control_flow.py 127.0 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

S
rename  
sneaxiy 已提交
15
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
16

17
from .layer_function_generator import templatedoc
18
from .tensor import assign, cast, fill_constant
19
from .. import core
20 21 22 23 24 25 26 27 28
from ..framework import (
    Program,
    Variable,
    Operator,
    _non_static_mode,
    static_only,
    _in_legacy_dygraph,
    in_dygraph_mode,
)
29
from ..layer_helper import LayerHelper, unique_name
30 31 32 33 34 35 36 37 38 39 40
from .utils import (
    assert_same_structure,
    map_structure,
    hold_mutable_vars,
    copy_mutable_vars,
    padding_to_same_structure,
    is_sequence,
    pack_sequence_as,
    flatten,
    to_sequence,
)
Y
yuyang18 已提交
41
import numpy
42
import warnings
L
liym27 已提交
43
from functools import reduce, partial
44 45 46 47 48 49
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
50
from ..backward import _infer_var_data_type_shape_
2
201716010711 已提交
51
import paddle
52
from paddle import _C_ops, _legacy_C_ops
D
dzhwinter 已提交
53

Q
QI JUN 已提交
54
__all__ = [
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    'While',
    'Switch',
    'increment',
    'array_write',
    'create_array',
    'less_than',
    'array_read',
    'array_length',
    'cond',
    'IfElse',
    'StaticRNN',
    'reorder_lod_tensor_by_rank',
    'Print',
    'Assert',
    'is_empty',
    'case',
    'switch_case',
    'while_loop',
D
dzhwinter 已提交
73 74
]

Y
Yu Yang 已提交
75

76 77
def select_output(input, outputs, mask):
    """
78
    **select_output**
79 80 81 82 83 84 85 86 87 88 89 90 91 92
    This API takes in one input and multiple outputs and an integer mask. It
    selects the output specified by the mask and copy the input to selected
    output. It is useful in control flow.

    Args:
        input(Variable): The input variable
        outputs(tuple|list): The output variables
        mask(Variable): A tensor containing 1 integer number selecting which
            output to be copied with input

    Returns:
        Variable: The outputs variables
    """
    helper = LayerHelper('select_output', **locals())
93 94 95 96
    check_type(input, 'input', (Variable), 'select_output')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_output')
    check_type(outputs, 'outputs', (list, tuple), 'select_output')

97 98 99 100 101
    helper.append_op(
        type='select_output',
        inputs={'X': input, 'Mask': mask},
        outputs={'Out': outputs},
    )
102 103 104
    return outputs


105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
def _select_input_infer_shape(first_shape, second_shape):
    """
    This function infer the output shape by following algorithm:
    1. if the dims is different, raise a error.
    2. compare axis one by one:
        if a == b: we set axis to a
        if a != b: we set axis to -1
    for compatibility,non declarative mode, we just return second_shape.
    """
    if len(first_shape) != len(second_shape):
        warnings.warn(
            f"the input shapes of select_input should have the same rank, but get {first_shape}, {second_shape}"
        )
        return second_shape
    out_shape = list(
120 121
        map(lambda a, b: a if a == b else -1, first_shape, second_shape)
    )
122 123 124
    return out_shape


125 126 127
def select_input(inputs, mask):
    """
    **select_input**
128

129 130 131 132 133 134 135 136 137 138 139 140
    This API takes in multiple inputs and uses an integer mask to select one
    input to output. It is useful in control flow.

    Args:
        inputs(tuple|list): The input variables
        mask(Variable): A tensor containing 1 integer number selecting which
            input to output

    Returns:
        Variable: The selected input variable
    """
    helper = LayerHelper('select_input', **locals())
141 142 143
    check_type(inputs, 'inputs', (list, tuple), 'select_input')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_input')

144
    # Select input should expand the shape. If it is - 1 and valid number, use - 1 first. If the dim is different, an error will be reported directly
145
    # assert inputs[0].dtype == inputs[1].dtype, f"Expect the inputs should have the same dtype, but get {inputs[0].dtype} and {inputs[1].dtype}"
146 147 148
    output_shape = _select_input_infer_shape(inputs[0].shape, inputs[1].shape)
    output_dtype = inputs[1].dtype
    output_type = inputs[1].type
149

150 151 152 153 154 155 156 157
    out = helper.create_variable(
        dtype=output_dtype, shape=output_shape, type=output_type
    )
    helper.append_op(
        type='select_input',
        inputs={'X': inputs, 'Mask': mask},
        outputs={'Out': out},
    )
158 159 160
    return out


161
def select_input_with_buildin_type(inputs, mask, name):
162
    from paddle.jit.dy2static.variable_trans_func import (
163 164
        to_static_variable,
    )
165
    from paddle.jit.dy2static.utils import UndefinedVar
166

167 168
    false_var, true_var = inputs

169
    if isinstance(false_var, UndefinedVar) and isinstance(
170 171 172
        true_var, UndefinedVar
    ):
        """None -> UndefinedVar, so the real value is a [None, UndefinedVar] or [None, None], we just return None."""
173 174
        return None

175
    if isinstance(false_var, Variable) and isinstance(true_var, Variable):
176 177 178 179
        try:
            return select_input(inputs, mask)
        except Exception as e:
            raise RuntimeError(
180 181
                f"Exceptions throwed while doing select_input on {name}:\n{e}"
            )
182

183 184 185
    elif isinstance(false_var, support_ret_buildin_type) and isinstance(
        false_var, type(true_var)
    ):
186 187 188 189
        if false_var == true_var:
            return false_var
        else:
            inputs = [
190
                to_static_variable(false_var),
191
                to_static_variable(true_var),
192 193
            ]
    # Deal with the situations like this: false_var is int and true_var is Variable
194 195 196 197 198 199 200
    elif (
        isinstance(false_var, support_ret_buildin_type)
        and isinstance(true_var, Variable)
    ) or (
        isinstance(true_var, support_ret_buildin_type)
        and isinstance(false_var, Variable)
    ):
201 202 203
        inputs = [to_static_variable(false_var), to_static_variable(true_var)]
        warnings.warn(
            "Return results from different branches in cond are not same type: "
204
            "false_var returned by false_fn is '{}' and true_var of true_fn is "
205 206 207 208 209 210 211 212 213
            "'{}'".format(type(false_var), type(true_var))
        )
    elif (
        isinstance(false_var, UndefinedVar)
        and isinstance(true_var, (Variable,) + support_ret_buildin_type)
    ) or (
        isinstance(true_var, UndefinedVar)
        and isinstance(false_var, (Variable,) + support_ret_buildin_type)
    ):
214 215

        def create_var_if_not_undefined_var(a):
216 217
            if isinstance(a, UndefinedVar):
                return a
218 219
            return to_static_variable(a)

220
        true_var, false_var = to_static_variable(true_var), to_static_variable(
221 222
            false_var
        )
223
        inputs = [false_var, true_var]
224 225 226
    else:
        raise TypeError(
            "Unsupported return type of true_fn and false_fn in cond: false_var "
227
            "returned by false_fn is '{}' and true_var of true_fn is '{}'".format(
228 229 230
                type(false_var), type(true_var)
            )
        )
231 232 233 234
    try:
        return select_input(inputs, mask)
    except Exception as e:
        raise RuntimeError(
235 236
            f"Exceptions throwed while doing select_input on {name}:\n{e}"
        )
237 238


239
def split_lod_tensor(input, mask, level=0):
240 241 242 243
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
244 245
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
246 247

    Args:
248
        input(Variable|tuple|list|None): The input tensor that contains complete
249
                                lod information needed to construct the output.
250
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
251
        level(int): The specific lod level to split.
252 253

    Returns:
Q
qiaolongfei 已提交
254 255 256 257
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
258 259 260 261

    Examples:
        .. code-block:: python

262
          import paddle.fluid as fluid
Q
qiaolongfei 已提交
263
          x = fluid.layers.data(name='x', shape=[1])
264 265
          x.persistable = True

Q
qiaolongfei 已提交
266
          y = fluid.layers.data(name='y', shape=[1])
267 268
          y.persistable = True

Q
qiaolongfei 已提交
269
          out_true, out_false = fluid.layers.split_lod_tensor(
270
                input=x, mask=y, level=level)
271

272
    """
273 274 275 276 277 278
    check_type(
        input,
        'input',
        (Variable, list, tuple, type(None)),
        'fluid.layers.split_lod_tensor',
    )
279 280
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.split_lod_tensor')
    check_type(level, 'level', int, 'fluid.layers.split_lod_tensor')
281
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
282 283
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
284 285 286 287 288 289 290 291 292
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true, 'OutFalse': out_false},
        attrs={'level': level},
    )
293 294 295
    return out_true, out_false


296
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
297 298 299 300 301
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
302 303 304
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
305 306

    Args:
307 308 309
        in_true(Variable|tuple|list|None): The True branch to be merged.
        in_false(Variable|tuple|list|None): The False branch to be merged.
        x(Variable|tuple|list|None): The input tensor that contains complete
310
                            lod information needed to construct the output.
311
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
312
        level(int): The specific lod level to merge.
313 314 315 316 317 318 319

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

320
          import paddle.fluid as fluid
321 322 323 324 325 326 327 328 329 330 331 332
          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
333
    helper = LayerHelper('merge_lod_tensor', **locals())
334 335 336 337 338 339
    check_type(
        x,
        'x',
        (Variable, list, tuple, type(None)),
        'fluid.layers.merge_lod_tensor',
    )
340
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.merge_lod_tensor')
341 342 343 344 345 346 347 348 349 350 351 352
    check_type(
        in_true,
        'in_true',
        (Variable, list, tuple, type(None)),
        'fluid.layers.merge_lod_tensor',
    )
    check_type(
        in_false,
        'in_false',
        (Variable, list, tuple, type(None)),
        'fluid.layers.merge_lod_tensor',
    )
X
Xin Pan 已提交
353
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
354 355 356 357 358 359
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x, 'Mask': mask, 'InTrue': in_true, 'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level},
    )
360 361 362
    return out


363
@static_only
364 365 366 367 368 369 370 371 372 373 374 375
def Print(
    input,
    first_n=-1,
    message=None,
    summarize=20,
    print_tensor_name=True,
    print_tensor_type=True,
    print_tensor_shape=True,
    print_tensor_layout=True,
    print_tensor_lod=True,
    print_phase='both',
):
Y
Yan Chunwei 已提交
376
    '''
377 378
    :api_attr: Static Graph

Y
Yan Chunwei 已提交
379 380 381 382 383 384 385 386 387
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
388
        input (Variable): A Tensor to print.
389
        summarize (int): Number of elements in the tensor to be print. If it's
T
tianshuo78520a 已提交
390
                value is -1, then all elements in the tensor will be print.
Y
yangyaming 已提交
391 392
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
393 394 395
        print_tensor_name (bool, optional): Print the tensor name. Default: True.
        print_tensor_type (bool, optional): Print the tensor type. Defaultt: True.
        print_tensor_shape (bool, optional): Print the tensor shape. Default: True.
396
        print_tensor_layout (bool, optional): Print the tensor layout. Default: True.
397
        print_tensor_lod (bool, optional): Print the tensor lod. Default: True.
398
        print_phase (str): Which phase to displace, including 'forward',
399
                'backward' and 'both'. Default: 'both'. If set to 'backward', will
400 401
                only print the gradients of input tensor; If set to 'both', will
                both print the input tensor itself and the gradients of input tensor.
Y
Yan Chunwei 已提交
402 403

    Returns:
404
        Variable: Output tensor.
Y
Yan Chunwei 已提交
405

406 407 408 409
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
410

Y
Yan Chunwei 已提交
411 412
    Examples:
        .. code-block:: python
413

414 415 416
           import paddle

           paddle.enable_static()
417

418 419 420 421 422 423 424 425 426 427 428 429 430 431
           x = paddle.full(shape=[2, 3], fill_value=3, dtype='int64')
           out = paddle.static.Print(x, message="The content of input layer:")

           main_program = paddle.static.default_main_program()
           exe = paddle.static.Executor(place=paddle.CPUPlace())
           res = exe.run(main_program, fetch_list=[out])
           # Variable: fill_constant_1.tmp_0
           #   - message: The content of input layer:
           #   - lod: {}
           #   - place: CPUPlace
           #   - shape: [2, 3]
           #   - layout: NCHW
           #   - dtype: long
           #   - data: [3 3 3 3 3 3]
Y
Yan Chunwei 已提交
432
    '''
433 434 435 436 437 438
    check_variable_and_dtype(
        input,
        'input',
        ['float32', 'float64', 'int32', 'int64', 'bool'],
        'fluid.layers.Print',
    )
439

440 441
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
    helper.append_op(
        type='print',
        inputs={'In': input},
        outputs={'Out': output},
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_layout': print_tensor_layout,
            'print_tensor_lod': print_tensor_lod,
            'print_phase': print_phase.upper(),
        },
    )
458
    return output
Y
Yan Chunwei 已提交
459 460


H
Huihuang Zheng 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
def Assert(cond, data=None, summarize=20, name=None):
    '''
    This API creates an op that asserts the given condition is true. If the
    condition is false, prints the tensors in data. ``summarize`` specifies the
    number of the elements in the tensors to print.

