api.py 65.9 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
M
Ming-Xu Huang 已提交
2
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17
import os
import pickle
18
import warnings
19
from collections import OrderedDict
20
import inspect
M
Ming-Xu Huang 已提交
21
import threading
22
from typing import Text, Tuple, Any, List
23

24
import paddle
J
Jiabin Yang 已提交
25
from paddle.fluid import core, dygraph
26 27 28 29 30
from paddle.fluid.compiler import (
    BuildStrategy,
    CompiledProgram,
    ExecutionStrategy,
)
31
from paddle.fluid.data_feeder import check_type
32
from paddle.fluid.layers.utils import flatten, pack_sequence_as
33 34 35 36
from paddle.fluid.dygraph.base import (
    program_desc_tracing_guard,
    switch_to_static_graph,
)
37 38
from .dy2static import logging_utils
from .dy2static.convert_call_func import (
39 40 41
    ConversionOptions,
    CONVERSION_OPTIONS,
)
42
from .dy2static.logging_utils import (
43 44 45
    set_code_level,
    set_verbosity,
)
46
from .dy2static.program_translator import (
47 48 49 50 51 52 53 54 55 56 57
    ProgramTranslator,
    StaticFunction,
    unwrap_decorators,
)
from paddle.fluid.dygraph.io import (
    TranslatedLayer,
    INFER_MODEL_SUFFIX,
    INFER_PARAMS_SUFFIX,
    INFER_PARAMS_INFO_SUFFIX,
    INFER_PROPERTY_SUFFIX,
)
58 59
from paddle.fluid.dygraph.layers import Layer
from paddle.fluid.executor import Executor, scope_guard
60 61 62 63 64 65 66 67 68 69 70 71 72
from paddle.fluid.framework import (
    Block,
    ParamBase,
    Program,
    Variable,
    Parameter,
    EagerParamBase,
)
from paddle.fluid.framework import (
    _current_expected_place,
    _dygraph_guard,
    _dygraph_tracer,
)
J
Jiabin Yang 已提交
73
from paddle.fluid.framework import dygraph_only, _non_static_mode
74
from paddle.fluid.wrapped_decorator import wrap_decorator
75

76
__all__ = [
77 78 79 80 81 82 83 84
    'TracedLayer',
    'declarative',
    'dygraph_to_static_func',
    'set_code_level',
    'set_verbosity',
    'save',
    'load',
    'not_to_static',
85
]
86 87 88 89 90 91 92 93 94 95


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


96
def _extract_vars(inputs, result_list, err_tag='inputs'):
97
    if isinstance(inputs, Variable):
98
        result_list.append(inputs)
99
    elif isinstance(inputs, (list, tuple)):
100
        for var in inputs:
101
            _extract_vars(var, result_list, err_tag)
102 103
    else:
        raise TypeError(
104
            "The type of 'each element of {}' in paddle.jit.TracedLayer.trace must be fluid.Variable, but received {}.".format(
105 106 107
                err_tag, type(inputs)
            )
        )
108 109


110
def extract_vars(inputs, err_tag='inputs'):
111
    result_list = []
112
    _extract_vars(inputs, result_list, err_tag)
113 114 115
    return result_list


116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
def _dygraph_to_static_func_(dygraph_func):
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @dygraph_to_static_func only converts imperative dygraph APIs into
    declarative net-building APIs, which means it doesn't return immediate
    digital result as imperative mode. Users should handle Program and Executor
    by themselves.

    Note:
    This decorator is NOT our recommended way to transform imperative function
    to declarative function. We will remove this decorator after we finalize
    cleaning up code.

    Args:
        dygraph_func (callable): callable imperative function.

    Returns:
        Callable: converting imperative dygraph APIs into declarative
        net-building APIs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np
141
          from paddle.jit.api import dygraph_to_static_func
142 143 144

          @dygraph_to_static_func
          def func(x):
145
              if paddle.mean(x) < 0:
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
                  x_v = x - 1
              else:
                  x_v = x + 1

               return x_v

          x = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='float64')

          x_v = func(x)
          exe = fluid.Executor(fluid.CPUPlace())
          out = exe.run(fetch_list=[x_v])
          print(out[0])
          # [[1. 1. 1.]
          #  [1. 1. 1.]
          #  [1. 1. 1.]]

    """

    # TODO: remove this decorator after we finalize training API
165 166
    def __impl__(*args, **kwargs):
        program_translator = ProgramTranslator()
J
Jiabin Yang 已提交
167
        if _non_static_mode() or not program_translator.enable_to_static:
168
            logging_utils.warn(
169
                "The decorator 'dygraph_to_static_func' doesn't work in "
170
                "dygraph mode or set ProgramTranslator.enable to False. "
171 172
                "We will just return dygraph output."
            )
173 174 175
            return dygraph_func(*args, **kwargs)
        static_func = program_translator.get_func(dygraph_func)
        return static_func(*args, **kwargs)
176 177 178 179

    return __impl__


180
dygraph_to_static_func = wrap_decorator(_dygraph_to_static_func_)
181

182

183 184 185 186 187 188
def copy_decorator_attrs(original_func, decorated_obj):
    """
    Copies some necessary attributes from original function into decorated function.

    Args:
        original_func(callable): the original decorated function.
189
        decorated_obj(StaticFunction): the target decorated StaticFunction object.
190 191 192 193 194 195 196 197 198 199 200 201 202
    """
    decorator_name = "declarative"

    decorated_obj.__name__ = original_func.__name__
    decorated_obj._decorator_name = decorator_name
    decorated_obj.__wrapped__ = original_func
    decorated_obj.__doc__ = original_func.__doc__
    if hasattr(original_func, "__module__"):
        decorated_obj.__module__ = original_func.__module__

    return decorated_obj


203 204 205
def declarative(
    function=None, input_spec=None, build_strategy=None, property=False
):
206 207 208
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @declarative handles the Program and Executor of static mode and returns
209 210 211 212
    the result as dygraph Tensor(s). Users could use the returned dygraph
    Tensor(s) to do imperative training, inference, or other operations. If the
    decorated function calls other imperative function, the called one will be
    converted into declarative function as well.
213

214
    Args:
215
        function (callable): callable imperative function.
216
        input_spec(list[InputSpec]|tuple[InputSpec]): list/tuple of InputSpec to specific the shape/dtype/name
217
            information of each input Tensor.
218 219 220 221 222
        build_strategy(BuildStrategy|None): This argument is used to compile the
            converted program with the specified options, such as operators' fusion
            in the computational graph and memory optimization during the execution
            of the computational graph. For more information about build_strategy,
            please refer to :code:`paddle.static.BuildStrategy`. The default is None.
223
        property(bool, Optional): whether the fucntion is python property. The default is False.
224

