activation_kernel.cu 14.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/phi/kernels/activation_kernel.h"

17
#include "paddle/phi/backends/gpu/gpu_context.h"
18
#include "paddle/phi/backends/gpu/gpu_device_function.h"
19 20 21 22
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
23
#include "paddle/phi/kernels/impl/activation_grad_impl.h"
24
#include "paddle/phi/kernels/impl/activation_impl.h"
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

namespace phi {

template <typename T, typename Context, typename Functor>
void ActivationGPUImpl(const Context& dev_ctx,
                       const DenseTensor& x,
                       DenseTensor* out,
                       const Functor& functor) {
  PADDLE_ENFORCE_NOT_NULL(out,
                          errors::NotFound("Output Out should not be nullptr"));
  dev_ctx.template Alloc<T>(out);
  std::vector<const DenseTensor*> ins = {&x};
  std::vector<DenseTensor*> outs = {out};
  funcs::ElementwiseKernel<T>(dev_ctx, ins, &outs, functor);
}

Y
YuanRisheng 已提交
41 42 43 44 45 46 47
#define DEFINE_GPU_ACTIVATION_KERNEL(name, functor_class)               \
  template <typename T, typename Context>                               \
  void name##Kernel(                                                    \
      const Context& dev_ctx, const DenseTensor& x, DenseTensor* out) { \
    funcs::functor_class<T> functor;                                    \
    ActivationGPUImpl<T, Context, funcs::functor_class<T>>(             \
        dev_ctx, x, out, functor);                                      \
48 49
  }

50 51 52 53 54 55 56 57 58 59 60 61
#define DEFINE_GPU_ACTIVATION_KERNEL_WITH_INT_IN_FLOAT_OUT(name,           \
                                                           functor_class)  \
  template <typename T, typename Context>                                  \
  void name##Kernel(                                                       \
      const Context& dev_ctx, const DenseTensor& x, DenseTensor* out) {    \
    funcs::functor_class<T> functor;                                       \
    using U =                                                              \
        typename std::conditional_t<std::is_integral<T>::value, float, T>; \
    ActivationGPUImpl<U, Context, funcs::functor_class<T>>(                \
        dev_ctx, x, out, functor);                                         \
  }

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
#define DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(name, functor_class, attr) \
  template <typename T, typename Context>                               \
  void name##Kernel(const Context& dev_ctx,                             \
                    const DenseTensor& x,                               \
                    float attr,                                         \
                    DenseTensor* out) {                                 \
    funcs::functor_class<T> functor;                                    \
    auto attrs = functor.GetAttrs();                                    \
    *(attrs[0].second) = attr;                                          \
    ActivationGPUImpl<T, Context, funcs::functor_class<T>>(             \
        dev_ctx, x, out, functor);                                      \
  }

#define DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(               \
    name, functor_class, attr1, attr2)                      \
  template <typename T, typename Context>                   \
  void name##Kernel(const Context& dev_ctx,                 \
                    const DenseTensor& x,                   \
                    float attr1,                            \
                    float attr2,                            \
                    DenseTensor* out) {                     \
    funcs::functor_class<T> functor;                        \
    auto attrs = functor.GetAttrs();                        \
    *(attrs[0].second) = attr1;                             \
    *(attrs[1].second) = attr2;                             \
    ActivationGPUImpl<T, Context, funcs::functor_class<T>>( \
        dev_ctx, x, out, functor);                          \
  }

Y
YuanRisheng 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
DEFINE_GPU_ACTIVATION_KERNEL(Cos, CudaCosFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Tan, CudaTanFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Acos, CudaAcosFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Sin, CudaSinFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Asin, CudaAsinFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Atan, CudaAtanFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Sinh, CudaSinhFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Cosh, CudaCoshFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Asinh, CudaAsinhFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Acosh, CudaAcoshFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Atanh, CudaAtanhFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Relu, CudaReluFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Tanh, CudaTanhFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(TanhShrink, CudaTanhShrinkFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Silu, CudaSiluFunctor)
106 107 108 109
DEFINE_GPU_ACTIVATION_KERNEL(Reciprocal, CudaReciprocalFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Square, CudaSquareFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Sqrt, CudaSqrtFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Rsqrt, CudaRsqrtFunctor)
110
DEFINE_GPU_ACTIVATION_KERNEL(Softsign, CudaSoftsignFunctor)
Y
YuanRisheng 已提交
111 112
DEFINE_GPU_ACTIVATION_KERNEL(Sigmoid, CudaSigmoidFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(LogSigmoid, CudaLogSigmoidFunctor)
Y
YuanRisheng 已提交
113 114 115
DEFINE_GPU_ACTIVATION_KERNEL(Round, CudaRoundFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Floor, CudaFloorFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Ceil, CudaCeilFunctor)
116