    Args:
        cond (Variable): The boolean condition tensor whose numel should be 1.
        data (list|tuple, optional): list or tuple of tensors to print when
            condition is not true. If it's ``None``, no tensor will be printed.
            The default value is ``None``.
        summarize (int, optional): Number of elements in the tensor to be
            printed. If its value is -1, then all elements in the tensor will
            be printed. The default value is 20.
        name (str, optional): The default value is ``None`` . Normally users
            don't have to set this parameter. For more information, please
            refer to :ref:`api_guide_Name` .

    Returns:
        Operator: the created operation.

    Raises:
        TypeError: If ``cond`` is not boolean Variable.
        TypeError: If ``data`` is not a list or tuple or ``None``.
        TypeError: If ``summarize`` is not int.
        TypeError: If ``name`` is not a string or ``None`` .
        fluid.core.EnforceNotMet: If the condition is False in running time.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            x = layers.fill_constant(shape=[2, 3], dtype='float32', value=2.0)
            condition = layers.reduce_max(x) < 1.0 # False
            layers.Assert(condition, [x], 10, "example_assert_layer")

            exe = fluid.Executor()
            try:
                exe.run(fluid.default_main_program())
                # Print x and throws paddle.fluid.core.EnforceNotMet exception
                # Example printed message for x:
                #
                # Variable: fill_constant_0.tmp_0
                #   - lod: {}
                #   - place: CPUPlace()
                #   - shape: [2, 3]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [2 2 2 2 2 2]
            except fluid.core.EnforceNotMet as e:
                print("Assert Exception Example")

    '''
    check_variable_and_dtype(cond, "cond", ["bool"], "fluid.layers.Assert")
    check_type(data, "data", (list, tuple, type(None)), "fluid.layers.Assert")
    check_type(summarize, "summarize", int, "fluid.layers.Assert")
    check_type(name, "name", (str, type(None)), "fluid.layers.Assert")

    layer_name = name if name else ('assert_' + cond.name)
    helper = LayerHelper(layer_name, **locals())

524 525 526 527 528
    op = helper.append_op(
        type="assert",
        inputs={"Cond": cond, "Data": [] if data is None else list(data)},
        attrs={"summarize": summarize},
    )
H
Huihuang Zheng 已提交
529 530 531 532

    return op


533
class BlockGuard:
Y
Yu Yang 已提交
534
    """
535 536 537 538
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
539 540
    """

541 542
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
543
            raise TypeError("BlockGuard takes a program")
544
        self.main_program = main_program
Y
Yu Yang 已提交
545 546

    def __enter__(self):
W
Wu Yi 已提交
547
        self.main_program._create_block()
Y
Yu Yang 已提交
548 549

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
550
        self.main_program._rollback()
Y
Yu Yang 已提交
551 552 553 554 555
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
556 557 558 559 560
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
561 562
    """

Y
Yu Yang 已提交
563
    def __init__(self, rnn):
X
Xin Pan 已提交
564
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
565
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
566
        super().__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
567 568 569 570
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
571
        return super().__enter__()
Y
Yu Yang 已提交
572 573

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
574 575
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
576
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
577
        self.rnn._complete_op()
578
        return super().__exit__(exc_type, exc_val, exc_tb)
Y
Yu Yang 已提交
579 580


581
class StaticRNNMemoryLink:
Y
Yu Yang 已提交
582
    """
583 584 585 586
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
587 588 589 590 591 592 593 594 595


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
596 597 598 599 600 601 602 603
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


604
class StaticRNN:
605
    """
606 607
    :api_attr: Static Graph

608 609
    StaticRNN class.

610 611 612 613 614 615 616
    The StaticRNN can process a batch of sequence data. The first dimension of inputs
    represents sequence length, the length of each input sequence must be equal.
    StaticRNN will unfold sequence into time steps, user needs to define how to process
    each time step during the :code:`with` step.

    Args:
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
C
chengduo 已提交
617 618

    Examples:
619 620
        .. code-block:: python

621
            import paddle
622 623 624 625
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
626
            paddle.enable_static()
627 628
            x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            # create word sequence
629 630 631 632 633
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
634
            # transform batch size to dim 1
635
            x_emb = paddle.transpose(x_emb, perm=[1, 0, 2])
636 637 638

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
639
                # mark created x_emb as input, each step process a word
640
                word = rnn.step_input(x_emb)
641
                # create prev memory parameter, batch size comes from word
642 643
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
644 645
                # use hidden to update prev
                rnn.update_memory(prev, hidden)
646
                # mark hidden as output
647
                rnn.step_output(hidden)
648
            # get StaticrNN final output
649
            result = rnn()
C
chengduo 已提交
650

651
    """
652

Y
Yu Yang 已提交
653 654 655 656
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

657
    def __init__(self, name=None):
658
        check_type(name, "name", (str, type(None)), "fluid.layers.StaticRNN")
659
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
660 661 662 663 664 665 666 667
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
668
        """
669 670
        Define operators in each step. step is used in :code:`with` block, OP in :code:`with` block
        will be executed sequence_len times (sequence_len is the length of input)
C
chengduo 已提交
671
        """
Y
Yang Yang 已提交
672
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
673 674 675 676 677

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

678 679 680 681 682 683 684 685 686
    def memory(
        self,
        init=None,
        shape=None,
        batch_ref=None,
        init_value=0.0,
        init_batch_dim_idx=0,
        ref_batch_dim_idx=1,
    ):
687
        """
C
chengduo 已提交
688 689 690
        Create a memory variable for static rnn.
        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
691 692
        must be set, and this function will create a new variable with shape and batch_ref
        to initialize :code:`init` Variable.
C
chengduo 已提交
693

694
        Args:
695
            init(Variable, optional): Tensor used to init memory. If it is not set,
C
chengduo 已提交
696 697
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
698 699 700 701 702 703 704
            shape(list|tuple): When :code:`init` is None use this arg to initialize memory shape.
            NOTE the shape does not contain batch_size. Default: None.
            batch_ref(Variable, optional): When :code:`init` is None, memory's batch size will
            be set as batch_ref's ref_batch_dim_idx value. Default: None.
            init_value(float, optional): When :code:`init` is None, used to init memory's value. Default: 0.0.
            init_batch_dim_idx(int, optional): the batch_size axis of the :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int, optional): the batch_size axis of the :code:`batch_ref` Variable. Default: 1.
C
chengduo 已提交
705 706

        Returns:
707 708 709 710 711
            Variable: The memory variable.

        Examples 1:
            .. code-block:: python

712
                import paddle
713 714 715 716
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
717
                paddle.enable_static()
718 719 720 721 722 723 724 725
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
726
                x_emb = paddle.transpose(x_emb, perm=[1, 0, 2])
727 728 729 730 731 732 733 734 735 736

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
737 738 739


        Examples 2:
740 741
            .. code-block:: python

742
                import paddle
743 744 745
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers
                vocab_size, hidden_size=10000, 200
746
                paddle.enable_static()
747 748 749 750 751 752 753 754
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
755
                x_emb = paddle.transpose(x_emb, perm=[1, 0, 2])
756 757 758 759 760 761 762 763 764 765
                boot_memory = fluid.layers.data(name='boot', shape=[hidden_size], dtype='float32', lod_level=1)
                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # init memory
                        prev = rnn.memory(init=boot_memory)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # update hidden with prev
                        rnn.update_memory(prev, hidden)
766

767
        """
Y
Yu Yang 已提交
768
        self._assert_in_rnn_block_('memory')
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
        check_type(
            init,
            "init",
            (Variable, type(None)),
            "fluid.layers.StaticRNN.memory",
        )
        check_type(
            shape,
            "shape",
            (list, tuple, type(None)),
            "fluid.layers.StaticRNN.memory",
        )
        check_type(
            batch_ref,
            "batch_ref",
            (Variable, type(None)),
            "fluid.layers.StaticRNN.memory",
        )
Y
Yu Yang 已提交
787
        if init is None:
788
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
789
                raise ValueError(
790 791
                    "if init is None, memory at least need shape and batch_ref"
                )
792
            parent_block = self._parent_block()
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
            var_name = unique_name.generate_with_ignorable_key(
                "@".join([self.helper.name, "memory_boot"])
            )
            boot_var = parent_block.create_var(
                name=var_name,
                shape=shape,
                dtype=batch_ref.dtype,
                persistable=False,
            )

            parent_block.append_op(
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
                    'shape': boot_var.shape,
                    'dtype': boot_var.dtype,
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx,
                },
            )
Y
Yu Yang 已提交
815 816 817 818

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
819 820 821
                name=unique_name.generate_with_ignorable_key(
                    "@".join([self.helper.name, "mem"])
                ),
F
fengjiayi 已提交
822
                dtype=init.dtype,
823 824 825 826 827
                shape=init.shape,
            )
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem
            )
Y
Yu Yang 已提交
828 829 830
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
831 832 833 834 835 836 837 838
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
839 840 841 842 843
            Variable: The current time step data in the input sequence.

        Examples:
            .. code-block:: python

844
                import paddle
845 846 847 848
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
849
                paddle.enable_static()
850 851 852 853 854 855 856 857
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
858
                x_emb = paddle.transpose(x_emb, perm=[1, 0, 2])
859 860 861 862 863 864 865 866 867 868

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
869

C
chengduo 已提交
870
        """
Y
Yu Yang 已提交
871
        self._assert_in_rnn_block_('step_input')
872
        check_type(x, "x", Variable, "fluid.layers.StaticRNN.step_input")
Y
Yu Yang 已提交
873
        if self.seq_len is None:
Y
Yu Yang 已提交
874
            self.seq_len = x.shape[0]
875
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
876 877
            raise ValueError("Static RNN only take fix seq_len input")

878 879 880
        ipt = self.helper.create_variable(
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type
        )
Y
Yu Yang 已提交
881 882 883 884
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
885 886 887 888 889 890 891 892
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
893 894 895 896

        Examples:
            .. code-block:: python

897
                import paddle
898 899 900 901
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
902
                paddle.enable_static()
903 904 905 906 907 908 909 910
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
911
                x_emb = paddle.transpose(x_emb, perm=[1, 0, 2])
912 913 914 915 916 917 918 919 920 921 922 923 924

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
                        rnn.step_output(hidden)

                result = rnn()
925

C
chengduo 已提交
926
        """
Y
Yu Yang 已提交
927
        self._assert_in_rnn_block_('step_output')
928
        check_type(o, "o", Variable, "fluid.layers.StaticRNN.step_output")
Y
Yu Yang 已提交
929

X
Xin Pan 已提交
930
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
931 932 933 934 935 936
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
            attrs={'dtype': o.dtype},
        )
Y
Yu Yang 已提交
937

938 939 940 941 942
        out_var = self._parent_block().create_var(
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
            dtype=tmp_o.dtype,
        )
Y
Yu Yang 已提交
943 944 945 946

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
947 948 949 950
        """
        Mark the StaticRNN output variables.