225

226
    Returns:
227
        Tensor(s): containing the numerical result.
228

229 230
    Examples:
        .. code-block:: python
231

232 233 234 235 236 237 238 239 240 241 242 243 244 245
            import paddle
            from paddle.jit import to_static

            @to_static
            def func(x):
                if paddle.mean(x) < 0:
                    x_v = x - 1
                else:
                    x_v = x + 1
                return x_v

            x = paddle.ones([1, 2], dtype='float32')
            x_v = func(x)
            print(x_v) # [[2. 2.]]
246

247
    """
248

249 250
    def decorated(python_func):
        """
251
        Decorates a python function into a StaticFunction object.
252 253 254
        """
        # Step 1. unwrap the function if it is already decorated.
        _, python_func = unwrap_decorators(python_func)
255

256
        # Step 2. copy some attributes from original python function.
257 258 259 260 261 262 263 264 265
        static_layer = copy_decorator_attrs(
            original_func=python_func,
            decorated_obj=StaticFunction(
                function=python_func,
                input_spec=input_spec,
                build_strategy=build_strategy,
                property=property,
            ),
        )
266 267

        return static_layer
268

269 270 271
    build_strategy = build_strategy or BuildStrategy()
    if not isinstance(build_strategy, BuildStrategy):
        raise TypeError(
272 273 274 275
            "Required type(build_strategy) shall be `paddle.static.BuildStrategy`, but received {}".format(
                type(build_strategy).__name__
            )
        )
276

277 278
    # for usage: `declarative(foo, ...)`
    if function is not None:
279
        if isinstance(function, Layer):
280
            if isinstance(function.forward, StaticFunction):
281
                class_name = function.__class__.__name__
282
                logging_utils.warn(
283 284 285 286
                    "`{}.forward` has already been decorated somewhere. It will be redecorated to replace previous one.".format(
                        class_name
                    )
                )
287 288 289 290
            function.forward = decorated(function.forward)
            return function
        else:
            return decorated(function)
291

292 293
    # for usage: `@declarative`
    return decorated
294 295


296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
def not_to_static(func=None):
    """
    A Decorator to suppresses the convertion of a function.

    Args:
        func(callable): The function to decorate.

    Returns:
        callable: A function which won't be converted in Dynamic-to-Static.

    Examples:
        .. code-block:: python

            import paddle

            @paddle.jit.not_to_static
            def func_not_to_static(x):
                res = x - 1
                return res

            @paddle.jit.to_static
            def func(x):
                if paddle.mean(x) < 0:
                    out = func_not_to_static(x)
                else:
                    out = x + 1
                return out

            x = paddle.ones([1, 2], dtype='float32')
            out = func(x)
            print(out) # [[2. 2.]]
    """
    if func is None:
        return not_to_static

    options = ConversionOptions(not_convert=True)
    setattr(func, CONVERSION_OPTIONS, options)
    return func


336
class _SaveLoadConfig:
337 338 339 340 341
    def __init__(self):
        self._output_spec = None
        self._model_filename = None
        self._params_filename = None
        self._separate_params = False
342 343
        # used for `paddle.load`
        self._keep_name_table = False
344 345 346 347

        # NOTE: Users rarely use following configs, so these configs are not open to users,
        # reducing user learning costs, but we retain the configuration capabilities

348 349
        # If True, programs are modified to only support direct inference deployment.
        # Otherwise,more information will be stored for flexible optimization and re-training.
350 351 352 353 354
        # Currently, only True is supported
        self._export_for_deployment = True

        # If True, It will save inference program only, and do not save params of Program
        self._program_only = False
355
        self.with_hook = False
356

357 358 359
        # if True, multi `StaticFunction` will share params in one file.
        self.combine_params = False

360 361 362 363 364 365
    @property
    def output_spec(self):
        return self._output_spec

    @output_spec.setter
    def output_spec(self, spec):
366 367
        if spec is None:
            return
368 369
        if not isinstance(spec, list):
            raise TypeError(
370
                "The config `output_spec` should be 'list', but received input type is %s."
371 372
                % type(input)
            )
373 374 375
            for var in spec:
                if not isinstance(var, core.VarBase):
                    raise TypeError(
376
                        "The element in config `output_spec` list should be 'Variable', but received element's type is %s."
377 378
                        % type(var)
                    )
379 380 381 382 383 384 385 386
        self._output_spec = spec

    @property
    def model_filename(self):
        return self._model_filename

    @model_filename.setter
    def model_filename(self, filename):
387 388
        if filename is None:
            return
389
        if not isinstance(filename, str):
390
            raise TypeError(
391
                "The config `model_filename` should be str, but received input's type is %s."
392 393
                % type(filename)
            )
394
        if len(filename) == 0:
395
            raise ValueError("The config `model_filename` is empty string.")
396 397 398 399 400 401 402 403
        self._model_filename = filename

    @property
    def params_filename(self):
        return self._params_filename

    @params_filename.setter
    def params_filename(self, filename):
404 405
        if filename is None:
            return
406
        if not isinstance(filename, str):
407
            raise TypeError(
408
                "The config `params_filename` should be str, but received input's type is %s."
409 410
                % type(filename)
            )
411
        if len(filename) == 0:
412
            raise ValueError("The config `params_filename` is empty string.")
413 414
        self._params_filename = filename

415 416 417 418 419 420
    @property
    def keep_name_table(self):
        return self._keep_name_table

    @keep_name_table.setter
    def keep_name_table(self, value):
421 422
        if value is None:
            return
423 424
        if not isinstance(value, bool):
            raise TypeError(
425
                "The config `keep_name_table` should be bool value, but received input's type is %s."
426 427
                % type(value)
            )
428 429
        self._keep_name_table = value

430

431
def _parse_save_configs(configs):
432
    supported_configs = [
433 434 435 436 437
        'output_spec',
        "with_hook",
        "combine_params",
        "clip_extra",
        "skip_forward",
438
    ]
439 440 441 442 443 444

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.save` is not supported."
445 446
                % (key)
            )
447 448 449 450

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.output_spec = configs.get('output_spec', None)
451
    inner_config.with_hook = configs.get('with_hook', False)
452
    inner_config.combine_params = configs.get("combine_params", False)
453
    inner_config.clip_extra = configs.get("clip_extra", True)
H
Hui Zhang 已提交
454
    inner_config.skip_forward = configs.get("skip_forward", False)
455 456 457 458 459 460 461 462 463 464 465 466

    return inner_config


def _parse_load_config(configs):
    supported_configs = ['model_filename', 'params_filename']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.load` is not supported."
467 468
                % (key)
            )
469 470 471 472 473 474 475 476 477

