activation_kernel.cu 12.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/phi/kernels/activation_kernel.h"

17
#include "paddle/phi/backends/gpu/gpu_context.h"
18
#include "paddle/phi/backends/gpu/gpu_device_function.h"
19 20 21 22
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
23
#include "paddle/phi/kernels/impl/activation_grad_impl.h"
24
#include "paddle/phi/kernels/impl/activation_impl.h"
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

namespace phi {

template <typename T, typename Context, typename Functor>
void ActivationGPUImpl(const Context& dev_ctx,
                       const DenseTensor& x,
                       DenseTensor* out,
                       const Functor& functor) {
  PADDLE_ENFORCE_NOT_NULL(out,
                          errors::NotFound("Output Out should not be nullptr"));
  dev_ctx.template Alloc<T>(out);
  std::vector<const DenseTensor*> ins = {&x};
  std::vector<DenseTensor*> outs = {out};
  funcs::ElementwiseKernel<T>(dev_ctx, ins, &outs, functor);
}

Y
YuanRisheng 已提交
41 42 43 44 45 46 47
#define DEFINE_GPU_ACTIVATION_KERNEL(name, functor_class)               \
  template <typename T, typename Context>                               \
  void name##Kernel(                                                    \
      const Context& dev_ctx, const DenseTensor& x, DenseTensor* out) { \
    funcs::functor_class<T> functor;                                    \
    ActivationGPUImpl<T, Context, funcs::functor_class<T>>(             \
        dev_ctx, x, out, functor);                                      \
48 49
  }

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
#define DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(name, functor_class, attr) \
  template <typename T, typename Context>                               \
  void name##Kernel(const Context& dev_ctx,                             \
                    const DenseTensor& x,                               \
                    float attr,                                         \
                    DenseTensor* out) {                                 \
    funcs::functor_class<T> functor;                                    \
    auto attrs = functor.GetAttrs();                                    \
    *(attrs[0].second) = attr;                                          \
    ActivationGPUImpl<T, Context, funcs::functor_class<T>>(             \
        dev_ctx, x, out, functor);                                      \
  }

#define DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(               \
    name, functor_class, attr1, attr2)                      \
  template <typename T, typename Context>                   \
  void name##Kernel(const Context& dev_ctx,                 \
                    const DenseTensor& x,                   \
                    float attr1,                            \
                    float attr2,                            \
                    DenseTensor* out) {                     \
    funcs::functor_class<T> functor;                        \
    auto attrs = functor.GetAttrs();                        \
    *(attrs[0].second) = attr1;                             \
    *(attrs[1].second) = attr2;                             \
    ActivationGPUImpl<T, Context, funcs::functor_class<T>>( \
        dev_ctx, x, out, functor);                          \
  }

Y
YuanRisheng 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
DEFINE_GPU_ACTIVATION_KERNEL(Cos, CudaCosFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Tan, CudaTanFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Acos, CudaAcosFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Sin, CudaSinFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Asin, CudaAsinFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Atan, CudaAtanFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Sinh, CudaSinhFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Cosh, CudaCoshFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Asinh, CudaAsinhFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Acosh, CudaAcoshFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Atanh, CudaAtanhFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Relu, CudaReluFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Tanh, CudaTanhFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(TanhShrink, CudaTanhShrinkFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Silu, CudaSiluFunctor)
94 95 96 97 98 99
DEFINE_GPU_ACTIVATION_KERNEL(Exp, CudaExpFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Expm1, CudaExpm1Functor)
DEFINE_GPU_ACTIVATION_KERNEL(Reciprocal, CudaReciprocalFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Square, CudaSquareFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Sqrt, CudaSqrtFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Rsqrt, CudaRsqrtFunctor)
100
DEFINE_GPU_ACTIVATION_KERNEL(Softsign, CudaSoftsignFunctor)
Y
YuanRisheng 已提交
101 102
DEFINE_GPU_ACTIVATION_KERNEL(Sigmoid, CudaSigmoidFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(LogSigmoid, CudaLogSigmoidFunctor)
103 104 105 106
DEFINE_GPU_ACTIVATION_KERNEL(Log, CudaLogFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Log2, CudaLog2Functor)
DEFINE_GPU_ACTIVATION_KERNEL(Log10, CudaLog10Functor)
DEFINE_GPU_ACTIVATION_KERNEL(Log1p, CudaLog1pFunctor)
Y
YuanRisheng 已提交
107 108 109
DEFINE_GPU_ACTIVATION_KERNEL(Round, CudaRoundFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Floor, CudaFloorFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Ceil, CudaCeilFunctor)
110 111 112 113 114

DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(LeakyRelu, CudaLeakyReluFunctor, alpha)
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(ThresholdedRelu,
                                     CudaThresholdedReluFunctor,
                                     threshold)
115
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(Relu6Raw, CudaRelu6Functor, threshold)
Y
YuanRisheng 已提交
116 117 118 119 120
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(HardShrink,
                                     CudaHardShrinkFunctor,
                                     threshold)
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(SoftShrink, CudaSoftShrinkFunctor, lambda)
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(Elu, CudaELUFunctor, alpha)
121
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(SwishRaw, CudaSwishFunctor, beta)
122
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(Mish, CudaMishFunctor, threshold)
Y
YuanRisheng 已提交
123
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(Celu, CudaCELUFunctor, alpha)
124

125 126 127 128
DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(HardTanh,
                                     CudaHardTanhFunctor,
                                     t_min,
                                     t_max)
129 130 131 132 133
DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(Stanh, CudaSTanhFunctor, scale_a, scale_b)
DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(Softplus,
                                     CudaSoftplusFunctor,
                                     beta,
                                     threshold)
Y
YuanRisheng 已提交
134 135 136 137
DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(HardSigmoid,
                                     CudaHardSigmoidFunctor,
                                     slope,
                                     offset)
138
DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(Selu, CudaSeluFunctor, scale, alpha)
139

Y
YuanRisheng 已提交
140
template <typename T, typename Context>
141 142 143
void HardSwishKernel(const Context& dev_ctx,
                     const DenseTensor& x,
                     DenseTensor* out) {
Y
YuanRisheng 已提交
144
  funcs::CudaHardSwishFunctor<T> functor;
145 146 147
  float threshold = 6;
  float scale = 6;
  float offset = 3;
Y
YuanRisheng 已提交
148 149 150 151 152 153 154 155
  auto attrs = functor.GetAttrs();
  *(attrs[0].second) = threshold;
  *(attrs[1].second) = scale;
  *(attrs[2].second) = offset;
  ActivationGPUImpl<T, Context, funcs::CudaHardSwishFunctor<T>>(
      dev_ctx, x, out, functor);
}

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
}  // namespace phi

#ifdef PADDLE_WITH_HIP
PD_REGISTER_KERNEL(relu,
                   GPU,
                   ALL_LAYOUT,
                   phi::ReluKernel,
                   float,
                   double,
                   phi::dtype::float16) {}
#else
PD_REGISTER_KERNEL(relu,
                   GPU,
                   ALL_LAYOUT,
                   phi::ReluKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
#endif
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

#define PD_REGISTER_ACTIVATION_KERNEL(name, func) \
  PD_REGISTER_KERNEL(name,                        \
                     GPU,                         \
                     ALL_LAYOUT,                  \
                     phi::func,                   \
                     float,                       \
                     double,                      \
                     phi::dtype::float16,         \
                     phi::dtype::bfloat16) {}

PD_REGISTER_ACTIVATION_KERNEL(sin, SinKernel)
PD_REGISTER_ACTIVATION_KERNEL(cos, CosKernel)
PD_REGISTER_ACTIVATION_KERNEL(tan, TanKernel)
PD_REGISTER_ACTIVATION_KERNEL(acos, AcosKernel)
PD_REGISTER_ACTIVATION_KERNEL(asin, AsinKernel)
PD_REGISTER_ACTIVATION_KERNEL(atan, AtanKernel)
PD_REGISTER_ACTIVATION_KERNEL(sinh, SinhKernel)
PD_REGISTER_ACTIVATION_KERNEL(cosh, CoshKernel)
PD_REGISTER_ACTIVATION_KERNEL(asinh, AsinhKernel)
PD_REGISTER_ACTIVATION_KERNEL(acosh, AcoshKernel)
PD_REGISTER_ACTIVATION_KERNEL(atanh, AtanhKernel)
PD_REGISTER_ACTIVATION_KERNEL(tanh, TanhKernel)
Z
zyfncg 已提交
199
PD_REGISTER_ACTIVATION_KERNEL(hardtanh, HardTanhKernel)
200
PD_REGISTER_ACTIVATION_KERNEL(thresholded_relu, ThresholdedReluKernel)
201
PD_REGISTER_ACTIVATION_KERNEL(relu6_raw, Relu6RawKernel)
202
PD_REGISTER_ACTIVATION_KERNEL(leaky_relu, LeakyReluKernel)
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
PD_REGISTER_ACTIVATION_KERNEL(mish, MishKernel)
PD_REGISTER_ACTIVATION_KERNEL(stanh, StanhKernel)
PD_REGISTER_ACTIVATION_KERNEL(reciprocal, ReciprocalKernel)
PD_REGISTER_ACTIVATION_KERNEL(sqrt, SqrtKernel)
PD_REGISTER_ACTIVATION_KERNEL(rsqrt, RsqrtKernel)
PD_REGISTER_ACTIVATION_KERNEL(softplus, SoftplusKernel)