        Args:
951
            outputs: The output Tensor, can mark multiple variables as output
C
chengduo 已提交
952 953 954

        Returns:
            None
955 956 957 958

        Examples:
            .. code-block:: python

959
                import paddle
960 961 962 963
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
964
                paddle.enable_static()
965 966 967 968 969 970 971 972
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
973
                x_emb = paddle.transpose(x_emb, perm=[1, 0, 2])
974 975 976 977 978 979 980 981 982 983 984 985 986 987

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
                        # mark each step's hidden and word as output
                        rnn.output(hidden, word)

                result = rnn()
C
chengduo 已提交
988
        """
Y
Yu Yang 已提交
989 990 991 992
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
993
        """
994
        Update the memory from :code:`mem` to :code:`var`.
C
chengduo 已提交
995 996 997

        Args:
            mem(Variable): the memory variable.
998
            var(Variable): the plain variable generated in RNN block, used to update memory.
T
tianshuo78520a 已提交
999
                           var and mem should have same dims and data type.
C
chengduo 已提交
1000 1001 1002

        Returns:
            None
1003

C
chengduo 已提交
1004
        """
1005 1006
        check_type(mem, "mem", Variable, "fluid.layers.StaticRNN.update_memory")
        check_type(var, "var", Variable, "fluid.layers.StaticRNN.update_memory")
Y
Yu Yang 已提交
1007 1008
        self.memories[mem.name].mem = var

1009
    def _parent_block(self):
1010
        prog = self.helper.main_program
Y
Yu Yang 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1026
    def _complete_op(self):
1027 1028
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
1029
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
1044 1045 1046
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
1047 1048 1049 1050 1051 1052 1053 1054
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

1055 1056 1057
        parameters = [
            parent_block._find_var_recursive(name) for name in set(params)
        ]
Y
Yu Yang 已提交
1058 1059

        step_scope = parent_block.create_var(
1060 1061
            type=core.VarDesc.VarType.STEP_SCOPES
        )
Y
Yu Yang 已提交
1062 1063 1064 1065

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
1066
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
1067 1068 1069
        boot_memories = []
        pre_memories = []
        memories = []
1070
        for _, mem in self.memories.items():
Y
Yu Yang 已提交
1071 1072
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
1073 1074 1075
            assert (
                mem.mem is not None
            ), "%s should be updated in every step." % (mem.init.name)
Y
Yu Yang 已提交
1076 1077
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
1078
            new_mem = self.helper.create_variable_for_type_inference(
1079 1080 1081 1082 1083 1084 1085 1086
                dtype=mem_var.dtype
            )
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
                attrs={'dtype': mem_var.dtype},
            )
Y
Yu Yang 已提交
1087 1088 1089

            memories.append(new_mem.name)

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters,
            },
            outputs={'outputs': outlinks, 'step_scopes': [step_scope]},
            attrs={
                'has_states': len(pre_memories) > 0,
                'ex_states': pre_memories,
                'states': memories,
                'sub_block': rnn_block,
            },
        )
Y
Yu Yang 已提交
1105 1106


Y
Yang Yang(Tony) 已提交
1107 1108 1109 1110
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
1111
        super().__init__(while_op.helper.main_program)
Y
Yang Yang(Tony) 已提交
1112 1113 1114 1115
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
1116
        return super().__enter__()
Y
Yang Yang(Tony) 已提交
1117 1118 1119 1120 1121

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
1122
        self.while_op._complete()
1123
        return super().__exit__(exc_type, exc_val, exc_tb)
Y
Yang Yang(Tony) 已提交
1124 1125


1126 1127 1128
def get_inputs_outputs_in_block(
    current_block, inner_inputs, inner_outputs, helper
):
1129 1130 1131 1132 1133 1134 1135 1136
    """
    Find inputs and outputs in current control flow block.
    :param current_block: Current control flow block.
    :param inner_inputs: Input var name of ops in current block.
    :param inner_outputs: Output var name of ops in current block.
    :return: inner_inputs, inner_outputs
    """

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
    def is_ignore_vars(op, var_name):
        # NOTE(dev): There are some persistable var created in some non-standard API
        # such as "contrib.layers.shuffle_batch". It create a "Seed" used both in
        # Input and Output. This var shall not be considered as a loop_var in
        # control_flow.
        IGNORE_VAR_NAMES = {"shuffle_batch": ["shuffle_batch_seed"]}
        if op.type in IGNORE_VAR_NAMES:
            var_names = IGNORE_VAR_NAMES[op.type]
            for name in var_names:
                if name in var_name:
                    return True
        return False

1150 1151 1152 1153 1154 1155 1156 1157
    # Step1: update inner_inputs and inner_outputs
    # NOTE: Here assumes that all variables are input or output of Ops,
    # but some variables are created without appendding a real op.
    # For example, in `arr = create_array(dtype)`, `arr` is not a output of a op.
    for op in current_block.ops:
        assert isinstance(op, Operator)
        for iname in op.input_names:
            for in_var_name in op.input(iname):
1158
                if in_var_name not in inner_outputs and not is_ignore_vars(
1159 1160
                    op, in_var_name
                ):
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
                    inner_inputs.add(in_var_name)

        for oname in op.output_names:
            for out_var_name in op.output(oname):
                inner_outputs.add(out_var_name)

    # Step2: Remove LOD_TENSOR_ARRAY created in current control flow block.
    remove_inner_inputs = set()
    parent_block = helper.main_program.block(current_block.parent_idx)

    for in_var_name in inner_inputs:
        parent_block_var = parent_block._find_var_recursive(in_var_name)
        current_block_var = None
        if current_block.has_var(in_var_name):
            current_block_var = current_block.var(in_var_name)
1176 1177 1178 1179 1180
        if (
            not parent_block_var
            and current_block_var
            and current_block_var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        ):
1181 1182 1183 1184 1185 1186 1187
            remove_inner_inputs.add(in_var_name)

    inner_inputs = inner_inputs - remove_inner_inputs

    return inner_inputs, inner_outputs


1188
class While:
X
Xin Pan 已提交
1189
    """
1190
    :api_attr: Static Graph
1191

1192
    while loop control flow. Repeat while body until cond is False.
X
Xin Pan 已提交
1193

1194 1195 1196 1197
    Note:
        A new OP :ref:`api_fluid_layers_while_loop` is highly recommended instead of ``While`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_while_loop` is easier to use and is called with less code but does the same thing as ``While`` .

1198 1199 1200 1201 1202 1203
    Notice:
        Local variables created in ``While`` are similar to that created in while of C++, and cannot be referenced externally.
        As a result, they cannot be obtained through ``fetch_list`` of ``Executor``. If you would like to access the variable
        out of ``while`` , PaddlePaddle provides ``assign`` API to assign local variables to external. Please refer to example
        code 2 or refer to `issue#22724 <https://github.com/PaddlePaddle/Paddle/issues/22724>`_.

X
Xin Pan 已提交
1204
    Args:
1205
        cond(Variable): A Tensor whose data type is bool controlling whether to continue looping.
G
guofei 已提交
1206
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
1207
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
1208

1209
    Examples 1:
X
Xin Pan 已提交
1210
          .. code-block:: python
1211

1212
            import paddle.fluid as fluid
1213 1214 1215 1216 1217
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)           # loop counter

            loop_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=10)    # loop length
1218

1219
            cond = fluid.layers.less_than(x=i, y=loop_len)
1220
            while_op = fluid.layers.While(cond=cond)
1221
            with while_op.block():
1222
                i = fluid.layers.increment(x=i, value=1, in_place=True)
1223
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)
1224 1225 1226 1227 1228

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[i])
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
            print(res) # [array([10])]


    Examples 2:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            loop_len = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            one = fluid.layers.fill_constant(shape=[1], dtype='float32', value=1)
            data = fluid.data(name='data', shape=[1], dtype='float32')
            sums = fluid.layers.fill_constant(shape=[1], dtype='float32', value=0)  # Define the variable to be obtained ouside of While, which name should be different from the variable inside the While to be obtained

            cond = fluid.layers.less_than(x=i, y=loop_len)
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                sums_tensor = fluid.layers.elementwise_add(x=data, y=data)
                fluid.layers.assign(sums_tensor, sums)  # Update the value of sums_tensor defined in While to the sums which defined outside of While through layers.assign
                i = fluid.layers.increment(x=i, value=1, in_place=True)
                data = fluid.layers.elementwise_add(x=data, y=one)
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)

            feed_data = np.ones(1).astype('float32')
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            res = exe.run(fluid.default_main_program(), feed={'data': feed_data}, fetch_list=sums)
            print(res[0])  # [2.]    # Because the data in While does not update the value outside the While, the value of sums is [2.] after the loop
X
Xin Pan 已提交
1258 1259
    """

Y
Yang Yang(Tony) 已提交
1260 1261 1262 1263
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
1264
    def __init__(self, cond, is_test=False, name=None):
1265
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
1266
        self.status = While.BEFORE_WHILE_BLOCK
1267
        check_variable_and_dtype(cond, 'cond', ['bool'], 'fluid.layers.While')
Y
Yang Yang(Tony) 已提交
1268
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
1269
            raise TypeError(
1270 1271 1272 1273
                "condition expected shape as [1], but given shape as {0}.".format(
                    list(cond.shape)
                )
            )
Y
Yang Yang(Tony) 已提交
1274
        self.cond_var = cond
C
chengduo 已提交
1275
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
1276 1277 1278 1279

    def block(self):
        return WhileGuard(self)

1280
    def _complete(self):
Y
Yang Yang(Tony) 已提交
1281 1282
        main_program = self.helper.main_program
        while_block = main_program.current_block()
1283
        parent_block = main_program.block(
1284 1285
            main_program.current_block().parent_idx
        )
Y
Yang Yang(Tony) 已提交
1286 1287 1288

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
1289
        x_name_list, inner_outputs = get_inputs_outputs_in_block(
1290 1291
            while_block, x_name_list, inner_outputs, self.helper
        )
Y
Yang Yang(Tony) 已提交
1292 1293 1294

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
1295 1296 1297
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
1298

1299
        x_name_list |= set(map(lambda x: x.name, out_vars))
1300 1301 1302
        # NOTE(dev): cond_var has been contained in Input('Condition'), so
        # we remove it from Input('X')
        x_name_list -= {self.cond_var.name}
1303

Y
Yang Yang(Tony) 已提交
1304
        step_scope = parent_block.create_var(
1305 1306
            type=core.VarDesc.VarType.STEP_SCOPES
        )
Y
Yang Yang(Tony) 已提交
1307 1308 1309 1310

        parent_block.append_op(
            type='while',
            inputs={
1311 1312 1313 1314 1315
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
                'Condition': [self.cond_var],
1316
            },
1317 1318 1319
            outputs={'Out': out_vars, 'StepScopes': [step_scope]},
            attrs={'sub_block': while_block, "is_test": self.is_test},
        )
Y
Yang Yang(Tony) 已提交
1320 1321


1322
support_ret_buildin_type = (bool, float, int)
1323 1324


1325
def assign_skip_lod_tensor_array(input, output):
1326
    """
1327
    Assign input to output, but skip the process of copying LoDTensorArray unless it's created in while_block.
1328
    """
1329 1330

    def has_shape_diff(x_var, y_var):
1331 1332
        if len(x_var.shape) != len(y_var.shape):
            return True
1333
        for x_dim, y_dim in zip(x_var.shape, y_var.shape):
1334 1335
            if x_dim != y_dim and -1 not in [x_dim, y_dim]:
                return True
1336 1337
        return False

1338
    if not isinstance(input, (Variable, core.VarBase)):
1339
        if isinstance(output, Variable) and isinstance(
1340 1341
            input, support_ret_buildin_type
        ):
1342 1343 1344
            assign(input, output)
        else:
            output = input
1345 1346
        return

1347 1348
    if input.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        main_program = input.block.program
1349
        parent_block = main_program.block(
1350 1351
            main_program.current_block().parent_idx
        )
1352 1353 1354
        if parent_block and not parent_block._find_var_recursive(input.name):
            assign(input, output)
    else:
1355 1356 1357 1358 1359
        if (
            isinstance(output, Variable)
            and isinstance(input, Variable)
            and has_shape_diff(input, output)
        ):
1360
            warnings.warn(
1361 1362 1363 1364
                "In dy2static mode, we attemp to assign a variable with shape {} into a variable with shape{}, which is not always right.".format(
                    input.shape, output.shape
                )
            )
1365
        assign(input, output)
1366 1367


G
guofei 已提交
1368
def while_loop(cond, body, loop_vars, is_test=False, name=None):
G
guofei 已提交
1369
    """
1370 1371
    :api_attr: Static Graph

G
guofei 已提交
1372 1373
    while_loop is one of the control flows. Repeats while_loop `body` until `cond` returns False.

1374 1375 1376 1377
    Notice:
        Local variables defined in ``body`` cannot be obtained through ``fetch_list`` of ``Executor`` , variables should
        be defined outside ``body`` and placed in ``loop_vars`` for looping, then these variables can be fetched by ``fetch_list`` .