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)

    return inner_config


478
def _get_input_var_names(inputs, input_spec):
479 480 481 482
    name_none_error = (
        "The %s's name is None. "
        "When using jit.save, please set InputSepc's name in "
        "to_static(input_spec=[]) and jit.save(input_spec=[]) "
483
        "and make sure they are consistent."
484 485 486 487 488
    )
    name_no_exists_error = (
        "The tensor `%s` does not exists. "
        "Please make sure the name of InputSpec or example Tensor "
        "in input_spec is the same as the name of InputSpec in "
489
        "`to_static` decorated on the Layer.forward method."
490
    )
491
    result_list = []
492 493 494
    input_var_names = [
        var.name for var in flatten(inputs) if isinstance(var, Variable)
    ]
495 496
    if input_spec is None:
        # no prune
497 498 499 500
        return input_var_names
    else:
        # fileter out non-tensor type spec infos.
        input_spec = [
501 502
            spec
            for spec in input_spec
503 504 505 506
            if isinstance(spec, paddle.static.InputSpec)
        ]

    if len(input_spec) == len(input_var_names):
507 508
        # no prune
        result_list = input_var_names
509
        # if input spec name not in input_var_names, only raise warning
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
        for spec in input_spec:
            if spec.name is None:
                warnings.warn(name_none_error % spec)
            elif spec.name not in input_var_names:
                warnings.warn(name_no_exists_error % spec.name)
            else:
                # do nothing
                pass
    else:
        # prune
        for spec in input_spec:
            if spec.name is None:
                # name is None, the input_spec only can be InputSpec
                raise ValueError(name_none_error % spec)
            elif spec.name not in input_var_names:
                # the input_spec can be `InputSpec` or `VarBase`
                raise ValueError(name_no_exists_error % spec.name)
            else:
                result_list.append(spec.name)

    return result_list


533
def _get_output_vars(outputs, output_spec, with_hook=False):
534 535 536 537
    name_no_exists_error = (
        "The tensor `%s` does not exists. "
        "Please make sure the name of example Tensor "
        "in configs.output_spec is the output tensor of "
538
        "Layer.forward method."
539
    )
540 541 542 543
    if output_spec and with_hook:
        raise RuntimeError(
            "Currently not support specify output_spec while founding pre/post hooks in your outermost layer."
        )
544 545
    result_list = []
    output_vars_dict = OrderedDict()
546
    for var in flatten(outputs):
547 548 549
        if isinstance(var, Variable):
            output_vars_dict[var.name] = var
    if output_spec is None:
550
        result_list = list(output_vars_dict.values())
551
    elif output_spec is not None and len(output_spec) == len(output_vars_dict):
552
        result_list = list(output_vars_dict.values())
553 554 555 556 557 558 559 560 561 562 563 564
        for var in output_spec:
            if var.name not in output_vars_dict:
                warnings.warn(name_no_exists_error % var.name)
    else:
        for var in output_spec:
            if var.name not in output_vars_dict:
                raise ValueError(name_no_exists_error % var.name)
            else:
                result_list.append(output_vars_dict[var.name])
    return result_list


565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
# NOTE(chenweihang): [ Handling of use cases of API paddle.jit.load ]
# `paddle.jit.load` may be used to load saved results of:
# 1. Expected cases:
#   - paddle.jit.save
#   - paddle.static.save_inference_model
#   - paddle.fluid.io.save_inference_model
# 2. Error cases:
#   - paddle.save: no .pdmodel for prefix
#   - paddle.static.save: no .pdiparams but .pdparams exists
#   - paddle.fluid.io.save_params/save_persistables: no __model__
# TODO(chenweihang): polish error message in above error cases
def _build_load_path_and_config(path, config):
    # NOTE(chenweihang): If both [prefix save format] and [directory save format] exist,
    # raise error, avoid confusing behavior
    prefix_format_path = path + INFER_MODEL_SUFFIX
    prefix_format_exist = os.path.exists(prefix_format_path)
    directory_format_exist = os.path.isdir(path)
    if prefix_format_exist and directory_format_exist:
        raise ValueError(
            "The %s.pdmodel and %s directory exist at the same time, "
            "don't know which one to load, please make sure that the specified target "
586 587
            "of ``path`` is unique." % (path, path)
        )
588
    elif not prefix_format_exist and not directory_format_exist:
589 590 591 592 593
        raise ValueError(
            "The ``path`` (%s) to load model not exists. "
            "Please make sure that *.pdmodel exists or "
            "don't using ``skip_forward=True`` to jit.save." % path
        )
594 595 596 597 598 599 600 601
    else:
        if prefix_format_exist:
            file_prefix = os.path.basename(path)
            model_path = os.path.dirname(path)
            if config.model_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``model_filename`` config does "
602 603
                    "not take effect."
                )
604 605 606 607 608
            config.model_filename = file_prefix + INFER_MODEL_SUFFIX
            if config.params_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``params_filename`` config does "
609 610
                    "not take effect."
                )
611 612 613 614
            config.params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            # Compatible with the old save_inference_model format
            model_path = path
615

616
    return model_path, config
617 618


M
Ming-Xu Huang 已提交
619 620 621 622
_save_pre_hooks_lock = threading.Lock()
_save_pre_hooks = []


623
class HookRemoveHelper:
624
    """A HookRemoveHelper that can be used to remove hook."""
M
Ming-Xu Huang 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659

    def __init__(self, hook):
        self._hook = hook

    def remove(self):
        _remove_save_pre_hook(self._hook)


def _register_save_pre_hook(hook):
    """
    Register a save pre-hook for `paddle.jit.save`.
    This hook will be executed before `save` function has been invoked.

    hook(layer, input_spec, configs) -> None
    - layer (Layer|function): This argument is corresponding to `layer` in `paddle.jit.save`.
    - input_spec (list or tuple[InputSpec|Tensor|Python built-in variable]): This argument is corresponding to `input_spec` in `paddle.jit.save`.
    - configs (dict): This argument is corresponding to `configs` in `paddle.jit.save`.

    Args:
        hook(function): a function registered as a save pre-hook

    Returns:
        HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()`.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            IMAGE_SIZE = 256
            CLASS_NUM = 10

            class LinearNet(paddle.nn.Layer):
                def __init__(self):
660
                    super().__init__()
M
Ming-Xu Huang 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
                    self._linear = paddle.nn.Linear(IMAGE_SIZE, CLASS_NUM)

                def forward(self, x):
                    return self._linear(x)

            saving_count = 0
            def save_pre_hook(layer, input_spec, configs):
                global saving_count
                saving_count += 1

            remove_handler = paddle.jit.register_save_pre_hook(save_pre_hook)

            layer = LinearNet()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1

            remove_handler.remove()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1
    """
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook not in _save_pre_hooks:
        _save_pre_hooks.append(hook)
    _save_pre_hooks_lock.release()
    return HookRemoveHelper(hook)


def _clear_save_pre_hooks():
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    _save_pre_hooks.clear()
    _save_pre_hooks_lock.release()


def _remove_save_pre_hook(hook):
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook in _save_pre_hooks:
        _save_pre_hooks.remove(hook)
    _save_pre_hooks_lock.release()


707
@wrap_decorator
M
Ming-Xu Huang 已提交
708 709 710 711 712 713 714 715 716 717
def _run_save_pre_hooks(func):
    def wrapper(layer, path, input_spec=None, **configs):
        global _save_pre_hooks
        for hook in _save_pre_hooks:
            hook(layer, input_spec, configs)
        func(layer, path, input_spec, **configs)

    return wrapper


718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
def _save_property(filename: Text, property_vals: List[Tuple[Any, Text]]):
    """class property serialization.