117 118 119 120
DEFINE_GPU_ACTIVATION_KERNEL_WITH_INT_IN_FLOAT_OUT(Log, CudaLogFunctor)
DEFINE_GPU_ACTIVATION_KERNEL_WITH_INT_IN_FLOAT_OUT(Log2, CudaLog2Functor)
DEFINE_GPU_ACTIVATION_KERNEL_WITH_INT_IN_FLOAT_OUT(Log10, CudaLog10Functor)
DEFINE_GPU_ACTIVATION_KERNEL_WITH_INT_IN_FLOAT_OUT(Log1p, CudaLog1pFunctor)
121 122
DEFINE_GPU_ACTIVATION_KERNEL_WITH_INT_IN_FLOAT_OUT(Exp, CudaExpFunctor)
DEFINE_GPU_ACTIVATION_KERNEL_WITH_INT_IN_FLOAT_OUT(Expm1, CudaExpm1Functor)
123

124
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(LeakyRelu, CudaLeakyReluFunctor, alpha)
125
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(LogitCUDA, CudaLogitFunctor, eps)
126 127 128
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(ThresholdedRelu,
                                     CudaThresholdedReluFunctor,
                                     threshold)
Y
YuanRisheng 已提交
129 130 131 132 133
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(HardShrink,
                                     CudaHardShrinkFunctor,
                                     threshold)
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(SoftShrink, CudaSoftShrinkFunctor, lambda)
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(Elu, CudaELUFunctor, alpha)
134
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(Mish, CudaMishFunctor, threshold)
Y
YuanRisheng 已提交
135
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(Celu, CudaCELUFunctor, alpha)
136

137 138 139 140
DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(HardTanh,
                                     CudaHardTanhFunctor,
                                     t_min,
                                     t_max)
141 142 143 144 145
DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(Stanh, CudaSTanhFunctor, scale_a, scale_b)
DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(Softplus,
                                     CudaSoftplusFunctor,
                                     beta,
                                     threshold)
Y
YuanRisheng 已提交
146 147 148 149
DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(HardSigmoid,
                                     CudaHardSigmoidFunctor,
                                     slope,
                                     offset)
150
DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(Selu, CudaSeluFunctor, scale, alpha)
151

Y
YuanRisheng 已提交
152
template <typename T, typename Context>
153 154 155
void HardSwishKernel(const Context& dev_ctx,
                     const DenseTensor& x,
                     DenseTensor* out) {
Y
YuanRisheng 已提交
156
  funcs::CudaHardSwishFunctor<T> functor;
157 158 159
  float threshold = 6;
  float scale = 6;
  float offset = 3;
Y
YuanRisheng 已提交
160 161 162 163 164 165 166 167
  auto attrs = functor.GetAttrs();
  *(attrs[0].second) = threshold;
  *(attrs[1].second) = scale;
  *(attrs[2].second) = offset;
  ActivationGPUImpl<T, Context, funcs::CudaHardSwishFunctor<T>>(
      dev_ctx, x, out, functor);
}

Z
zhangyuqin1998 已提交
168 169 170 171 172 173 174 175 176 177
template <typename T, typename Context>
void SwishKernel(const Context& dev_ctx,
                 const DenseTensor& x,
                 DenseTensor* out) {
  funcs::CudaSwishFunctor<T> functor;
  auto attrs = functor.GetAttrs();
  *(attrs[0].second) = 1.0;
  ActivationGPUImpl<T, Context, funcs::CudaSwishFunctor<T>>(
      dev_ctx, x, out, functor);
}
Z
zhangyuqin1998 已提交
178 179 180 181 182 183 184 185 186 187 188

template <typename T, typename Context>
void Relu6Kernel(const Context& dev_ctx,
                 const DenseTensor& x,
                 DenseTensor* out) {
  funcs::CudaRelu6Functor<T> functor;
  auto attrs = functor.GetAttrs();
  *(attrs[0].second) = 6.0;
  ActivationGPUImpl<T, Context, funcs::CudaRelu6Functor<T>>(
      dev_ctx, x, out, functor);
}
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
}  // namespace phi

#ifdef PADDLE_WITH_HIP
PD_REGISTER_KERNEL(relu,
                   GPU,
                   ALL_LAYOUT,
                   phi::ReluKernel,
                   float,
                   double,
                   phi::dtype::float16) {}
#else
PD_REGISTER_KERNEL(relu,
                   GPU,
                   ALL_LAYOUT,
                   phi::ReluKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
#endif
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

#define PD_REGISTER_ACTIVATION_KERNEL(name, func) \
  PD_REGISTER_KERNEL(name,                        \
                     GPU,                         \
                     ALL_LAYOUT,                  \
                     phi::func,                   \
                     float,                       \
                     double,                      \
                     phi::dtype::float16,         \
                     phi::dtype::bfloat16) {}