G
guofei 已提交
1378
    Args:
1379
        cond(Callable): A callable returning a boolean tensor controlling whether to continue looping. And ``cond`` takes
1380
            as many arguments as ``loop_vars`` .
1381 1382 1383
        body(Callable): A callable returning a tuple or list of tensors or LoDTensorArrays of the same arity
            (length and structure) and types as ``loops_vars`` . And ``body`` takes as many arguments as ``loop_vars`` .
        loop_vars(list|tuple): A list or tuple of tensors or LoDTensorArrays that is passed to both ``cond`` and ``body`` .
G
guofei 已提交
1384
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
G
guofei 已提交
1385 1386
        name(str, optional): Normally there is no need for users to set this property. For more information, please
            refer to :ref:`api_guide_Name`. Default is None.
1387

G
guofei 已提交
1388
    Returns:
C
Chen Long 已提交
1389
        A list or tuple of Tensors or LoDTensorArrays which returned by ``body`` .
G
guofei 已提交
1390 1391 1392 1393

    Examples:
        .. code-block:: python

1394 1395 1396
            import paddle
            paddle.enable_static()

1397 1398
            def cond(i, ten):
                return i < ten
G
guofei 已提交
1399

1400 1401 1402
            def body(i, ten):
                i = i + 1
                return [i, ten]
G
guofei 已提交
1403

C
Chen Long 已提交
1404 1405 1406 1407 1408 1409
            main_program = paddle.static.default_main_program()
            startup_program = paddle.static.default_startup_program()
            with paddle.static.program_guard(main_program, startup_program):
                i = paddle.full(shape=[1], fill_value=0, dtype='int64')     # loop counter
                ten = paddle.full(shape=[1], fill_value=10, dtype='int64')  # loop length
                i, ten = paddle.static.nn.while_loop(cond, body, [i, ten])
1410

C
Chen Long 已提交
1411
                exe = paddle.static.Executor(paddle.CPUPlace())
1412
                res = exe.run(main_program, feed={}, fetch_list=[i])
G
guofei 已提交
1413 1414 1415 1416 1417 1418 1419 1420
                print(res) # [array([10])]
    """
    helper = LayerHelper('while_loop', **locals())

    if not callable(cond):
        raise TypeError("cond in while_loop should be callable")
    if not callable(body):
        raise TypeError("body in while_loop should be callable")
1421
    check_type(loop_vars, 'loop_vars', (list, tuple), 'fluid.layers.while_loop')
G
guofei 已提交
1422 1423 1424 1425
    if len(loop_vars) == 0:
        raise ValueError("loop_vars in while_loop should not be empty")

    pre_cond = cond(*loop_vars)
1426 1427 1428
    check_variable_and_dtype(
        pre_cond, 'var of cond returned', ['bool'], 'fluid.layers.while_loop'
    )
G
guofei 已提交
1429 1430
    if reduce(lambda a, b: a * b, pre_cond.shape, 1) != 1:
        raise TypeError(
1431
            "the shape of the variable returned by cond should be [1],"
1432 1433
            "but given shape as {0}.".format(list(pre_cond.shape))
        )
G
guofei 已提交
1434

J
Jiabin Yang 已提交
1435
    if _non_static_mode():
1436
        now_cond = pre_cond.numpy()[0]
1437
        while now_cond:
1438 1439 1440 1441 1442 1443
            output_vars = body(*loop_vars)
            if not isinstance(output_vars, (list, tuple)):
                output_vars = [output_vars]
            if len(output_vars) != len(loop_vars):
                raise ValueError(
                    "body in while_loop should return the same arity "
1444 1445
                    "(length and structure) and types as loop_vars"
                )
1446
            now_cond = cond(*output_vars).numpy()[0]
1447
            map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
1448 1449
        return loop_vars

G
guofei 已提交
1450
    while_loop_block = While(pre_cond, is_test, name)
1451
    has_mutable_vars_in_loop = hold_mutable_vars(loop_vars)
G
guofei 已提交
1452
    with while_loop_block.block():
1453 1454 1455 1456 1457 1458 1459 1460 1461
        # If a variable with mutable type is included in loop_vars, like `dict/list`,
        # modifying it in the body function will cause origin variable to be modified
        # synchronously. This will raise an assignment error out of while block.
        # Here we make a copy of the mutable vars to avoid this problem.
        if has_mutable_vars_in_loop:
            new_loop_vars = copy_mutable_vars(loop_vars)
            output_vars = body(*new_loop_vars)
        else:
            output_vars = body(*loop_vars)
1462 1463
        if not isinstance(output_vars, (list, tuple)):
            output_vars = [output_vars]
1464
        try:
1465
            loop_vars = _deal_with_undefined_var(output_vars, loop_vars)
1466 1467
            assert_same_structure(output_vars, loop_vars, check_types=False)
        except ValueError as e:
1468 1469
            raise ValueError(
                "body in while_loop should return the same arity "
1470 1471
                "(length and structure) as loop_vars: {0}".format(e)
            )
1472
        now_cond = cond(*output_vars)
1473
        map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
G
guofei 已提交
1474 1475 1476 1477
        assign(now_cond, pre_cond)
    return loop_vars


1478
def _deal_with_undefined_var(output_vars, loop_vars):
1479 1480 1481 1482 1483 1484 1485
    """Deal with undefined var cases, We create undefined variable based on the results of body().
    In Dy2Static, we use undefined var to represent the var created in control flow. This function
    expand the loop_vars and replace original loop_vars.
    1. UndefinedVar = Variable      # create a variable
    2. UndefinedVar = None          # create a undefined var with RETURN_NO_VALUE_MAGIC_NUM
    3. UndefinedVar = List(int)     # create a list of variable
    4. UndefinedVar = value         # create a variable
1486
    """
1487
    from paddle.jit.dy2static.utils import (
1488 1489 1490
        UndefinedVar,
        create_undefined_variable,
    )
1491 1492

    def create_var_like(o_var):
1493 1494 1495 1496
        if (
            isinstance(o_var, (Variable,) + support_ret_buildin_type)
            or o_var is None
        ):
1497
            return create_undefined_variable()
1498
        if is_sequence(o_var):
1499
            """
1500 1501 1502
            Create a complex container class inside the body of while, including Python list and python Dict
            """
            return map_structure(lambda x: create_undefined_variable(), o_var)
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

    if len(output_vars) != len(loop_vars):
        raise ValueError("The length of loop_vars should be the same.")

    results = []
    for o_var, l_var in zip(output_vars, loop_vars):
        if isinstance(l_var, UndefinedVar) or l_var is None:
            results.append(create_var_like(o_var))
        else:
            results.append(l_var)
    return results


1516
def lod_rank_table(x, level=0):
1517 1518
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
1519 1520
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
1521
    a length, both of which are int type. Refering to specified level of LoD,
T
tianshuo78520a 已提交
1522
    the index is the sequence index number and the length represents the
Y
yangyaming 已提交
1523 1524
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
1525 1526 1527 1528

        .. code-block:: text

            x is a LoDTensor:
1529 1530
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
1531 1532
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
1533 1534 1535
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
1536

Y
yangyaming 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
1546 1547 1548 1549

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
1550 1551
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
1552 1553 1554 1555 1556 1557 1558

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

1559
            import paddle.fluid as fluid
Y
yangyaming 已提交
1560
            x = fluid.layers.data(name='x', shape=[10],
1561
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
1562
            out = layers.lod_rank_table(x=x, level=0)
1563
    """
1564 1565 1566
    check_type(x, 'x', (Variable, list), 'lod_rank_table')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
1567 1568 1569
            check_type(
                input_x, 'input[' + str(i) + ']', Variable, 'lod_rank_table'
            )
1570

Y
Yu Yang 已提交
1571
    helper = LayerHelper("lod_rank_table", **locals())
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
        name=unique_name.generate("lod_rank_table"),
    )
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level},
    )
Y
Yu Yang 已提交
1582
    return table
Y
Yu Yang 已提交
1583 1584


Y
yuyang18 已提交
1585
@templatedoc()
1586
def max_sequence_len(rank_table):
Y
yuyang18 已提交
1587 1588 1589 1590 1591 1592 1593 1594
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
1595 1596

    Args:
Y
yuyang18 已提交
1597
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
1598 1599

    Returns:
Y
yuyang18 已提交
1600
        ${out_comment}.
F
fengjiayi 已提交
1601 1602
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
1603
    res = helper.create_variable_for_type_inference(dtype="int64")
1604 1605 1606 1607 1608
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res},
    )
F
fengjiayi 已提交
1609 1610 1611
    return res


1612
def increment(x, value=1.0, in_place=True):
1613
    """
1614 1615
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.
1616

1617
    Parameters:
T
tianshuo78520a 已提交
1618
        x (Variable): A tensor that must always contain only one element, its data type supports
1619 1620 1621
            float32, float64, int32 and int64.
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        in_place (bool, optional): Whether the OP should be performed in-place. Default: True.
1622 1623

    Returns:
1624
        Variable: The elementwise-incremented tensor with the same shape and data type as :attr:`x`.
1625 1626 1627 1628

    Examples:
        .. code-block:: python

1629
          import paddle.fluid as fluid
1630 1631
          counter = fluid.layers.zeros(shape=[1], dtype='float32') # [0.]
          fluid.layers.increment(counter) # [1.]
1632
    """
H
hong 已提交
1633
    if in_dygraph_mode():
1634
        return _C_ops.increment_(x, value)
H
hong 已提交
1635

1636 1637 1638
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment'
    )
Y
Yu Yang 已提交
1639
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1640
    if not in_place:
X
Xin Pan 已提交
1641
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1642 1643
    else:
        out = x
1644 1645 1646 1647 1648 1649
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'step': float(value)},
    )
Y
Yang Yu 已提交
1650
    return out
Y
Yu Yang 已提交
1651 1652


1653
def array_write(x, i, array=None):
1654
    """
1655 1656 1657 1658
    This OP writes the input ``x`` into the i-th position of the ``array``
    :ref:`api_fluid_LoDTensorArray` and returns the modified array.
    If ``array`` is none, a new LoDTensorArray will be created and returned.
    This OP is often used together with :ref:`api_fluid_layers_array_read` OP.
1659 1660

    Args:
1661 1662 1663 1664
        x (Variable): The input data to be written into array. It's multi-dimensional
            Tensor or LoDTensor. Data type: float32, float64, int32, int64.
        i (Variable): 1-D Tensor with shape [1], which represents the position into which
            ``x`` is written. Data type: int64.
1665 1666
        array (LoDTensorArray, optional): The LoDTensorArray into which ``x`` is written.
            The default value is None, when a new LoDTensorArray will be created and returned
1667
            as a result.
1668

1669
    Returns:
1670
        Variable: The input ``array`` after ``x`` is written into.
1671 1672

    Examples:
D
dzhwinter 已提交
1673
        .. code-block:: python
1674

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
            import paddle.fluid as fluid
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # Write tmp into the position of arr with subscript 10 and return arr.
            arr = fluid.layers.array_write(tmp, i=i)

            # Now, arr is a LoDTensorArray with length 11. We can use array_read OP to read
            # the data at subscript 10 and print it out.
            item = fluid.layers.array_read(arr, i=i)
            input = fluid.layers.Print(item, message="The content of i-th LoDTensor:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
            # 1570533133    The content of i-th LoDTensor:  The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2], which is tmp above.
            # dtype is the corresponding C++ data type, which may vary in different environments.
1698 1699
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
1700 1701
            #       and '__int64' on Windows. They both represent 64-bit integer variables.

1702
    """
J
Jiabin Yang 已提交
1703
    if _non_static_mode():
1704 1705 1706 1707 1708 1709 1710 1711 1712
        assert isinstance(
            x, Variable
        ), "The input data 'x' in array_write must be Variable in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_write must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
1713
        i = i.numpy().item(0)
1714 1715 1716
        if array is None:
            array = create_array(x.dtype)
        assert isinstance(
1717 1718
            array, list
        ), "The 'array' in array_write must be a list in dygraph mode"
1719 1720 1721 1722 1723 1724 1725 1726 1727
        assert i <= len(
            array
        ), "The index 'i' should not be greater than the length of 'array' in dygraph mode"
        if i < len(array):
            array[i] = x
        else:
            array.append(x)
        return array

1728 1729
    check_variable_and_dtype(i, 'i', ['int64'], 'array_write')
    check_type(x, 'x', (Variable), 'array_write')
Y
Yu Yang 已提交
1730
    helper = LayerHelper('array_write', **locals())
1731
    if array is not None:
1732 1733 1734 1735
        if (
            not isinstance(array, Variable)
            or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY
        ):
1736
            raise TypeError(
1737 1738
                "array should be tensor array vairable in array_write Op"
            )
Y
Yu Yang 已提交
1739 1740 1741 1742
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
1743 1744 1745 1746 1747 1748 1749
            dtype=x.dtype,
        )
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x], 'I': [i]},
        outputs={'Out': [array]},
    )
Y
Yu Yang 已提交
1750 1751 1752
    return array


1753
def create_array(dtype, initialized_list=None):
1754
    """
1755
    This OP creates an LOD_TENSOR_ARRAY. It is used as
1756
    the input of :ref:`api_fluid_layers_array_read` and
1757 1758
    :ref:`api_fluid_layers_array_write`. Also it can be used
    with  :ref:`api_fluid_layers_While` to create RNN network.
1759 1760

    Args:
1761 1762
        dtype (str): The data type of the elements in the lod_tensor_array.
                     Support data type: float32, float64, int32, int64.
1763 1764
        initialized_list(list): Used to initialize as default value for created array.
                    All values in initialized list should be a Tensor.
1765 1766

    Returns:
1767
        Variable: The empty lod_tensor_array. The data type of elements in Tensor is ``dtype``.
1768 1769 1770 1771

    Examples:
        .. code-block:: python

1772
          import paddle.fluid as fluid
1773
          data = fluid.layers.create_array(dtype='float32') # Create a float32 LoDTensorArray.
1774 1775

    """
1776 1777 1778 1779
    array = []
    if initialized_list is not None:
        if not isinstance(initialized_list, (list, tuple)):
            raise TypeError(
1780 1781 1782 1783
                "Require type(initialized_list) should be list/tuple, but received {}".format(
                    type(initialized_list)
                )
            )
1784 1785 1786 1787 1788 1789
        array = list(initialized_list)

    # NOTE: Only support plain list like [x, y,...], not support nested list in static mode.
    for val in array:
        if not isinstance(val, Variable):
            raise TypeError(
1790 1791 1792 1793
                "All values in `initialized_list` should be Variable, but recevied {}.".format(
                    type(val)
                )
            )
1794