    Args:
        filename (Text): *.meta
        property_vals (List[Tuple): class property.
    """

    def set_property(meta, key, val):
        if isinstance(val, float):
            meta.set_float(key, val)
        elif isinstance(val, int):
            meta.set_int(key, val)
        elif isinstance(val, str):
            meta.set_string(key, val)
        elif isinstance(val, (tuple, list)):
            if isinstance(val[0], float):
                meta.set_floats(key, val)
            elif isinstance(val[0], int):
                meta.set_ints(key, val)
            elif isinstance(val[0], str):
                meta.set_strings(key, val)
        else:
            raise ValueError(f"Note support val type: {type(val)}")
        return

    with open(filename, 'wb') as f:
        meta = paddle.framework.core.Property()
        for item in property_vals:
            val, key = item[0], item[1]
            set_property(meta, key, val)
        f.write(meta.serialize_to_string())


M
Ming-Xu Huang 已提交
752
@_run_save_pre_hooks
753
@switch_to_static_graph
754
def save(layer, path, input_spec=None, **configs):
755
    """
756
    Saves input Layer or function as ``paddle.jit.TranslatedLayer``
757 758
    format model, which can be used for inference or fine-tuning after loading.

759
    It will save the translated program and all related persistable
760
    variables of input Layer to given ``path`` .
761 762

    ``path`` is the prefix of saved objects, and the saved translated program file
763
    suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` ,
764
    and here also saved some additional variable description information to a file,
765
    its suffix is ``.pdiparams.info``, these additional information is used in fine-tuning.
766 767

    The saved model can be loaded by follow APIs:
768 769
      - ``paddle.jit.load``
      - ``paddle.static.load_inference_model``
770 771
      - Other C++ inference APIs

772
    .. note::
773
        When using ``paddle.jit.save`` to save a function, parameters will not be saved. If you have to
774 775
        save the parameter, please pass the Layer containing function and parameter to ``paddle.jit.save``.

776
    Args:
777
        layer (Layer|function): The Layer or function to be saved.
778
        path (str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
779 780 781
        input_spec (list or tuple[InputSpec|Tensor|Python built-in variable], optional): Describes the input of the saved model's forward
            method, which can be described by InputSpec or example Tensor. Moreover, we support to specify non-tensor type argument,
            such as int, float, string, or list/dict of them.If None, all input variables of
782
            the original Layer's forward method would be the inputs of the saved model. Default None.
783 784
        **configs (dict, optional): Other save configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
785 786 787
            DO NOT use them. Default None.
            The following options are currently supported:
            (1) output_spec (list[Tensor]): Selects the output targets of the saved model.
788 789 790
            By default, all return variables of original Layer's forward method are kept as the
            output of the saved model. If the provided ``output_spec`` list is not all output variables,
            the saved model will be pruned according to the given ``output_spec`` list.
791

792 793 794 795 796 797
    Returns:
        None

    Examples:
        .. code-block:: python

798
            # example 1: save layer
799
            import numpy as np
800 801 802
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
803

804 805 806
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
807

808 809 810 811 812 813 814
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
815

816 817 818 819
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
820

821 822
                def __len__(self):
                    return self.num_samples
823

824 825
            class LinearNet(nn.Layer):
                def __init__(self):
826
                    super().__init__()
827
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
828

829
                @paddle.jit.to_static
830 831 832
                def forward(self, x):
                    return self._linear(x)

833 834 835 836 837 838 839 840 841 842 843 844
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

            # 1. train & save model.
845

846 847 848 849
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
850

851 852 853 854 855 856 857
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
858

859 860
            # train
            train(layer, loader, loss_fn, adam)
861

862
            # save
863 864
            path = "example_model/linear"
            paddle.jit.save(layer, path)
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884

            # example 2: save function
            import paddle
            from paddle.static import InputSpec


            def save_function():
                @paddle.jit.to_static
                def fun(inputs):
                    return paddle.tanh(inputs)

                path = 'test_jit_save_load_function_1/func'
                inps = paddle.rand([3, 6])
                origin = fun(inps)

                paddle.jit.save(fun, path)
                load_func = paddle.jit.load(path)

                load_result = load_func(inps)
                print((load_result - origin).abs().max() < 1e-10)
885

886
            save_function()
887 888
    """

889
    # 1. input build & check
890
    prog_translator = ProgramTranslator()
891
    if not prog_translator.enable_to_static:
892
        raise RuntimeError(
893
            "The paddle.jit.save doesn't work when setting ProgramTranslator.enable to False."
894
        )
895

896 897 898 899 900
    if not (
        isinstance(layer, Layer)
        or inspect.isfunction(layer)
        or isinstance(layer, StaticFunction)
    ):
901
        raise TypeError(
902
            "The input of paddle.jit.save should be 'Layer' or 'Function', but received input type is %s."
903 904
            % type(layer)
        )
905 906 907 908
    elif inspect.isfunction(layer) or isinstance(layer, StaticFunction):
        warnings.warn(
            'What you save is a function, and `jit.save` will generate the name of the model file according to `path` you specify. When loading these files with `jit.load`, you get a `TranslatedLayer` whose inference result is the same as the inference result of the function you saved.'
        )
909

910 911
    # NOTE(chenweihang): If the input layer be wrapped by DataParallel,
    # the args and kwargs of forward method will can't be parsed by
912
    # function_spec, so here we save DataParallel._layers instead
913 914 915 916 917 918 919
    # DataParallel it self
    # NOTE(chenweihang): using inner_layer, do not change input layer
    if isinstance(layer, paddle.DataParallel):
        inner_layer = layer._layers
    else:
        inner_layer = layer

920 921 922 923 924 925
    # path check
    file_prefix = os.path.basename(path)
    if file_prefix == "":
        raise ValueError(
            "The input path MUST be format of dirname/file_prefix "
            "[dirname\\file_prefix in Windows system], but received "
926 927
            "file_prefix is empty string."
        )
928 929 930 931

    dirname = os.path.dirname(path)
    if dirname and not os.path.exists(dirname):
        os.makedirs(dirname)
932