PD_REGISTER_ACTIVATION_KERNEL(sin, SinKernel)
PD_REGISTER_ACTIVATION_KERNEL(cos, CosKernel)
PD_REGISTER_ACTIVATION_KERNEL(tan, TanKernel)
PD_REGISTER_ACTIVATION_KERNEL(acos, AcosKernel)
PD_REGISTER_ACTIVATION_KERNEL(asin, AsinKernel)
PD_REGISTER_ACTIVATION_KERNEL(atan, AtanKernel)
PD_REGISTER_ACTIVATION_KERNEL(sinh, SinhKernel)
PD_REGISTER_ACTIVATION_KERNEL(cosh, CoshKernel)
PD_REGISTER_ACTIVATION_KERNEL(asinh, AsinhKernel)
PD_REGISTER_ACTIVATION_KERNEL(acosh, AcoshKernel)
PD_REGISTER_ACTIVATION_KERNEL(atanh, AtanhKernel)
PD_REGISTER_ACTIVATION_KERNEL(tanh, TanhKernel)
Z
zyfncg 已提交
232
PD_REGISTER_ACTIVATION_KERNEL(hardtanh, HardTanhKernel)
233
PD_REGISTER_ACTIVATION_KERNEL(thresholded_relu, ThresholdedReluKernel)
Z
zhangyuqin1998 已提交
234
PD_REGISTER_ACTIVATION_KERNEL(relu6, Relu6Kernel)
235
PD_REGISTER_ACTIVATION_KERNEL(leaky_relu, LeakyReluKernel)
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
PD_REGISTER_ACTIVATION_KERNEL(mish, MishKernel)
PD_REGISTER_ACTIVATION_KERNEL(stanh, StanhKernel)
PD_REGISTER_ACTIVATION_KERNEL(reciprocal, ReciprocalKernel)
PD_REGISTER_ACTIVATION_KERNEL(sqrt, SqrtKernel)
PD_REGISTER_ACTIVATION_KERNEL(rsqrt, RsqrtKernel)
PD_REGISTER_ACTIVATION_KERNEL(softplus, SoftplusKernel)

PD_REGISTER_KERNEL(exp,
                   GPU,
                   ALL_LAYOUT,
                   phi::ExpKernel,
                   float,
                   double,
                   int,
                   int64_t,
251 252
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
253 254 255 256 257 258
PD_REGISTER_KERNEL(expm1,
                   GPU,
                   ALL_LAYOUT,
                   phi::Expm1Kernel,
                   float,
                   double,
259 260
                   int,
                   int64_t,
261 262
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
263 264 265 266 267 268 269 270 271 272
PD_REGISTER_KERNEL(square,
                   GPU,
                   ALL_LAYOUT,
                   phi::SquareKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
Y
YuanRisheng 已提交
273

Y
YuanRisheng 已提交
274
PD_REGISTER_ACTIVATION_KERNEL(hard_shrink, HardShrinkKernel)
275
PD_REGISTER_ACTIVATION_KERNEL(softshrink, SoftShrinkKernel)
Y
YuanRisheng 已提交
276 277 278
PD_REGISTER_ACTIVATION_KERNEL(tanh_shrink, TanhShrinkKernel)
PD_REGISTER_ACTIVATION_KERNEL(elu, EluKernel)
PD_REGISTER_ACTIVATION_KERNEL(silu, SiluKernel)
279
PD_REGISTER_ACTIVATION_KERNEL(softsign, SoftsignKernel)
Y
YuanRisheng 已提交
280 281 282
PD_REGISTER_ACTIVATION_KERNEL(sigmoid, SigmoidKernel)
PD_REGISTER_ACTIVATION_KERNEL(logsigmoid, LogSigmoidKernel)
PD_REGISTER_ACTIVATION_KERNEL(hard_sigmoid, HardSigmoidKernel)
283
PD_REGISTER_ACTIVATION_KERNEL(hardswish, HardSwishKernel)
Z
zhangyuqin1998 已提交
284
PD_REGISTER_ACTIVATION_KERNEL(swish, SwishKernel)
Y
YuanRisheng 已提交
285 286 287
PD_REGISTER_ACTIVATION_KERNEL(round, RoundKernel)
PD_REGISTER_ACTIVATION_KERNEL(floor, FloorKernel)
PD_REGISTER_ACTIVATION_KERNEL(ceil, CeilKernel)
Y
YuanRisheng 已提交
288
PD_REGISTER_ACTIVATION_KERNEL(celu, CeluKernel)
289 290
PD_REGISTER_ACTIVATION_KERNEL(logit, LogitCUDAKernel)

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
PD_REGISTER_KERNEL(log,
                   GPU,
                   ALL_LAYOUT,
                   phi::LogKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
PD_REGISTER_KERNEL(log2,
                   GPU,
                   ALL_LAYOUT,
                   phi::Log2Kernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
PD_REGISTER_KERNEL(log10,
                   GPU,
                   ALL_LAYOUT,
                   phi::Log10Kernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
PD_REGISTER_KERNEL(log1p,
                   GPU,
                   ALL_LAYOUT,
                   phi::Log1pKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
Y
YuanRisheng 已提交
331 332 333 334 335 336 337 338
PD_REGISTER_KERNEL(pow,
                   GPU,
                   ALL_LAYOUT,
                   phi::PowKernel,
                   float,
                   double,
                   int,
                   int64_t,
339 340 341 342 343 344 345 346
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
PD_REGISTER_KERNEL(selu,
                   GPU,
                   ALL_LAYOUT,
                   phi::SeluKernel,
                   float,
                   double,
347
                   phi::dtype::float16,
348
                   phi::dtype::bfloat16) {}