J
Jiabin Yang 已提交
1795
    if _non_static_mode():
1796
        return array
1797

Y
Yang Yang(Tony) 已提交
1798
    helper = LayerHelper("array", **locals())
1799
    tensor_array = helper.create_variable(
Y
Yang Yang(Tony) 已提交
1800 1801
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
1802 1803
        dtype=dtype,
    )
Y
Yang Yang(Tony) 已提交
1804

1805 1806 1807 1808 1809
    for val in array:
        array_write(x=val, i=array_length(tensor_array), array=tensor_array)

    return tensor_array

Y
Yang Yang(Tony) 已提交
1810

Y
yuyang18 已提交
1811
@templatedoc()
W
wawltor 已提交
1812
def less_than(x, y, force_cpu=None, cond=None, name=None):
1813
    """
1814

Y
yuyang18 已提交
1815
    ${comment}
1816 1817

    Args:
N
Noel 已提交
1818 1819
        x(Tensor): ${x_comment}.
        y(Tensor): ${y_comment}.
Y
yuyang18 已提交
1820
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
N
Noel 已提交
1821
        cond(Tensor, optional): Optional output which can be any created Tensor
1822
            that meets the requirements to store the result of *less_than*.
N
Noel 已提交
1823
            if cond is None, a new Tensor will be created to store the result.
W
wawltor 已提交
1824 1825
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1826
    Returns:
Y
yuyang18 已提交
1827
        ${out_comment}.
1828 1829 1830 1831

    Examples:
        .. code-block:: python

N
Noel 已提交
1832 1833 1834 1835 1836 1837 1838
            import paddle

            x = paddle.to_tensor([1, 2, 3, 4], dtype='float32')
            y = paddle.to_tensor([2, 2, 1, 3], dtype='float32')
            result = paddle.less_than(x, y)
            print(result) # [True, False, False, False]

1839
    """
1840 1841 1842 1843 1844 1845
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "less_than"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "less_than"
    )
1846 1847
    if cond is not None:
        check_type(cond, "cond", Variable, "less_than")
1848
    if force_cpu is not None:
1849 1850
        check_type(force_cpu, "force_cpu", bool, "less_than")

Y
Yang Yang(Tony) 已提交
1851 1852
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1853
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1854 1855
        cond.stop_gradient = True

Y
yuyang18 已提交
1856 1857 1858 1859
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu

1860 1861 1862 1863 1864 1865
    helper.append_op(
        type='less_than',
        inputs={'X': [x], 'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs,
    )
Y
Yang Yang(Tony) 已提交
1866 1867 1868
    return cond


1869
def array_read(array, i):
1870
    """
1871
    This OP is used to read data at the specified position from the input array
1872
    :ref:`api_fluid_LoDTensorArray` . ``array`` is the input array and ``i``
1873
    is the specified read position. This OP is often used together with
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
    :ref:`api_fluid_layers_array_write` OP.

    Case 1:
    ::
        Input:
            The shape of first three tensors are [1], and that of the last one is [1,2]:
                array = ([0.6], [0.1], [0.3], [0.4, 0.2])
            And:
                i = [3]

        Output:
            output = [0.4, 0.2]
1886

K
kavyasrinet 已提交
1887
    Args:
1888 1889 1890
        array (LoDTensorArray): The input LoDTensorArray.
        i (Variable): 1-D Tensor, whose shape is [1] and dtype is int64. It represents the
            specified read position of ``array``.
1891

K
kavyasrinet 已提交
1892
    Returns:
1893
        Variable: The LoDTensor or Tensor that is read at the specified position of ``array``.
1894

K
kavyasrinet 已提交
1895
    Examples:
1896 1897
        .. code-block:: python

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
            # First we're going to create a LoDTensorArray, then we're going to write the Tensor into
            # the specified position, and finally we're going to read the Tensor at that position.
            import paddle.fluid as fluid
            arr = fluid.layers.create_array(dtype='float32')
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is the Tensor with shape [3,2], and if we write it into the position with subscript 10
            # of the empty-array: arr, then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i, array=arr)
            # Read the data of the position with subscript 10.
            item = fluid.layers.array_read(arr, i)

            # You can print out the data via executor.
            input = fluid.layers.Print(item, message="The LoDTensor of the i-th position:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:

            # 1569588169  The LoDTensor of the i-th position: The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2].
            # dtype is the corresponding C++ data type, which may vary in different environments.
1926 1927
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
1928
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
1929
    """
J
Jiabin Yang 已提交
1930
    if _non_static_mode():
1931
        assert isinstance(
1932 1933
            array, list
        ), "The 'array' in array_read must be list in dygraph mode"
1934 1935 1936 1937 1938 1939
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_read must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
1940
        i = i.numpy().item(0)
1941 1942
        return array[i]

1943
    check_variable_and_dtype(i, 'i', ['int64'], 'array_read')
Y
Yu Yang 已提交
1944
    helper = LayerHelper('array_read', **locals())
1945 1946 1947 1948
    if (
        not isinstance(array, Variable)
        or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY
    ):
Y
Yu Yang 已提交
1949
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
1950
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
1951 1952 1953 1954 1955
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array], 'I': [i]},
        outputs={'Out': [out]},
    )
Y
Yu Yang 已提交
1956
    return out
Y
Yang Yu 已提交
1957 1958


1959
def shrink_memory(x, i, table):
1960
    """
Y
yuyang18 已提交
1961
    This function creates an operator to shrink rnn memory using the RankTable
1962
    as mentioned in the input parameter.
Y
yuyang18 已提交
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1983
    """
Y
Yang Yu 已提交
1984
    helper = LayerHelper('shrink_memory', **locals())
1985 1986 1987
    check_type(x, 'x', Variable, 'shrink_memory')
    check_type(i, 'i', Variable, 'shrink_memory')
    check_type(table, 'table', Variable, 'shrink_memory')
X
Xin Pan 已提交
1988
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1989 1990 1991 1992 1993 1994
    helper.append_op(
        type='shrink_rnn_memory',
        inputs={'X': [x], 'I': [i], 'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={},
    )
Y
Yang Yu 已提交
1995
    return out
Y
Yang Yu 已提交
1996 1997


1998
def array_length(array):
1999
    """
2000
    This OP is used to get the length of the input array :ref:`api_fluid_LoDTensorArray` .
2001
    It can be used together with :ref:`api_fluid_layers_array_read` , :ref:`api_fluid_layers_array_write` ,
T
tianshuo78520a 已提交
2002
    :ref:`api_fluid_layers_While` OP to traverse, read and write LoDTensorArray.
2003

K
kavyasrinet 已提交
2004
    Args:
2005
        array (LoDTensorArray): The input array that will be used to compute the length.
K
kavyasrinet 已提交
2006 2007

    Returns:
2008
        Variable: 1-D Tensor with shape [1], which is the length of array. Datatype: int64.
K
kavyasrinet 已提交
2009 2010

    Examples:
Q
qiaolongfei 已提交
2011
        .. code-block:: python
K
kavyasrinet 已提交
2012

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
            import paddle.fluid as fluid
            tmp = fluid.layers.zeros(shape=[10], dtype='int32')
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is 1-D Tensor with shape [10]. We write tmp into arr on subscript 10,
            # then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i=i)
            # return the length of arr
            arr_len = fluid.layers.array_length(arr)

            # You can use executor to print out the length of LoDTensorArray.
            input = fluid.layers.Print(arr_len, message="The length of LoDTensorArray:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
Q
qiaolongfei 已提交
2029

2030 2031 2032 2033 2034
            # 1569576542  The length of LoDTensorArray:   The place is:CPUPlace
            # Tensor[array_length_0.tmp_0]
            #    shape: [1,]
            #    dtype: l
            #    data: 11,
2035

2036 2037 2038
            # 1-D Tensor with shape [1], whose value is 11. It means that the length of LoDTensorArray
            # is 11.
            # dtype is the corresponding C++ data type, which may vary in different environments.
2039 2040
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
2041
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
2042
    """
2043

J
Jiabin Yang 已提交
2044
    if _non_static_mode():
2045
        assert isinstance(
2046 2047
            array, list
        ), "The 'array' in array_write must be a list in dygraph mode"
2048 2049
        return len(array)

2050 2051 2052 2053
    if (
        not isinstance(array, Variable)
        or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY
    ):
2054
        raise TypeError(
2055 2056
            "array should be tensor array vairable in array_length Op"
        )
2057

Y
Yang Yu 已提交
2058
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
2059
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
2060
    tmp.stop_gradient = True
2061 2062 2063
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]}
    )
Y
Yang Yu 已提交
2064
    return tmp
Y
Yu Yang 已提交
2065 2066 2067


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
2068
    """
2069 2070 2071
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
2072 2073 2074
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
2075
    def __init__(self, block):
2076
        check_type(block, "block", ConditionalBlock, "ConditionalBlockGuard")
2077
        super().__init__(block.helper.main_program)
Y
Yu Yang 已提交
2078 2079 2080
        self.block = block

    def __enter__(self):
2081
        return super().__enter__()
Y
Yu Yang 已提交
2082 2083 2084

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
2085
        return super().__exit__(exc_type, exc_val, exc_tb)
Y
Yu Yang 已提交
2086 2087


2088
class ConditionalBlock:
Y
Yan Chunwei 已提交
2089 2090 2091 2092 2093 2094 2095 2096
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
T
tianshuo78520a 已提交
2097
        is_scalar_condition (bool): whether the branch is controlled by a scalar.
Y
Yan Chunwei 已提交
2098 2099 2100 2101 2102
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

2103
             import paddle.fluid as fluid
Y
Yan Chunwei 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

2115
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
2116
        for each_input in inputs:
2117
            check_type(each_input, "input", Variable, "ConditionalBlock")
Y
Yu Yang 已提交
2118
        self.inputs = inputs
2119
        self.is_scalar_condition = is_scalar_condition
2120
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()
2131 2132 2133
        params, intermediate = get_inputs_outputs_in_block(
            inside_block, params, intermediate, helper=self.helper
        )
Y
Yu Yang 已提交
2134

2135 2136 2137
        # Todo(liym27) Here assume that all params are in recursive parent block
        # but when minimize() called in control flow, some params may be in
        # conditional grad block
Y
Yu Yang 已提交
2138
        param_list = [
W
Wu Yi 已提交
2139
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
2140 2141
        ]

X
Xin Pan 已提交
2142 2143 2144 2145 2146
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
2147 2148

        step_scope = parent_block.create_var(
2149 2150
            type=core.VarDesc.VarType.STEP_SCOPES
        )
2151
        conditional_block_op = parent_block.append_op(
Y
Yu Yang 已提交
2152 2153
            type='conditional_block',
            inputs={
2154 2155
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
2156
            },
2157
            outputs={'Out': out_list, 'Scope': [step_scope]},
2158 2159
            attrs={
                'sub_block': inside_block,
2160 2161 2162
                'is_scalar_condition': self.is_scalar_condition,
            },
        )
2163

2164
        if self.need_append_conditional_block_grad(inside_block):
2165 2166 2167
            self.append_conditional_block_grad(
                parent_block, inside_block, conditional_block_op
            )
2168 2169 2170

    def need_append_conditional_block_grad(self, inside_block):
        grad_sub_block_idx = inside_block.backward_block_idx
2171
        inside_block_idx = inside_block.idx
2172

2173 2174
        # if inside_block have grad_block and grad_block is not itself,
        # we will append conditional block grad.
2175 2176 2177
        return (
            grad_sub_block_idx != -1 and grad_sub_block_idx != inside_block_idx
        )
2178

2179 2180 2181
    def append_conditional_block_grad(
        self, parent_block, inside_block, conditional_block_op
    ):
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
        '''
        Append op `conditional_block_grad` manually.
        When `optimizer.minimize/append_backward` is called in Paddle control flow,
        grad ops will be appended before appending op `conditional_block` so that
        op `conditional_block_grad` can't be appended when calling
        `optimizer.minimize/append_backward`. After appending op `conditional_block`,
        `conditional_block_grad` is appended manually.

