paddle.to_tensor(np.array([False, True, False, False]))
        self.tensor_x[index_2] = value
        self.assertEqual(self.tensor_x.inplace_version, 2)
        self.assertTrue(np.array_equal(self.tensor_x[1].numpy(), result))
        self.assertEqual(id_origin, id(self.tensor_x))

        index_3 = paddle.to_tensor(np.array([True, True, True, True]))
        self.tensor_x[index_3] = value
        self.assertEqual(self.tensor_x.inplace_version, 3)
        self.assertTrue(np.array_equal(self.tensor_x[3].numpy(), result))
        self.assertEqual(id_origin, id(self.tensor_x))

1464
    def func_test_value_tensor(self):
1465 1466 1467
        paddle.disable_static()
        self._test(self.tensor_value)

1468 1469 1470 1471 1472 1473 1474 1475
    def test_value_tensor(self):
        with _test_eager_guard():
            self.func_setUp()
            self.func_test_value_tensor()
        self.func_setUp()
        self.func_test_value_tensor()

    def func_test_value_numpy(self):
1476 1477 1478
        paddle.disable_static()
        self._test(self.np_value)

1479 1480 1481 1482 1483 1484 1485 1486
    def test_value_numpy(self):
        with _test_eager_guard():
            self.func_setUp()
            self.func_test_value_numpy()
        self.func_setUp()
        self.func_test_value_numpy()

    def func_test_value_int(self):
1487 1488 1489
        paddle.disable_static()
        self._test(10)

1490 1491 1492 1493 1494 1495 1496
    def test_value_int(self):
        with _test_eager_guard():
            self.func_setUp()
            self.func_test_value_int()
        self.func_setUp()
        self.func_test_value_int()

1497 1498

class TestVarBaseSetitemBoolScalarIndex(unittest.TestCase):
1499

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
    def set_input(self):
        self.tensor_x = paddle.to_tensor(np.ones((1, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
        self.tensor_value = paddle.to_tensor(self.np_value)

    def _test(self, value):
        paddle.disable_static()
        self.assertEqual(self.tensor_x.inplace_version, 0)

        id_origin = id(self.tensor_x)
        index = paddle.to_tensor(np.array([True]))
        self.tensor_x[index] = value
        self.assertEqual(self.tensor_x.inplace_version, 1)

        if isinstance(value, (six.integer_types, float)):
            result = np.zeros((2, 3)).astype(self.dtype) + value

        else:
            result = self.np_value

        self.assertTrue(np.array_equal(self.tensor_x[0].numpy(), result))
        self.assertEqual(id_origin, id(self.tensor_x))


1524
class TestVarBaseInplaceVersion(unittest.TestCase):
1525

1526
    def func_test_setitem(self):
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
        paddle.disable_static()

        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var[1] = 1
        self.assertEqual(var.inplace_version, 1)

        var[1:2] = 1
        self.assertEqual(var.inplace_version, 2)

1538 1539 1540 1541 1542 1543
    def test_setitem(self):
        with _test_eager_guard():
            self.func_test_setitem()
        self.func_test_setitem()

    def func_test_bump_inplace_version(self):
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
        paddle.disable_static()
        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 1)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 2)

1554 1555 1556 1557 1558
    def test_bump_inplace_version(self):
        with _test_eager_guard():
            self.func_test_bump_inplace_version()
        self.func_test_bump_inplace_version()

1559

1560
class TestVarBaseSlice(unittest.TestCase):
1561

1562
    def func_test_slice(self):
1563 1564 1565 1566 1567 1568 1569
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        actual_x = x._slice(0, 1)
        actual_x = paddle.to_tensor(actual_x)
        self.assertEqual(actual_x.numpy().all(), np_x[0:1].all())

1570 1571 1572 1573 1574
    def test_slice(self):
        with _test_eager_guard():
            self.func_test_slice()
        self.func_test_slice()

1575 1576

class TestVarBaseClear(unittest.TestCase):
1577

1578
    def func_test_clear(self):
1579 1580 1581 1582 1583 1584
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        x._clear()
        self.assertEqual(str(x), "Tensor(Not initialized)")