933 934
    # avoid change user given input_spec
    inner_input_spec = None
935
    if input_spec is not None:
936 937 938
        if isinstance(layer, Layer):
            for attr_func in dir(inner_layer):
                static_func = getattr(inner_layer, attr_func, None)
939 940 941 942
                if (
                    isinstance(static_func, StaticFunction)
                    and 'forward' != attr_func
                ):
943 944
                    raise ValueError(
                        "If there are static functions other than 'forward' that need to be saved, the input 'input_spec' should be None, but received the type of 'input_spec' is %s."
945 946
                        % type(input_spec)
                    )
947

948
        if not isinstance(input_spec, (list, tuple)):
949 950
            raise TypeError(
                "The input input_spec should be 'list', but received input_spec's type is %s."
951 952
                % type(input_spec)
            )
953
        inner_input_spec = []
954
        for var in flatten(input_spec):
955 956
            if isinstance(var, paddle.static.InputSpec):
                inner_input_spec.append(var)
0
0x45f 已提交
957
            elif isinstance(var, (core.VarBase, core.eager.Tensor, Variable)):
958
                inner_input_spec.append(
959 960
                    paddle.static.InputSpec.from_tensor(var)
                )
961
            else:
962 963
                # NOTE(Aurelius84): Support non-Tensor type in `input_spec`.
                inner_input_spec.append(var)
964

965 966
    # parse configs
    configs = _parse_save_configs(configs)
967
    # whether outermost layer has pre/post hook, if does, we need also save
968
    # these operators in program.
969
    with_hook = configs.with_hook
970 971 972
    combine_params = configs.combine_params
    if combine_params:
        configs._program_only = True
973

974 975
    scope = core.Scope()
    extra_var_info = dict()
976 977
    if isinstance(layer, Layer):
        functions = dir(inner_layer)
978 979
        if inner_layer._forward_pre_hooks or inner_layer._forward_post_hooks:
            with_hook = True
980 981
    else:
        # layer is function
982 983 984
        functions = [
            layer,
        ]
985

986
    combine_vars = {}
987
    property_vals = []  # (value, key)
H
Hui Zhang 已提交
988
    concrete_program = None
989 990 991 992
    for attr_func in functions:
        if isinstance(layer, Layer):
            static_func = getattr(inner_layer, attr_func, None)
            if isinstance(static_func, StaticFunction):
993 994 995 996
                if static_func.is_property:
                    # property method to be exported
                    immediate_val = static_func()
                    property_vals.append(
997 998 999 1000 1001
                        (
                            immediate_val,
                            layer.__class__.__name__ + '.' + attr_func,
                        )
                    )
1002 1003
                    continue

1004 1005 1006 1007 1008
                concrete_program = (
                    static_func.concrete_program_specify_input_spec(
                        inner_input_spec, with_hook=with_hook
                    )
                )
1009
            elif 'forward' == attr_func:
H
Hui Zhang 已提交
1010 1011 1012 1013
                if configs.skip_forward:
                    # do not jit.save forward function
                    continue

1014
                # transform in jit.save, if input_spec is incomplete, declarative will throw error
1015
                # inner_input_spec is list[InputSpec], it should be packed with same structure
1016 1017
                # as original input_spec here.
                if inner_input_spec:
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
                    inner_input_spec = pack_sequence_as(
                        input_spec, inner_input_spec
                    )
                static_forward = declarative(
                    inner_layer.forward, input_spec=inner_input_spec
                )
                concrete_program = (
                    static_forward.concrete_program_specify_input_spec(
                        with_hook=with_hook
                    )
                )
1029 1030 1031 1032 1033 1034
                # the input_spec has been used in declarative, which is equal to
                # @declarative with input_spec and jit.save without input_spec,
                # avoid needless warning
                inner_input_spec = None
            else:
                continue
1035 1036 1037
        else:
            # When layer is a function
            if isinstance(attr_func, StaticFunction):
1038 1039 1040 1041 1042 1043
                if attr_func.is_property:
                    # property method to be exported
                    immediate_val = attr_func()
                    property_vals.append((immediate_val, attr_func))
                    continue

1044 1045 1046 1047 1048
                concrete_program = (
                    attr_func.concrete_program_specify_input_spec(
                        inner_input_spec
                    )
                )
1049 1050
            else:
                if inner_input_spec:
1051 1052 1053 1054 1055 1056
                    inner_input_spec = pack_sequence_as(
                        input_spec, inner_input_spec
                    )
                static_function = declarative(
                    attr_func, input_spec=inner_input_spec
                )
1057 1058 1059 1060
                concrete_program = static_function.concrete_program

                if static_function._class_instance is None:
                    warnings.warn(
1061 1062 1063 1064
                        '`jit.save` will only save the `Program`, not the parameters. If you have to save the parameters, please make sure that {} is a member function of `paddle.nn.Layer` and the saved parameters are in `state_dict`'.format(
                            layer
                        )
                    )
1065

1066
        # when save multi `StaticFunction`, all `StaticFunction` share params.
1067 1068
        dygraph_state_dict = None
        if isinstance(inner_layer, Layer):
1069
            dygraph_state_dict = inner_layer.to_static_state_dict()
1070 1071
        elif isinstance(attr_func, StaticFunction):
            if attr_func._class_instance:
1072 1073
                dygraph_state_dict = (
                    attr_func._class_instance.to_static_state_dict()
1074
                )
1075 1076

        if dygraph_state_dict:
1077 1078 1079 1080 1081
            # NOTE(chenweihang): we maintain the mapping of variable name to
            # structured name, the buffer variable (non-persistable)
            # saved to inference program may not need by dygraph Layer,
            # we only record the state_dict variable's structured name
            state_names_dict = dict()
1082
            state_var_dict = dict()
1083
            for structured_name, var in dygraph_state_dict.items():
1084
                state_names_dict[var.name] = structured_name
1085
                state_var_dict[var.name] = var
1086

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
        # 3. share parameters from Layer to scope & record var info
        with dygraph.guard():
            for param_or_buffer in concrete_program.parameters:
                # share to scope
                if param_or_buffer.type == core.VarDesc.VarType.VOCAB:
                    scr_tensor = param_or_buffer.value().get_map_tensor()
                    tgt_var = scope.var(param_or_buffer.name)
                    tgt_var.set_vocab(scr_tensor)
                else:
                    param_or_buffer_tensor = scope.var(
1097 1098 1099 1100 1101 1102 1103 1104
                        param_or_buffer.name
                    ).get_tensor()
                    # src_tensor = param_or_buffer.value().get_tensor()
                    src_tensor = (
                        state_var_dict[param_or_buffer.name]
                        .value()
                        .get_tensor()
                    )
1105 1106 1107 1108 1109 1110
                    param_or_buffer_tensor._share_data_with(src_tensor)
                # record var info
                if param_or_buffer.name not in extra_var_info:
                    extra_info_dict = dict()
                    if param_or_buffer.name in state_names_dict:
                        extra_info_dict['structured_name'] = state_names_dict[
1111 1112
                            param_or_buffer.name
                        ]
1113
                    extra_info_dict[
1114 1115
                        'stop_gradient'
                    ] = param_or_buffer.stop_gradient
1116 1117 1118
                    if isinstance(param_or_buffer, (ParamBase, EagerParamBase)):
                        extra_info_dict['trainable'] = param_or_buffer.trainable
                    extra_var_info[param_or_buffer.name] = extra_info_dict
1119 1120