        Args:
            parent_block (Block): The block that `conditional_block_op` blongs to.
            inside_block (Block): The sub block of `conditional_block_op`.
            conditional_block_op (Operator): The forward op conditional_block.
        '''

        grad_sub_block_idx = inside_block.backward_block_idx
        grad_sub_block = self.helper.main_program.block(grad_sub_block_idx)

        intermediate = set()
        params = set()

        for each_op in grad_sub_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)

        param_list = []
        for inner_input_name in params:
            inner_var = parent_block._find_var_recursive(inner_input_name)
            if inner_var:
2217
                param_list.append(inner_var.name)
2218 2219

        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
2220 2221
            conditional_block_op.desc, set(), [grad_sub_block.desc]
        )
2222 2223 2224 2225 2226 2227 2228 2229 2230

        # append op_desc in grad_op_descs to target_block
        op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        new_op_desc = parent_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc[0])
        new_op_desc._set_attr(op_role_attr_name, backward)
        # set input and output manually
        new_op_desc.set_input('Input', param_list)
2231 2232 2233
        new_op_desc.set_output(
            'Input@GRAD', [param + "@GRAD" for param in param_list]
        )
2234 2235 2236

        new_vars = set()
        for grad_var_name in new_op_desc.output_arg_names():
2237 2238 2239 2240
            if (
                grad_sub_block.desc.has_var_recursive(grad_var_name.encode())
                or grad_var_name == core.empty_var_name()
            ):
2241
                continue
2242
            grad_sub_block.desc.var(grad_var_name.encode())
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
            new_vars.add(grad_var_name)
            if grad_var_name not in op_grad_to_var:
                continue

        # infer_shape and infer_type
        new_op_desc.infer_var_type(grad_sub_block.desc)
        new_op_desc.infer_shape(grad_sub_block.desc)

        for arg in new_op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_shape_(arg, grad_sub_block)

        self.helper.main_program._sync_with_cpp()

2257

2258
def copy_var_to_parent_block(var, layer_helper):
2259 2260
    if not isinstance(var, Variable):
        return var
2261 2262
    prog = layer_helper.main_program
    parent_idx = prog.current_block().parent_idx
2263 2264 2265
    assert (
        parent_idx >= 0
    ), "Got wrong parent block index when assigning var to parent scope in control_flow"
2266 2267
    parent_block = prog.block(parent_idx)

2268 2269 2270 2271
    if (
        var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        and parent_block._find_var_recursive(var.name)
    ):
2272 2273
        parent_block_var = var
    else:
2274 2275 2276
        parent_block_var = parent_block.create_var(
            dtype=var.dtype, shape=var.shape, type=var.type
        )
2277
        assign(var, parent_block_var)
2278 2279 2280
    return parent_block_var


2281
def cond(pred, true_fn=None, false_fn=None, name=None, return_names=None):
2282
    """
2283 2284 2285 2286 2287 2288 2289 2290 2291
    This API returns ``true_fn()`` if the predicate ``pred`` is true else
    ``false_fn()`` . Users could also set ``true_fn`` or ``false_fn`` to
    ``None`` if do nothing and this API will treat the callable simply returns
    ``None`` in this case.

    ``true_fn`` and ``false_fn`` should return same nest structure of tensors
    or both return ``None`` if user doens't like to return anything. A nest
    structure of tensors in PaddlePaddle is tensor(s), or tuple of tensors, or
    list of tensors.
2292 2293

    Note:
2294 2295 2296 2297
        1. The tuples or lists returned by ``true_fn`` and ``false_fn`` must have
        the same shape because of dataflow model of PaddlePaddle while the
        tensors in the tuples or the lists can have different shapes.

2298 2299 2300
        2. This API could be used under both static mode or dygraph mode. If it
        is in dygraph mode, the API only runs one branch based on condition.

2301
        3. If it is in static mode, any tensors or operations created outside
2302 2303 2304
        or inside of ``true_fn`` and ``false_fn`` will be in net building
        regardless of which branch is selected at runtime. This has frequently
        surprised users who expected a lazy semantics. For example:
2305 2306

        .. code-block:: python
2307 2308 2309 2310 2311

            import paddle

            a = paddle.zeros((1, 1))
            b = paddle.zeros((1, 1))
2312
            c = a * b
2313
            out = paddle.static.nn.cond(a < b, lambda: a + c, lambda: b * b)
2314

2315 2316 2317
        No matter whether ``a < b`` , ``c = a * b`` will be in net building and
        run. ``a + c`` and ``b * b`` will be in net building, but only one
        branch will be executed during runtime.
2318 2319

    Args:
2320
        pred(Tensor): A boolean tensor whose numel should be 1. The boolean
2321
            value determines whether to return the result of ``true_fn`` or
2322 2323 2324 2325 2326 2327
            ``false_fn`` .
        true_fn(callable, optional): A callable to be performed if ``pred`` is
            true. The default value is ``None`` .
        false_fn(callable, optional): A callable to be performed if ``pred`` is
            false. The default value is ``None`` .
        name(str, optional): The default value is ``None`` . Normally users
2328
             don't have to set this parameter. For more information, please
2329
             refer to :ref:`api_guide_Name` .
2330 2331 2332
        return_names(sequence of string, optional): The default value is ``None`` .
             Normally users don't have to set this parameters.  A sequence of strings
             to represents the name of returned vars.  The structure of sequence must
2333
             be same with return values of true_fn and false_fn.
2334 2335

    Returns:
2336
        Tensor|list(Tensor)|tuple(Tensor): returns ``true_fn()`` if the
2337
        predicate ``pred`` is true else ``false_fn()`` .
2338 2339 2340

    Raises:
        TypeError: if ``true_fn`` or ``false_fn`` is not callable.
2341 2342
        ValueError: if ``true_fn`` and ``false_fn`` don't return the same nest
            structure of tensors.
2343 2344 2345 2346

    Examples:
        .. code-block:: python

2347
            import paddle
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357

            #
            # pseudocode:
            # if 0.1 < 0.23:
            #     return 1, True
            # else:
            #     return 3, 2
            #

            def true_func():
2358 2359 2360 2361
                return paddle.full(shape=[1, 2], dtype='int32',
                                   fill_value=1), paddle.full(shape=[2, 3],
                                                              dtype='bool',
                                                              fill_value=True)
2362

2363 2364

            def false_func():
2365 2366 2367 2368 2369
                return paddle.full(shape=[3, 4], dtype='float32',
                                   fill_value=3), paddle.full(shape=[4, 5],
                                                              dtype='int64',
                                                              fill_value=2)

2370

2371 2372
            x = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
            y = paddle.full(shape=[1], dtype='float32', fill_value=0.23)
2373
            pred = paddle.less_than(x=x, y=y, name=None)
2374
            ret = paddle.static.nn.cond(pred, true_func, false_func)
2375
            # ret is a tuple containing 2 tensors
2376 2377
            # ret[0] = [[1 1]]
            # ret[1] = [[ True  True  True]
2378
            #           [ True  True  True]]
2379

2380
    """
J
Jiabin Yang 已提交
2381
    if _non_static_mode():
2382
        assert isinstance(pred, Variable), "The pred in cond must be Variable"
C
crystal 已提交
2383
        assert pred.size == 1, "condition input's numel should be 1"
2384 2385 2386 2387 2388
        pred = pred.numpy()[0]
        if pred:
            if true_fn is not None:
                if not callable(true_fn):
                    raise TypeError(
2389 2390 2391 2392
                        "The true_fn in cond must be callable, but received {}".format(
                            type(true_fn).__name__
                        )
                    )
2393 2394 2395 2396 2397
                return true_fn()
        else:
            if false_fn is not None:
                if not callable(false_fn):
                    raise TypeError(
2398 2399 2400 2401
                        "The false_fn in cond must be callable, but received {}".format(
                            type(false_fn).__name__
                        )
                    )
2402 2403 2404
                return false_fn()
        return None

2405 2406
    check_variable_and_dtype(pred, "pred", ['bool'], "fluid.layers.cond")
    check_type(name, "name", (str, type(None)), "fluid.layers.cond")
2407 2408 2409
    helper = LayerHelper('cond', **locals())
    true_output = None
    false_output = None
2410
    copy_to_parent_func = lambda var: copy_var_to_parent_block(var, helper)
2411 2412
    if true_fn is not None:
        if not callable(true_fn):
2413 2414
            raise TypeError(
                "The true_fn in cond must be callable, but received {}".format(
2415 2416 2417
                    type(true_fn).__name__
                )
            )
2418 2419 2420 2421
        true_cond_block = ConditionalBlock([pred], is_scalar_condition=True)
        with true_cond_block.block():
            origin_true_output = true_fn()
            if origin_true_output is not None:
2422 2423 2424
                true_output = map_structure(
                    copy_to_parent_func, origin_true_output
                )
2425 2426
    if false_fn is not None:
        if not callable(false_fn):
2427 2428
            raise TypeError(
                "The false_fn in cond must be callable, but received {}".format(
2429 2430 2431 2432
                    type(false_fn).__name__
                )
            )
        false_cond_block = ConditionalBlock(
2
201716010711 已提交
2433
            [paddle.logical_not(pred)], is_scalar_condition=True
2434
        )
2435 2436 2437
        with false_cond_block.block():
            origin_false_output = false_fn()
            if origin_false_output is not None:
2438 2439 2440
                false_output = map_structure(
                    copy_to_parent_func, origin_false_output
                )
2441 2442 2443 2444 2445 2446 2447

    if true_output is None and false_output is None:
        return None

    if true_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
2448 2449
            "true_fn returns None while false_fn returns non-None"
        )
2450 2451 2452
    if false_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
2453 2454
            "true_fn returns non-None while false_fn returns None"
        )
2455

2456
    # Merge true and false output if they are not None
2457
    if return_names is None:
2458
        is_dy2staic = False
2459
        return_names = ["no name"] * len(_to_sequence_except_dict(true_output))
2460
    else:
2461
        """
2462 2463
        dy2static will set the return_names and expand the return values to UndefinedVar.
        """
2464 2465 2466 2467 2468 2469 2470
        is_dy2staic = True

        # TODO:  expand_undefined_var will replace None to Undefinedvar(), to fix cases like:
        #       a = None
        #       if condition:
        #           a = 1
        # Because we can not use variable to express 'None'
2471
        true_output, false_output = expand_undefined_var(
2472 2473
            true_output, false_output, return_names
        )
2474

2475 2476 2477
    if len(_to_sequence_except_dict(true_output)) != len(
        _to_sequence_except_dict(false_output)
    ):
2478
        raise ValueError(
2479
            "true fn returns {} vars, but false fn returns {} vars, which is not equals".format(
2480 2481
                len(_to_sequence_except_dict(true_output)),
                len(_to_sequence_except_dict(false_output)),
2482 2483 2484
            )
        )
    for true_out, false_out, return_name in zip(
2485 2486 2487
        _to_sequence_except_dict(true_output),
        _to_sequence_except_dict(false_output),
        _to_sequence_except_dict(return_names),
2488
    ):
2489 2490 2491 2492
        try:
            assert_same_structure(true_out, false_out, check_types=False)
        except ValueError as e:
            raise ValueError(
2493 2494 2495 2496
                "Incompatible return values of `{}` in true_fn and false_fn in cond: {}".format(
                    return_name, e
                )
            )
2497

2498
    def check_ret_none(seq_true, seq_false, seq_names):
2499 2500 2501
        for f_true, f_false, f_name in zip(seq_true, seq_false, seq_names):
            f_true = flatten(f_true)
            f_false = flatten(f_false)
2502
            for idx in range(len(f_true)):
2503 2504 2505 2506 2507 2508
                if (
                    f_true[idx] is None
                    and f_false[idx] is not None
                    or f_false[idx] is None
                    and f_true[idx] is not None
                ):
2509 2510 2511 2512
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
2513
                            f_name,
2514 2515 2516 2517 2518 2519 2520 2521
                            type(f_true[idx]),
                            f_true[idx],
                            type(f_false[idx]),
                            f_false[idx],
                        )
                    )

    check_ret_none(
2522 2523 2524
        _to_sequence_except_dict(true_output),
        _to_sequence_except_dict(false_output),
        _to_sequence_except_dict(return_names),
2525
    )
2526 2527 2528

    if is_dy2staic:
        true_output, false_output = change_none_to_undefinedvar(
2529 2530
            true_output, false_output
        )
2531

2532
    mask = cast(pred, dtype='int32')
2533 2534 2535 2536 2537
    merge_func = (
        lambda name, false_var, true_var: select_input_with_buildin_type(
            [false_var, true_var], mask, name
        )
    )
2538 2539 2540 2541 2542

    def merge_every_var_list(false_vars, true_vars, name):
        return map_structure(partial(merge_func, name), false_vars, true_vars)

    merged_output = list(
2543 2544
        map(
            merge_every_var_list,
2545 2546 2547
            _to_sequence_except_dict(false_output),
            _to_sequence_except_dict(true_output),
            _to_sequence_except_dict(return_names),
2548 2549
        )
    )
2550
    merged_output = pack_sequence_as(false_output, flatten(merged_output))
2551 2552 2553
    return merged_output


2554
def change_none_to_undefinedvar(nest1, nest2):
2555
    from paddle.jit.dy2static.utils import UndefinedVar
2556 2557

    def map_fn(x):
2558 2559
        if x is None:
            return UndefinedVar("padding")
2560 2561 2562 2563 2564 2565 2566
        return x

    nest1_out = pack_sequence_as(nest1, list(map(map_fn, flatten(nest1))))
    nest2_out = pack_sequence_as(nest2, list(map(map_fn, flatten(nest2))))
    return nest1_out, nest2_out


2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
def _to_sequence_except_dict(x):
    """
    In this function, dict is not viewed as sequence.
    """
    if isinstance(x, dict):
        return [x]
    return to_sequence(x)


def _is_sequence_except_dict(x):
    """
    In this function, dict is not viewed as sequence.
    """
    if isinstance(x, dict):
        return False
    return is_sequence(x)