1585 1586 1587 1588 1589
    def test_clear(self):
        with _test_eager_guard():
            self.func_test_clear()
        self.func_test_clear()

1590 1591

class TestVarBaseOffset(unittest.TestCase):
1592

1593
    def func_offset(self):
1594 1595 1596 1597 1598 1599 1600 1601
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        expected_offset = 0
        actual_x = x._slice(expected_offset, 1)
        actual_x = paddle.to_tensor(actual_x)
        self.assertEqual(actual_x._offset(), expected_offset)

1602 1603 1604 1605 1606
    def test_offset(self):
        with _test_eager_guard():
            self.func_offset()
        self.func_offset()

1607

1608
class TestVarBaseShareBufferTo(unittest.TestCase):
1609

1610
    def func_test_share_buffer_To(self):
1611
        paddle.disable_static()
1612 1613 1614
        np_src = np.random.random((3, 8, 8))
        src = paddle.to_tensor(np_src, dtype="float64")
        # empty_var
1615 1616 1617 1618
        if _in_legacy_dygraph():
            dst = core.VarBase()
        else:
            dst = core.eager.Tensor()
1619 1620
        src._share_buffer_to(dst)
        self.assertEqual(src._is_shared_buffer_with(dst), True)
1621

1622 1623 1624 1625 1626
    def test_share_buffer_To(self):
        with _test_eager_guard():
            self.func_test_share_buffer_To()
        self.func_test_share_buffer_To()

1627 1628

class TestVarBaseTo(unittest.TestCase):
1629

1630
    def func_setUp(self):
1631 1632 1633 1634
        paddle.disable_static()
        self.np_x = np.random.random((3, 8, 8))
        self.x = paddle.to_tensor(self.np_x, dtype="float32")

1635
    def func_test_to_api(self):
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
        x_double = self.x._to(dtype='double')
        self.assertEqual(x_double.dtype, paddle.fluid.core.VarDesc.VarType.FP64)
        self.assertTrue(np.allclose(self.np_x, x_double))

        x_ = self.x._to()
        self.assertEqual(self.x.dtype, paddle.fluid.core.VarDesc.VarType.FP64)
        self.assertTrue(np.allclose(self.np_x, x_))

        if paddle.fluid.is_compiled_with_cuda():
            x_gpu = self.x._to(device=paddle.CUDAPlace(0))
            self.assertTrue(x_gpu.place.is_gpu_place())
            self.assertEqual(x_gpu.place.gpu_device_id(), 0)

            x_gpu0 = self.x._to(device='gpu:0')
            self.assertTrue(x_gpu0.place.is_gpu_place())
            self.assertEqual(x_gpu0.place.gpu_device_id(), 0)

            x_gpu1 = self.x._to(device='gpu:0', dtype="float64")
            self.assertTrue(x_gpu1.place.is_gpu_place())
            self.assertEqual(x_gpu1.place.gpu_device_id(), 0)
            self.assertEqual(x_gpu1.dtype,
                             paddle.fluid.core.VarDesc.VarType.FP64)

            x_gpu2 = self.x._to(device='gpu:0', dtype="float16")
            self.assertTrue(x_gpu2.place.is_gpu_place())
            self.assertEqual(x_gpu2.place.gpu_device_id(), 0)
            self.assertEqual(x_gpu2.dtype,
                             paddle.fluid.core.VarDesc.VarType.FP16)

        x_cpu = self.x._to(device=paddle.CPUPlace())
        self.assertTrue(x_cpu.place.is_cpu_place())

        x_cpu0 = self.x._to(device='cpu')
        self.assertTrue(x_cpu0.place.is_cpu_place())

        x_cpu1 = self.x._to(device=paddle.CPUPlace(), dtype="float64")
        self.assertTrue(x_cpu1.place.is_cpu_place())
        self.assertEqual(x_cpu1.dtype, paddle.fluid.core.VarDesc.VarType.FP64)

        x_cpu2 = self.x._to(device='cpu', dtype="float16")
        self.assertTrue(x_cpu2.place.is_cpu_place())
        self.assertEqual(x_cpu2.dtype, paddle.fluid.core.VarDesc.VarType.FP16)

        self.assertRaises(ValueError, self.x._to, device=1)
        self.assertRaises(AssertionError, self.x._to, blocking=1)