PD_REGISTER_KERNEL(exp,
                   GPU,
                   ALL_LAYOUT,
                   phi::ExpKernel,
                   float,
                   double,
                   int,
                   int64_t,
218 219
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
220 221 222 223 224 225
PD_REGISTER_KERNEL(expm1,
                   GPU,
                   ALL_LAYOUT,
                   phi::Expm1Kernel,
                   float,
                   double,
226 227
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
228 229 230 231 232 233
PD_REGISTER_KERNEL(logit,
                   GPU,
                   ALL_LAYOUT,
                   phi::LogitKernel,
                   float,
                   double,
234 235
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
236 237 238 239 240 241 242 243 244 245
PD_REGISTER_KERNEL(square,
                   GPU,
                   ALL_LAYOUT,
                   phi::SquareKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
Y
YuanRisheng 已提交
246

Y
YuanRisheng 已提交
247
PD_REGISTER_ACTIVATION_KERNEL(hard_shrink, HardShrinkKernel)
248
PD_REGISTER_ACTIVATION_KERNEL(softshrink, SoftShrinkKernel)
Y
YuanRisheng 已提交
249 250 251
PD_REGISTER_ACTIVATION_KERNEL(tanh_shrink, TanhShrinkKernel)
PD_REGISTER_ACTIVATION_KERNEL(elu, EluKernel)
PD_REGISTER_ACTIVATION_KERNEL(silu, SiluKernel)
252
PD_REGISTER_ACTIVATION_KERNEL(softsign, SoftsignKernel)
Y
YuanRisheng 已提交
253 254 255
PD_REGISTER_ACTIVATION_KERNEL(sigmoid, SigmoidKernel)
PD_REGISTER_ACTIVATION_KERNEL(logsigmoid, LogSigmoidKernel)
PD_REGISTER_ACTIVATION_KERNEL(hard_sigmoid, HardSigmoidKernel)
256 257 258 259
PD_REGISTER_ACTIVATION_KERNEL(log, LogKernel)
PD_REGISTER_ACTIVATION_KERNEL(log2, Log2Kernel)
PD_REGISTER_ACTIVATION_KERNEL(log10, Log10Kernel)
PD_REGISTER_ACTIVATION_KERNEL(log1p, Log1pKernel)
260
PD_REGISTER_ACTIVATION_KERNEL(hardswish, HardSwishKernel)
261
PD_REGISTER_ACTIVATION_KERNEL(swish_raw, SwishRawKernel)
Y
YuanRisheng 已提交
262 263 264
PD_REGISTER_ACTIVATION_KERNEL(round, RoundKernel)
PD_REGISTER_ACTIVATION_KERNEL(floor, FloorKernel)
PD_REGISTER_ACTIVATION_KERNEL(ceil, CeilKernel)
Y
YuanRisheng 已提交
265
PD_REGISTER_ACTIVATION_KERNEL(celu, CeluKernel)
Y
YuanRisheng 已提交
266 267 268 269 270 271 272 273
PD_REGISTER_KERNEL(pow,
                   GPU,
                   ALL_LAYOUT,
                   phi::PowKernel,
                   float,
                   double,
                   int,
                   int64_t,
274 275 276 277 278 279 280 281 282
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
PD_REGISTER_KERNEL(selu,
                   GPU,
                   ALL_LAYOUT,
                   phi::SeluKernel,
                   float,
                   double,
                   phi::dtype::bfloat16) {}