2585
def expand_undefined_var(nest1, nest2, names):
2586 2587 2588 2589
    """TODO: make this function recursively.
    nest1: Var1, (UndefinedVar, [1,2,3])
    nest2: Var2, ([1,2,3,4], UndefinedVar)
    In this case, we should not expand recursively.
2590
    """
2591
    from paddle.jit.dy2static.utils import UndefinedVar
2592
    from paddle.jit.dy2static.return_transformer import (
2593 2594
        RETURN_VALUE_PREFIX,
    )
2595 2596

    def pack_undefined_var_as(seq):
2597 2598 2599
        return pack_sequence_as(
            seq, [UndefinedVar("padding") for i in flatten(seq)]
        )
2600

2601
    def map_fn(n1, n2, name, order):
2602 2603 2604
        if not name.startswith(RETURN_VALUE_PREFIX) and (
            isinstance(n1, UndefinedVar) or n1 is None
        ):
2605 2606 2607 2608 2609 2610
            if n1 is None and n2 is not None:
                if order == 0:
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
2611 2612 2613
                            name, type(n1), n1, type(n2), n2
                        )
                    )
2614 2615 2616 2617 2618
                else:
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
2619 2620 2621
                            name, type(n2), n2, type(n1), n1
                        )
                    )
2622 2623 2624 2625
            return pack_undefined_var_as(n2)
        return n1

    nest1_out = list(
2626 2627
        map(
            map_fn,
2628 2629 2630 2631
            _to_sequence_except_dict(nest1),
            _to_sequence_except_dict(nest2),
            _to_sequence_except_dict(names),
            [0 for i in _to_sequence_except_dict(names)],
2632 2633
        )
    )
2634
    nest2_out = list(
2635 2636
        map(
            map_fn,
2637 2638 2639 2640
            _to_sequence_except_dict(nest2),
            _to_sequence_except_dict(nest1),
            _to_sequence_except_dict(names),
            [1 for i in _to_sequence_except_dict(names)],
2641 2642
        )
    )
2643
    if not _is_sequence_except_dict(nest1):
2644
        nest1_out = nest1_out[0]
2645
    if not _is_sequence_except_dict(nest2):
2646
        nest2_out = nest2_out[0]
2647 2648 2649
    return nest1_out, nest2_out


L
liym27 已提交
2650
def _error_message(what, arg_name, op_name, right_value, error_value):
2651 2652
    error_message = (
        "{what} of '{arg_name}' in {op_name} must be "
L
liym27 已提交
2653
        "{right_value}, but received: {error_value}.".format(
2654 2655 2656 2657 2658 2659 2660
            what=what,
            arg_name=arg_name,
            op_name=op_name,
            right_value=right_value,
            error_value=error_value,
        )
    )
L
liym27 已提交
2661 2662 2663 2664 2665 2666

    return error_message


def case(pred_fn_pairs, default=None, name=None):
    '''
2667 2668
    :api_attr: Static Graph

L
liym27 已提交
2669 2670 2671 2672 2673 2674 2675 2676
    This operator works like an if-elif-elif-else chain.

    Args:
        pred_fn_pairs(list|tuple): A list or tuple of (pred, fn) pairs. ``pred`` is a boolean Tensor with shape [1], ``fn`` is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2677
        Tensor|list(Tensor): Tensors returned by the callable from the first pair whose pred is True,
L
liym27 已提交
2678 2679 2680 2681 2682 2683 2684
        or Tensors returned by ``default`` if no pred in ``pred_fn_pairs`` is True and ``default`` is not None,
        or Tensors returned by the last callable in ``pred_fn_pairs``  if no pred in ``pred_fn_pairs`` is True and ``default`` is None.

    Raises:
        TypeError: If the type of ``pred_fn_pairs`` is not list or tuple.
        TypeError: If the type of elements in ``pred_fn_pairs`` is not tuple.
        TypeError: If the size of tuples in ``pred_fn_pairs`` is not 2.
2685
        TypeError: If the first element of 2-tuple in ``pred_fn_pairs`` is not a Tensor.
L
liym27 已提交
2686 2687 2688 2689 2690 2691
        TypeError: If the second element of 2-tuple in ``pred_fn_pairs`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

2692 2693 2694
            import paddle

            paddle.enable_static()
L
liym27 已提交
2695 2696

            def fn_1():
2697
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
2698 2699

            def fn_2():
2700
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
2701 2702

            def fn_3():
2703
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
2704

2705 2706 2707 2708
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()

            with paddle.static.program_guard(main_program, startup_program):
2709 2710 2711
                x = paddle.full(shape=[1], dtype='float32', fill_value=0.3)
                y = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
                z = paddle.full(shape=[1], dtype='float32', fill_value=0.2)
L
liym27 已提交
2712

2713 2714 2715
                pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = paddle.equal(x, y)      # false: 0.3 == 0.1
L
liym27 已提交
2716 2717

                # Call fn_1 because pred_1 is True
2718
                out_1 = paddle.static.nn.case(
L
liym27 已提交
2719 2720 2721 2722
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3)

                # Argument default is None and no pred in pred_fn_pairs is True. fn_3 will be called.
                # because fn_3 is the last callable in pred_fn_pairs.
2723
                out_2 = paddle.static.nn.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
L
liym27 已提交
2724

2725
                exe = paddle.static.Executor(paddle.CPUPlace())
L
liym27 已提交
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
                res_1, res_2 = exe.run(main_program, fetch_list=[out_1, out_2])
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [3 3 3]
    '''
    helper = LayerHelper('case', **locals())

    def _case_check_args(pred_fn_pairs, default):
        '''
        Check arguments pred_fn_pairs and default. Return canonical pre_fn_pairs and default.
        '''
2736
        check_type(pred_fn_pairs, 'pred_fn_pairs', (list, tuple), 'case')
L
liym27 已提交
2737 2738 2739 2740

        for pred_fn in pred_fn_pairs:
            if not isinstance(pred_fn, tuple):
                raise TypeError(
2741 2742 2743 2744 2745 2746 2747 2748
                    _error_message(
                        "The elements' type",
                        "pred_fn_pairs",
                        "case",
                        tuple,
                        type(pred_fn),
                    )
                )
L
liym27 已提交
2749 2750
            if len(pred_fn) != 2:
                raise TypeError(
2751 2752 2753 2754 2755 2756 2757 2758
                    _error_message(
                        "The tuple's size",
                        "pred_fn_pairs",
                        "case",
                        "2",
                        str(len(pred_fn)) + "-tuple",
                    )
                )
L
liym27 已提交
2759 2760 2761 2762
            pred, fn = pred_fn

            if not isinstance(pred, Variable):
                raise TypeError(
2763 2764 2765 2766 2767 2768 2769 2770
                    _error_message(
                        "The pred's type",
                        "pred_fn_pairs",
                        "case",
                        "boolean Variable",
                        type(pred),
                    )
                )
L
liym27 已提交
2771 2772 2773 2774

            if not callable(fn):
                raise TypeError(
                    "The fn for {} of pred_fn_pairs in Op(case) must"
2775 2776
                    " be callable.".format(pred.name)
                )
L
liym27 已提交
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797

        if default is None:
            default_index = len(pred_fn_pairs) - 1  # pick the last one
            default = pred_fn_pairs[default_index][1]
            pred_fn_pairs = pred_fn_pairs[:default_index]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        return pred_fn_pairs, default

    pred_fn_pairs, default = _case_check_args(pred_fn_pairs, default)

    false_fn = default
    for pred, true_fn in reversed(pred_fn_pairs):
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn

    return final_fn()


2798
class Switch:
Q
qiaolongfei 已提交
2799
    """
2800
    :api_attr: Static Graph
Q
qiaolongfei 已提交
2801

2802 2803 2804 2805 2806
    This class is used to implement Switch branch control function.
    Switch branch contains several case branches and one default branch.
    Switch control flow checks whether the case branch conditions are satisfied in turn,
    and only executes the statement after the first case branch that satisfies the conditions.
    If there is no case branch that satisfies the condition,
2807 2808
    only the statement following the default branch is executed.

2809 2810 2811 2812
    Note:
        A new OP :ref:`api_fluid_layers_case` is highly recommended instead of ``Switch`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_case` is easier to use and is called with less code but does the same thing as ``Switch`` .

2813
    Member Functions:
2814
        case(condition): The case branch of Switch whose parameter cond is a scalar Variable of bool type. Only if the cond of the current case branch is True and the cond of the previous case branch is False, the statement after the case branch will be executed, and the statement after the case branch will not be executed.
2815

2816 2817 2818 2819 2820
        default(): The default branch of Switch. When cond of all case branches is False, the statement after default branch is executed.

    Case and default functions can only be used inside the scope of Switch, as shown below:

    .. code-block:: python
2821

2822 2823 2824 2825 2826 2827 2828 2829 2830
        '''
        with fluid.layers.Switch() as switch:
            with switch.case(cond1):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            with switch.case(cond2):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
            with switch.default():
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
        '''
Q
qiaolongfei 已提交
2831

2832 2833
    Args:
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
Q
qiaolongfei 已提交
2834 2835 2836

    Examples:
        .. code-block:: python
2837

2838
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
2839

2840
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
2841 2842 2843 2844 2845
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
2846
            zero_var = fluid.layers.fill_constant(
2847
                shape=[1], dtype='float32', value=0.0)
2848
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
2849
                shape=[1], dtype='float32', value=1.0)
2850
            two_var = fluid.layers.fill_constant(
2851
                shape=[1], dtype='float32', value=2.0)
2852

2853
            global_step = fluid.layers.autoincreased_step_counter(counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
2854 2855

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
2856
                with switch.case(global_step == zero_var):
2857
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
2858
                with switch.default():
2859
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
2860

2861 2862 2863 2864 2865
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[lr])
            print(res) # [array([1.], dtype=float32)]
Q
qiaolongfei 已提交
2866 2867
    """

2868 2869 2870 2871 2872 2873 2874 2875 2876
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

2877
        check_variable_and_dtype(
2878 2879 2880 2881 2882
            condition,
            'condition',
            ['bool'],
            'the member function case of fluid.layers.Switch',
        )
2883

2884 2885
        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
2
201716010711 已提交
2886
            not_cond = paddle.logical_not(x=condition)
2887 2888 2889 2890
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
2891
            new_not_cond = paddle.logical_and(
2
201716010711 已提交
2892
                x=pre_not_cond, y=paddle.logical_not(x=condition)
2893
            )
2894 2895
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
2896
                [paddle.logical_and(x=pre_not_cond, y=condition)],
2897 2898
                is_scalar_condition=True,
            )
2899 2900 2901 2902 2903 2904 2905 2906 2907

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
2908 2909
            is_scalar_condition=True,
        )
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
2926 2927


2928
class IfElseBlockGuard:
Y
Yu Yang 已提交
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
2949 2950 2951 2952 2953
        self.ie.status = (
            IfElse.IN_IF_ELSE_TRUE_BLOCKS
            if self.is_true
            else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        )
Y
Yu Yang 已提交
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


2965
class IfElse:
X
Xin Pan 已提交
2966
    """
2967 2968
    :api_attr: Static Graph

2969 2970 2971 2972
    This class is used to implement IfElse branch control function. IfElse contains two blocks, true_block and false_block. IfElse will put data satisfying True or False conditions into different blocks to run.

    Cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the execution conditions of the corresponding part of the input data.

2973 2974 2975 2976
    Note:
        A new OP :ref:`api_fluid_layers_cond` is highly recommended instead of ``IfElse``. if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_cond` is easier to use and is called with less code but does the same thing as ``IfElse`` .

2977 2978 2979
    IfElse OP is different from other OPs in usage, which may cause some users confusion. Here is a simple example to illustrate this OP.