1682 1683 1684 1685 1686 1687 1688
    def test_to_api(self):
        with _test_eager_guard():
            self.func_setUp()
            self.func_test_to_api()
        self.func_setUp()
        self.func_test_to_api()

1689 1690

class TestVarBaseInitVarBaseFromTensorWithDevice(unittest.TestCase):
1691

1692
    def func_test_varbase_init(self):
1693 1694 1695 1696 1697 1698 1699
        paddle.disable_static()
        t = fluid.Tensor()
        np_x = np.random.random((3, 8, 8))
        t.set(np_x, fluid.CPUPlace())

        if paddle.fluid.is_compiled_with_cuda():
            device = paddle.CUDAPlace(0)
1700 1701 1702 1703
            if _in_legacy_dygraph():
                tmp = fluid.core.VarBase(t, device)
            else:
                tmp = fluid.core.eager.Tensor(t, device)
1704 1705 1706 1707
            self.assertTrue(tmp.place.is_gpu_place())
            self.assertEqual(tmp.numpy().all(), np_x.all())

        device = paddle.CPUPlace()
1708 1709 1710 1711
        if _in_legacy_dygraph():
            tmp = fluid.core.VarBase(t, device)
        else:
            tmp = fluid.core.eager.Tensor(t, device)
1712 1713
        self.assertEqual(tmp.numpy().all(), np_x.all())

1714 1715 1716 1717 1718
    def test_varbase_init(self):
        with _test_eager_guard():
            self.func_test_varbase_init()
        self.func_test_varbase_init()

1719 1720

class TestVarBaseNumel(unittest.TestCase):
1721

1722
    def func_test_numel_normal(self):
1723 1724 1725 1726 1727 1728 1729
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        x_actual_numel = x._numel()
        x_expected_numel = np.product((3, 8, 8))
        self.assertEqual(x_actual_numel, x_expected_numel)

1730 1731 1732 1733 1734 1735
    def test_numel_normal(self):
        with _test_eager_guard():
            self.func_test_numel_normal()
        self.func_test_numel_normal()

    def func_test_numel_without_holder(self):
1736
        paddle.disable_static()
1737 1738 1739 1740
        if _in_legacy_dygraph():
            x_without_holder = core.VarBase()
        else:
            x_without_holder = core.eager.Tensor()
1741 1742 1743
        x_actual_numel = x_without_holder._numel()
        self.assertEqual(x_actual_numel, 0)

1744 1745 1746 1747 1748
    def ttest_numel_without_holder(self):
        with _test_eager_guard():
            self.func_test_numel_without_holder()
        self.func_test_numel_without_holder()

1749 1750

class TestVarBaseCopyGradientFrom(unittest.TestCase):
1751

1752
    def func_test_copy_gradient_from(self):
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
        paddle.disable_static()
        np_x = np.random.random((2, 2))
        np_y = np.random.random((2, 2))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64")
        out = x + x
        out.backward()
        x._copy_gradient_from(y)
        self.assertEqual(x.grad.numpy().all(), np_y.all())

1763 1764 1765 1766 1767
    def test_copy_gradient_from(self):
        with _test_eager_guard():
            self.func_test_copy_gradient_from()
        self.func_test_copy_gradient_from()

1768

1769
class TestEagerTensorGradNameValue(unittest.TestCase):
1770

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
    def test_eager_tensor_grad_name_value(self):
        with _test_eager_guard():
            a_np = np.array([2, 3]).astype('float32')
            a = paddle.to_tensor(a_np)
            a.stop_gradient = False
            b = a**2
            self.assertEqual(a._grad_value(), None)
            b.backward()
            self.assertEqual('eager_tmp' in a._grad_name(), True)
            self.assertNotEqual(a._grad_value(), None)


L
Leo Chen 已提交
1783 1784
if __name__ == '__main__':
    unittest.main()