        # 4. build input & output of save_infernece_model
1121 1122 1123 1124 1125 1126 1127 1128
        # NOTE(chenweihang): [ Get input variables name ]
        # There are two cases, whether to prune the inputs or not
        # - not prune inputs (recommend):
        #   - the len(input_spec) == len((concrete_program.inputs) - 1
        #   - here can use concrete_program.inputs directly
        # - prune inputs:
        #   - the input_spec length < len((concrete_program.inputs) - 1
        #   - the input_spec's name should be in concrete_program.inputs
1129 1130 1131
        input_var_names = _get_input_var_names(
            concrete_program.inputs, inner_input_spec
        )
1132 1133

        # NOTE(chenweihang): [ Get output variables ]
1134 1135
        # the rule is like [ Get input variables name ]. For output var,
        # we only support VarBase spec, and actually, we only need the
1136
        # var name of output, and we don't recommended to use output_spec
1137 1138
        # print(concrete_program.main_program)
        # print(concrete_program.outputs, configs.output_spec)
1139 1140 1141
        output_vars = _get_output_vars(
            concrete_program.outputs, configs.output_spec, with_hook
        )
1142 1143 1144 1145 1146 1147 1148

        # 5. save inference model
        from paddle.fluid.io import save_inference_model

        # construct new save_inference_model arguments
        model_path = dirname
        # NOTE(chenweihang): because prefix contains model and params filename,
1149
        # so we don't support set model_filename & params_filename
1150
        if 'forward' == attr_func or not isinstance(layer, Layer):
1151 1152 1153 1154
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            model_filename = file_prefix + '.' + attr_func + INFER_MODEL_SUFFIX
1155 1156 1157
            params_filename = (
                file_prefix + '.' + attr_func + INFER_PARAMS_SUFFIX
            )
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

        with scope_guard(scope):
            save_inference_model(
                dirname=model_path,
                feeded_var_names=input_var_names,
                target_vars=output_vars,
                executor=Executor(_current_expected_place()),
                main_program=concrete_program.main_program.clone(),
                model_filename=model_filename,
                params_filename=params_filename,
                export_for_deployment=configs._export_for_deployment,
1169
                program_only=configs._program_only,
1170 1171
                clip_extra=configs.clip_extra,
            )
1172

1173 1174 1175
        if combine_params:
            clone_main_program = concrete_program.main_program.clone()
            clone_main_program = clone_main_program._prune_with_input(
1176 1177
                input_var_names, output_vars
            )
1178 1179
            for block in clone_main_program.blocks:
                combine_vars.update(block.vars)
1180 1181 1182

    # save shared params
    if combine_params:
1183 1184 1185 1186 1187 1188
        # sort vars by name
        combine_vars = sorted(combine_vars.items(), key=lambda item: item[0])
        ordered_vars = []
        for name, var in combine_vars:
            ordered_vars.append(var)

1189 1190
        params_filename = file_prefix + INFER_PARAMS_SUFFIX
        with scope_guard(scope):
1191 1192 1193 1194 1195 1196
            paddle.static.save_vars(
                Executor(_current_expected_place()),
                dirname=model_path,
                vars=list(filter(paddle.fluid.io.is_persistable, ordered_vars)),
                filename=params_filename,
            )
1197
        # save property
1198 1199 1200
        property_save_path = os.path.join(
            os.path.normpath(model_path), file_prefix + INFER_PROPERTY_SUFFIX
        )
1201
        _save_property(property_save_path, property_vals)
1202

1203 1204 1205 1206 1207 1208 1209
    # NOTE(chenweihang): [ Save extra variable info ]
    # save_inference_model will lose some important variable information, including:
    #   - Variable name and correspondence (when saved variables as one file)
    #   - Variable.stop_gradient information
    #   - Which persistent variable are parameter and which are not
    #   - Parameter.trainable information
    #
1210 1211
    # The lost information cannot be recovered when it is loaded again,
    # so if we want to perform fine-tune after loading, we may need to
1212 1213
    # configure redundant information to proceed.
    #
1214 1215
    # Due to compatibility issues, we cannot change the original storage structure,
    # but we can save these information in `jit.save` without changing the original
1216 1217
    # storage to improve user experience. So we save extra information into
    # file `***.pdiparams.info`
1218 1219 1220

    # "layer" can only be Layer or function or StaticFunction.
    contain_parameter = False
H
Hui Zhang 已提交
1221 1222 1223
    if concrete_program is not None:
        for var in concrete_program.main_program.list_vars():
            contain_parameter |= isinstance(var, Parameter)
1224 1225

    if (isinstance(layer, Layer) or contain_parameter) and extra_var_info:
1226 1227 1228 1229
        with scope_guard(scope):
            extra_var_info_path = path + INFER_PARAMS_INFO_SUFFIX
            with open(extra_var_info_path, 'wb') as f:
                pickle.dump(extra_var_info, f, protocol=2)
1230 1231 1232


@dygraph_only
1233
def load(path, **configs):
1234 1235 1236
    """
    :api_attr: imperative

1237 1238
    Load model saved by ``paddle.jit.save`` or ``paddle.static.save_inference_model`` or
    paddle 1.x API ``paddle.fluid.io.save_inference_model`` as ``paddle.jit.TranslatedLayer``,
1239
    then performing inference or fine-tune training.
1240 1241

    .. note::
1242
        If you load model saved by ``paddle.static.save_inference_model`` ,
1243 1244
        there will be the following limitations when using it in fine-tuning:
        1. Imperative mode do not support LoDTensor. All original model's feed targets or parametars that depend on LoD are temporarily unavailable.
1245
        2. All saved model's feed targets need to be passed into TranslatedLayer's forward function.
1246 1247 1248 1249
        3. The variable's ``stop_gradient`` information is lost and can not be recovered.
        4. The parameter's ``trainable`` information is lost and can not be recovered.