    .. code-block:: python
2980

2981 2982 2983 2984 2985 2986 2987 2988 2989
        # The following code completes the function: subtract 10 from the data greater than 0 in x, add 10 to the data less than 0 in x, and sum all the data.
        import numpy as np
        import paddle.fluid as fluid

        x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32', append_batch_size=False)
        y = fluid.layers.data(name='y', shape=[4, 1], dtype='float32', append_batch_size=False)

        x_d = np.array([[3], [1], [-2], [-3]]).astype(np.float32)
        y_d = np.zeros((4, 1)).astype(np.float32)
2990

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
        # Compare the size of x, y pairs of elements, output cond, cond is shape [4, 1], data type bool 2-D tensor.
        # Based on the input data x_d, y_d, it can be inferred that the data in cond are [[true], [true], [false], [false]].
        cond = fluid.layers.greater_than(x, y)
        # Unlike other common OPs, ie below returned by the OP is an IfElse OP object
        ie = fluid.layers.IfElse(cond)

        with ie.true_block():
            # In this block, according to cond condition, the data corresponding to true dimension in X is obtained and subtracted by 10.
            out_1 = ie.input(x)
            out_1 = out_1 - 10
            ie.output(out_1)
        with ie.false_block():
            # In this block, according to cond condition, get the data of the corresponding condition in X as false dimension, and add 10
            out_1 = ie.input(x)
            out_1 = out_1 + 10
            ie.output(out_1)

        # According to cond condition, the data processed in the two blocks are merged. The output here is output, the type is List, and the element type in List is Variable.
3009
        output = ie() #  [array([[-7.], [-9.], [ 8.], [ 7.]], dtype=float32)]
3010 3011

        # Get the first Variable in the output List and add all elements.
3012
        out = paddle.sum(output[0])
3013 3014 3015 3016 3017

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        res = exe.run(fluid.default_main_program(), feed={"x":x_d, "y":y_d}, fetch_list=[out])
3018
        print(res)
3019
        # [array([-1.], dtype=float32)]
X
Xin Pan 已提交
3020 3021

    Args:
3022 3023
        cond (Variable): cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the corresponding execution conditions of N input data. The data type is bool.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
3024

3025 3026
    Returns:
        Unlike other common OPs, the OP call returns an IfElse OP object (e.g. ie in the example), which branches the input data by calling the internal functions of the object ``true_block ()``, ``false_block ()``, ``input ()``, ``output ()``, and integrates the data processed by different branches as the overall output by calling the internal ``call ()`` function. The output type is a list, and the type of each element in the list is Variable.
X
Xin Pan 已提交
3027

3028 3029
    Internal Functions:
        The block is constructed by calling the ``with ie. true_block()`` function in the object, and the computational logic under condition true is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.
3030

3031 3032 3033 3034 3035 3036 3037
        The block is constructed by calling the ``with ie. false_block()`` function in the object, and the computational logic under condition false is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.

        ``Out = ie. input (x)`` will take out the data of the corresponding conditional dimension in X and put it into out, supporting the internal processing of multiple inputs in block.

        ``ie. output (out)`` writes the result to the output of the corresponding condition.

        There is a ``call ()`` function inside the object, that is, by calling ``output = ie ()``, all the outputs inside the block of False are fused as the whole output, the output type is a list, and the type of each element in the list is Variable.
3038

X
Xin Pan 已提交
3039
    """
3040

Y
Yu Yang 已提交
3041 3042 3043 3044
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

3045
    def __init__(self, cond, name=None):
3046 3047
        check_type(cond, "cond", Variable, "fluid.layers.IfElse")
        check_type(name, "name", (str, type(None)), "fluid.layers.IfElse")
3048
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
3060
            parent_block = self._parent_block()
Y
Yu Yang 已提交
3061
            out_true = parent_block.create_var(
3062 3063 3064 3065 3066
                name=unique_name.generate_with_ignorable_key(
                    'ifelse_input' + self.helper.name
                ),
                dtype=x.dtype,
            )
Y
Yu Yang 已提交
3067 3068

            out_false = parent_block.create_var(
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
                name=unique_name.generate_with_ignorable_key(
                    'ifelse_input' + self.helper.name
                ),
                dtype=x.dtype,
            )
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true, 'OutFalse': out_false},
                attrs={'level': 0},
            )
Y
Yu Yang 已提交
3083 3084 3085 3086 3087 3088 3089 3090 3091
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

3092
    def _parent_block(self):
Y
Yu Yang 已提交
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

3106 3107 3108
        out_table = self.output_table[
            1 if self.status == self.IN_IF_ELSE_TRUE_BLOCKS else 0
        ]
3109
        parent_block = self._parent_block()
Y
Yu Yang 已提交
3110
        for each_out in outs:
3111 3112 3113
            check_type(
                each_out, "each output", Variable, "fluid.layers.IfElse.output"
            )
Y
Yu Yang 已提交
3114 3115
            # create outside tensor
            outside_out = parent_block.create_var(
3116 3117 3118 3119 3120
                name=unique_name.generate_with_ignorable_key(
                    "_".join([self.helper.name, 'output'])
                ),
                dtype=each_out.dtype,
            )
Y
Yu Yang 已提交
3121 3122 3123
            out_table.append(outside_out)

            # assign local var to outside
3124
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
3125 3126 3127 3128

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
3129
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
3130
        if false_len == 0 and true_len == 0:
3131 3132 3133
            raise ValueError(
                "Must invoke true_block/false_block before " "__call__"
            )
Y
Yu Yang 已提交
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
3144 3145 3146 3147 3148 3149 3150 3151
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
                    level=0,
                )
            )
Y
Yu Yang 已提交
3152
        return rlist
3153 3154


L
liym27 已提交
3155 3156
def switch_case(branch_index, branch_fns, default=None, name=None):
    '''
3157 3158
    :api_attr: Static Graph

L
liym27 已提交
3159 3160 3161
    This operator is like a C++ switch/case statement.

    Args:
3162
        branch_index(Tensor): A Tensor with shape [1] to specify which branch to execute. The data type is ``int32``, ``int64`` or ``uint8``.
L
liym27 已提交
3163 3164 3165 3166 3167
        branch_fns(dict|list|tuple): If it's a list or tuple, the elements in it could be pairs of (int, callable) or simple callables whose actual index will be used as the index of callable. If it's a dict, its key is a python integer and the value is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3168
        Tensor|list(Tensor): Tensors returned by the callable specified by ``branch_index`` in ``branch_fns``,
L
liym27 已提交
3169 3170 3171 3172
        or Tensors returned by ``default`` if ``default`` is not None and no index matches in ``branch_fns``,
        or Tensors returned by the callable with the max index in ``branch_fns`` if ``default`` is None and no index matches in ``branch_fns``.

    Raises:
3173
        TypeError: If the type of ``branch_index`` is not Tensor.
L
liym27 已提交
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
        TypeError: If the data type of ``branch_index`` is not ``int32``, ``int64`` or ``uint8``.
        TypeError: If the type of ``branch_fns`` is not dict, list or tuple.
        TypeError: If the elements of ``branch_fns`` is not 2-tuple.
        TypeError: If the first element of 2-tuple in ``branch_fns`` is not integer.
        ValueError: If the first element of 2-tuple in ``branch_fns`` is not unique.
        TypeError: If the second element of 2-tuple in ``branch_fns`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

3185 3186 3187
            import paddle

            paddle.enable_static()
3188

L
liym27 已提交
3189
            def fn_1():
3190
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
3191 3192

            def fn_2():
3193
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
3194 3195

            def fn_3():
3196
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
3197

3198 3199 3200
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()
            with paddle.static.program_guard(main_program, startup_program):
3201 3202
                index_1 = paddle.full(shape=[1], dtype='int32', fill_value=1)
                index_2 = paddle.full(shape=[1], dtype='int32', fill_value=2)
L
liym27 已提交
3203

3204
                out_1 = paddle.static.nn.switch_case(
L
liym27 已提交
3205 3206 3207 3208
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3)

3209
                out_2 = paddle.static.nn.switch_case(
L
liym27 已提交
3210 3211 3212 3213 3214
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3)

                # Argument default is None and no index matches. fn_3 will be called because of the max index 7.
3215
                out_3 = paddle.static.nn.switch_case(
L
liym27 已提交
3216 3217 3218
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)])

3219
                exe = paddle.static.Executor(paddle.CPUPlace())
3220
                res_1, res_2, res_3 = exe.run(main_program, fetch_list=[out_1, out_2, out_3])
L
liym27 已提交
3221 3222 3223 3224 3225 3226 3227 3228
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [[2 2] [2 2]]
                print(res_3)  # [3 3 3]
    '''
    helper = LayerHelper('switch_case', **locals())

    def _check_args(branch_index, branch_fns, default):

3229 3230 3231 3232 3233 3234
        check_variable_and_dtype(
            branch_index,
            'branch_index',
            ['uint8', 'int32', 'int64'],
            'switch_case',
        )
L
liym27 已提交
3235 3236 3237 3238

        if convert_dtype(branch_index.dtype) != "int64":
            branch_index = cast(branch_index, "int64")

3239
        check_type(branch_fns, 'branch_fns', (list, tuple, dict), 'switch_case')
L
liym27 已提交
3240

3241 3242 3243
        branch_fns = (
            branch_fns.items() if isinstance(branch_fns, dict) else branch_fns
        )
L
liym27 已提交
3244

3245 3246 3247 3248 3249
        branch_fns = (
            list(enumerate(branch_fns))
            if all(callable(fn) for fn in branch_fns)
            else branch_fns
        )
L
liym27 已提交
3250 3251 3252 3253 3254

        keys_of_fns = []
        for index_fn_pair in branch_fns:
            if not isinstance(index_fn_pair, tuple):
                raise TypeError(
3255 3256 3257 3258 3259 3260 3261 3262
                    _error_message(
                        "The elements' type",
                        "branch_fns",
                        "switch_case",
                        tuple,
                        type(branch_fns),
                    )
                )
L
liym27 已提交
3263 3264 3265

            if len(index_fn_pair) != 2:
                raise TypeError(
3266 3267 3268 3269 3270 3271 3272 3273
                    _error_message(
                        "The tuple's size",
                        "branch_fns",
                        "switch_case",
                        "2",
                        str(len(index_fn_pair)) + "-tuple",
                    )
                )
L
liym27 已提交
3274 3275 3276 3277 3278

            key, fn = index_fn_pair

            if not isinstance(key, int):
                raise TypeError(
3279 3280 3281 3282 3283 3284 3285 3286
                    _error_message(
                        "The key's type",
                        "branch_fns",
                        "switch_case",
                        int,
                        type(key),
                    )
                )
L
liym27 已提交
3287 3288 3289

            if key in keys_of_fns:
                raise ValueError(
3290 3291 3292 3293
                    "The key in 'branch_fns' must be unique, but '{}' appears more than once.".format(
                        key
                    )
                )
L
liym27 已提交
3294 3295 3296 3297 3298
            else:
                keys_of_fns.append(key)

            if not callable(fn):
                raise TypeError(
3299 3300
                    _error_message(
                        "The type of function for key {}".format(key),
3301 3302 3303 3304 3305 3306
                        "branch_fns",
                        "switch_case",
                        "callable",
                        type(fn),
                    )
                )
L
liym27 已提交
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316

        if default is None:
            default = sorted(branch_fns)[-1][1]
            branch_fns = sorted(branch_fns)[:-1]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        pred_fn_pairs = []
        for index, fn in branch_fns:
            new_index = fill_constant(shape=[1], dtype="int64", value=index)
3317
            pred = paddle.equal(branch_index, new_index)
L
liym27 已提交
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
            pred_fn_pairs.append((pred, fn))

        return pred_fn_pairs, default

    pred_fn_pairs, default = _check_args(branch_index, branch_fns, default)
    false_fn = default
    for pred, true_fn in pred_fn_pairs:
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn
    return final_fn()


3331
@templatedoc()
Y
Yang Yu 已提交
3332
def reorder_lod_tensor_by_rank(x, rank_table):
3333 3334 3335 3336
    """
    ${comment}

    Args:
3337 3338
        x(${x_type}): ${x_comment}.
        rank_table(${rank_table_type}): ${rank_table_comment}.
3339

3340
    Returns:
3341
        out(${out_type}): ${out_comment}.
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
3355 3356

    check_type(x, 'x', (Variable), 'reorder_lod_tensor_by_rank')
3357 3358 3359
    check_type(
        rank_table, 'rank_table', (Variable), 'reorder_lod_tensor_by_rank'
    )
3360 3361 3362
    if rank_table.type != core.VarDesc.VarType.LOD_RANK_TABLE:
        raise TypeError("The type of rank_table should be LOD_RANK_TABLE.")

Y
Yang Yu 已提交
3363 3364
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())

X
Xin Pan 已提交
3365
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
3366 3367 3368 3369 3370
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x], 'RankTable': [rank_table]},
        outputs={'Out': [out]},
    )
Y
Yang Yu 已提交
3371
    return out
3372 3373


3374
def is_empty(x, name=None):
3375
    """
3376

3377
    Test whether a Tensor is empty.
3378 3379

    Args:
3380 3381 3382 3383
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .
3384 3385

    Returns:
3386
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.
3387 3388 3389 3390

    Examples:
        .. code-block:: python

3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
            print("res:", res)
            # ('res:', Tensor: eager_tmp_1
            #    - place: CPUPlace
            #    - shape: [1]
            #    - layout: NCHW
            #    - dtype: bool
            #    - data: [0])
3402

3403
    """
H
hong 已提交
3404
    if in_dygraph_mode():
W
wanghuancoder 已提交
3405
        return _C_ops.is_empty(x)
3406 3407
    if _in_legacy_dygraph():
        return _legacy_C_ops.is_empty(x)
3408

3409 3410 3411
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'is_empty'
    )
3412 3413
    check_type(name, "name", (str, type(None)), "is_empty")

3414
    helper = LayerHelper("is_empty", **locals())
3415 3416
    cond = helper.create_variable_for_type_inference(dtype='bool')
    cond.stop_gradient = True
3417 3418 3419
    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]}
    )
3420
    return cond