    Args:
1250
        path (str): The path prefix to load model. The format is ``dirname/file_prefix`` or ``file_prefix`` .
1251 1252
        **configs (dict, optional): Other load configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
1253 1254
            DO NOT use them. Default None.
            The following options are currently supported:
1255 1256 1257 1258
            (1) model_filename (str): The inference model file name of the paddle 1.x
            ``save_inference_model`` save format. Default file name is :code:`__model__` .
            (2) params_filename (str): The persistable variables file name of the paddle 1.x
            ``save_inference_model`` save format. No default file name, save variables separately
1259 1260
            by default.

1261 1262 1263 1264 1265

    Returns:
        TranslatedLayer: A Layer object can run saved translated model.

    Examples:
1266
        1. Load model saved by ``paddle.jit.save`` then performing inference and fine-tune training.
1267 1268 1269 1270

        .. code-block:: python

            import numpy as np
1271 1272 1273
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1274

1275 1276 1277
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1278

1279 1280
            IMAGE_SIZE = 784
            CLASS_NUM = 10
1281

1282 1283 1284 1285
            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1286

1287 1288 1289 1290
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1291

1292 1293 1294 1295 1296
                def __len__(self):
                    return self.num_samples

            class LinearNet(nn.Layer):
                def __init__(self):
1297
                    super().__init__()
1298
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1299

1300
                @paddle.jit.to_static
1301 1302 1303
                def forward(self, x):
                    return self._linear(x)

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1315
            # 1. train & save model.
1316

1317
            # create network
1318 1319 1320 1321
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

1322
            # create data loader
1323 1324 1325 1326 1327 1328
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1329

1330 1331
            # train
            train(layer, loader, loss_fn, adam)
1332

1333
            # save
1334 1335
            path = "example_model/linear"
            paddle.jit.save(layer, path)
1336

1337
            # 2. load model
1338

1339
            # load
1340
            loaded_layer = paddle.jit.load(path)
1341 1342

            # inference
1343 1344 1345
            loaded_layer.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
            pred = loaded_layer(x)
1346 1347

            # fine-tune
1348 1349 1350
            loaded_layer.train()
            adam = opt.Adam(learning_rate=0.001, parameters=loaded_layer.parameters())
            train(loaded_layer, loader, loss_fn, adam)
1351 1352


1353
        2. Load model saved by ``paddle.fluid.io.save_inference_model`` then performing and fine-tune training.
1354 1355 1356 1357

        .. code-block:: python

            import numpy as np
1358
            import paddle
1359
            import paddle.static as static
1360 1361
            import paddle.nn as nn
            import paddle.optimizer as opt
1362
            import paddle.nn.functional as F
1363

1364 1365 1366
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1367

1368 1369 1370 1371 1372 1373 1374
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1375

1376 1377 1378 1379
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1380

1381 1382
                def __len__(self):
                    return self.num_samples
1383

1384 1385
            paddle.enable_static()

1386 1387
            image = static.data(name='image', shape=[None, 784], dtype='float32')
            label = static.data(name='label', shape=[None, 1], dtype='int64')
1388
            pred = static.nn.fc(x=image, size=10, activation='softmax')
1389 1390
            loss = F.cross_entropy(input=pred, label=label)
            avg_loss = paddle.mean(loss)
1391

1392
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
1393 1394
            optimizer.minimize(avg_loss)

1395 1396 1397
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
1398

1399 1400 1401 1402 1403
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                feed_list=[image, label],
                places=place,
1404
                batch_size=BATCH_SIZE,
1405 1406
                shuffle=True,
                drop_last=True,
W
WeiXin 已提交
1407
                return_list=False,
1408
                num_workers=2)
1409 1410 1411 1412

            # 1. train and save inference model
            for data in loader():
                exe.run(
1413
                    static.default_main_program(),
1414
                    feed=data,
1415 1416 1417
                    fetch_list=[avg_loss])

            model_path = "fc.example.model"
1418
            paddle.fluid.io.save_inference_model(
1419 1420 1421
                model_path, ["image"], [pred], exe)

            # 2. load model
1422 1423

            # enable dygraph mode
1424 1425 1426 1427
            paddle.disable_static(place)

            # load
            fc = paddle.jit.load(model_path)
1428

1429 1430 1431
            # inference
            fc.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1432 1433
            pred = fc(x)

1434
            # fine-tune
1435
            fc.train()
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=fc.parameters())
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
            for epoch_id in range(EPOCH_NUM):
                for batch_id, (image, label) in enumerate(loader()):
                    out = fc(image)
                    loss = loss_fn(out, label)
                    loss.backward()
                    adam.step()
                    adam.clear_grad()
                    print("Epoch {} batch {}: loss = {}".format(
                        epoch_id, batch_id, np.mean(loss.numpy())))
1453
    """
1454 1455 1456 1457
    # 1. construct correct config
    config = _parse_load_config(configs)
    model_path, config = _build_load_path_and_config(path, config)

1458
    return TranslatedLayer._construct(model_path, config)
1459 1460


1461
@dygraph_only
1462 1463 1464
def _trace(
    layer, inputs, feed_prefix='feed_', fetch_prefix='fetch_', tmp_prefix='t_'
):
1465
    assert isinstance(layer, Layer)
1466 1467 1468 1469 1470 1471 1472 1473 1474

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
1475
        original_outputs = layer(*inputs)
1476 1477 1478 1479
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
1480
        out_vars = extract_vars(outputs, err_tag='outputs')
1481

1482 1483 1484 1485 1486 1487 1488 1489
        (
            program_desc,
            feed_names,
            fetch_names,
            parameters,
        ) = tracer.create_program_desc(
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix
        )
1490 1491 1492 1493 1494
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

1495
    return original_outputs, program, feed_names, fetch_names, parameters
1496 1497


1498
class TracedLayer:
1499
    """
1500
    :api_attr: imperative
1501

1502 1503 1504 1505 1506
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
1507 1508 1509 1510

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
1511 1512

    All TracedLayer objects should not be created by constructor and should
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names
1524
        self._params = parameters
1525 1526 1527 1528 1529

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
1530
            src_tensor = p.value().get_tensor()
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
1554
        This method is the only allowed method to create TracedLayer object.
1555 1556 1557 1558
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
1559
            layer (paddle.nn.Layer): the layer object to be traced.
1560 1561
            inputs (list(Tensor)|tuple(Tensor)|Tensor): the input tensors of
                the layer object.
1562 1563

        Returns:
1564
            tuple: A tuple of 2 items, whose the first item is the output of
1565 1566
                :code:`layer(*inputs)` , and the second item is the created
                TracedLayer object.
1567

1568
        Examples:
1569 1570
            .. code-block:: python:

1571 1572
                import os
                os.environ['FLAGS_enable_eager_mode'] = '0'
1573
                import paddle
1574

1575
                class ExampleLayer(paddle.nn.Layer):
1576
                    def __init__(self):
1577
                        super().__init__()
1578
                        self._fc = paddle.nn.Linear(3, 10)
1579 1580 1581 1582

                    def forward(self, input):
                        return self._fc(input)

1583

1584 1585 1586 1587 1588 1589
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])

                # run the static graph model using Executor inside
                out_static_graph = static_layer([in_var])
1590

1591 1592
                print(len(out_static_graph)) # 1
                print(out_static_graph[0].shape) # (2, 10)
1593

1594
                # save the static graph model for inference
1595
                static_layer.save_inference_model('./saved_infer_model')
1596

1597
        """
1598 1599
        assert isinstance(
            layer, Layer
1600
        ), "The type of 'layer' in paddle.jit.TracedLayer.trace must be fluid.dygraph.Layer, but received {}.".format(
1601 1602
            type(layer)
        )
1603 1604
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
1605 1606 1607 1608 1609 1610 1611
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
1612
            build_strategy (BuildStrategy, optional): build strategy of
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

1623 1624
                import os
                os.environ['FLAGS_enable_eager_mode'] = '0'
1625
                import paddle
1626

1627
                class ExampleLayer(paddle.nn.Layer):
1628
                    def __init__(self):
1629
                        super().__init__()
1630
                        self._fc = paddle.nn.Linear(3, 10)
1631 1632 1633 1634

                    def forward(self, input):
                        return self._fc(input)

1635 1636 1637 1638
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')

                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
1639

1640 1641
                build_strategy = paddle.static.BuildStrategy()
                build_strategy.enable_inplace = True
1642

1643 1644
                exec_strategy = paddle.static.ExecutionStrategy()
                exec_strategy.num_threads = 2
1645

1646 1647
                static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                out_static_graph = static_layer([in_var])
1648 1649 1650

        """
        assert self._compiled_program is None, "Cannot set strategy after run"
1651 1652
        assert isinstance(
            build_strategy, (type(None), BuildStrategy)
1653
        ), "The type of 'build_strategy' in paddle.jit.TracedLayer.set_strategy must be fluid.BuildStrategy, but received {}.".format(
1654 1655
            type(build_strategy)
        )
1656 1657
        assert isinstance(
            exec_strategy, (type(None), ExecutionStrategy)
1658
        ), "The type of 'exec_strategy' in paddle.jit.TracedLayer.set_strategy must be fluid.ExecutionStrategy, but received {}.".format(
1659 1660
            type(exec_strategy)
        )
1661 1662 1663 1664 1665 1666
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
1667 1668 1669 1670 1671 1672
            self._program
        ).with_data_parallel(
            build_strategy=self._build_strategy,
            exec_strategy=self._exec_strategy,
            places=self._place,
        )
1673 1674

    def _build_feed(self, inputs):
1675 1676 1677
        assert isinstance(
            inputs, (list, tuple)
        ), "Inputs should be a list or tuple of variables"
1678 1679
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
J
Jiabin Yang 已提交
1680
        if _non_static_mode():
1681
            for x, name in zip(inputs, self._feed_names):
1682
                feed_dict[name] = x.value().get_tensor()
1683 1684 1685 1686 1687 1688 1689 1690
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
1691 1692 1693
        return self._exe.run(
            self._compiled_program, feed=feed, fetch_list=self._fetch_names
        )
1694 1695 1696 1697 1698 1699 1700 1701 1702

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
1703
    def save_inference_model(self, path, feed=None, fetch=None, **kwargs):
1704
        """
1705 1706
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
1707

1708 1709 1710
        ``path`` is the prefix of saved objects, and the saved translated program file
        suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` .

1711
        Args:
1712
            path(str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
1713
            feed (list[int], optional): the input variable indices of the saved
1714
                inference model. If None, all input variables of the
1715 1716 1717 1718 1719 1720
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.
1721
            kwargs: Supported keys including 'clip_extra'.set to True if you want to clip extra information for every operator.
1722 1723

        Returns:
1724
            None
1725 1726 1727 1728

        Examples:
            .. code-block:: python:

1729 1730
                import os
                os.environ['FLAGS_enable_eager_mode'] = '0'
1731
                import numpy as np
1732
                import paddle
1733

1734
                class ExampleLayer(paddle.nn.Layer):
1735
                    def __init__(self):
1736
                        super().__init__()
1737
                        self._fc = paddle.nn.Linear(3, 10)
1738 1739 1740 1741

                    def forward(self, input):
                        return self._fc(input)

1742 1743
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')
1744 1745
                in_var = paddle.to_tensor(in_np)
                layer = ExampleLayer()
1746

1747 1748
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
                static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
1749

1750 1751 1752 1753
                paddle.enable_static()
                place = paddle.CPUPlace()
                exe = paddle.static.Executor(place)
                program, feed_vars, fetch_vars = paddle.static.load_inference_model(save_dirname,
1754
                                                    exe)
1755 1756 1757

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
1758
        """
1759 1760 1761 1762
        check_type(
            path,
            "path",
            str,
1763
            "paddle.jit.TracedLayer.save_inference_model",
1764 1765 1766 1767 1768
        )
        check_type(
            feed,
            "feed",
            (type(None), list),
1769
            "paddle.jit.TracedLayer.save_inference_model",
1770
        )
1771 1772
        if isinstance(feed, list):
            for f in feed:
1773
                check_type(
1774 1775 1776
                    f,
                    "each element of feed",
                    int,
1777
                    "paddle.jit.TracedLayer.save_inference_model",
1778 1779 1780 1781 1782
                )
        check_type(
            fetch,
            "fetch",
            (type(None), list),
1783
            "paddle.jit.TracedLayer.save_inference_model",
1784
        )
1785 1786
        if isinstance(fetch, list):
            for f in fetch:
1787
                check_type(
1788 1789 1790
                    f,
                    "each element of fetch",
                    int,
1791
                    "paddle.jit.TracedLayer.save_inference_model",
1792
                )
1793
        clip_extra = kwargs.get('clip_extra', True)
1794 1795 1796 1797 1798 1799
        # path check
        file_prefix = os.path.basename(path)
        if file_prefix == "":
            raise ValueError(
                "The input path MUST be format of dirname/file_prefix "
                "[dirname\\file_prefix in Windows system], but received "
1800 1801
                "file_prefix is empty string."
            )
1802 1803 1804 1805 1806

        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname)

1807
        from paddle.fluid.io import save_inference_model
1808 1809 1810 1811 1812

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

1813
            return [all_vars[idx] for idx in partial_vars]
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

1824 1825 1826
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
            save_inference_model(
                dirname=dirname,
                feeded_var_names=feeded_var_names,
                target_vars=target_vars,
                executor=self._exe,
                main_program=self._program.clone(),
                model_filename=model_filename,
                params_filename=params_filename,
                clip_extra=clip_extra,
            )