activation_kernel.cu 12.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/phi/kernels/activation_kernel.h"

17
#include "paddle/phi/backends/gpu/gpu_context.h"
18
#include "paddle/phi/backends/gpu/gpu_device_function.h"
19 20 21 22
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
23
#include "paddle/phi/kernels/impl/activation_grad_impl.h"
24
#include "paddle/phi/kernels/impl/activation_impl.h"
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

namespace phi {

template <typename T, typename Context, typename Functor>
void ActivationGPUImpl(const Context& dev_ctx,
                       const DenseTensor& x,
                       DenseTensor* out,
                       const Functor& functor) {
  PADDLE_ENFORCE_NOT_NULL(out,
                          errors::NotFound("Output Out should not be nullptr"));
  dev_ctx.template Alloc<T>(out);
  std::vector<const DenseTensor*> ins = {&x};
  std::vector<DenseTensor*> outs = {out};
  funcs::ElementwiseKernel<T>(dev_ctx, ins, &outs, functor);
}

Y
YuanRisheng 已提交
41 42 43 44 45 46 47
#define DEFINE_GPU_ACTIVATION_KERNEL(name, functor_class)               \
  template <typename T, typename Context>                               \
  void name##Kernel(                                                    \
      const Context& dev_ctx, const DenseTensor& x, DenseTensor* out) { \
    funcs::functor_class<T> functor;                                    \
    ActivationGPUImpl<T, Context, funcs::functor_class<T>>(             \
        dev_ctx, x, out, functor);                                      \
48 49
  }

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
#define DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(name, functor_class, attr) \
  template <typename T, typename Context>                               \
  void name##Kernel(const Context& dev_ctx,                             \
                    const DenseTensor& x,                               \
                    float attr,                                         \
                    DenseTensor* out) {                                 \
    funcs::functor_class<T> functor;                                    \
    auto attrs = functor.GetAttrs();                                    \
    *(attrs[0].second) = attr;                                          \
    ActivationGPUImpl<T, Context, funcs::functor_class<T>>(             \
        dev_ctx, x, out, functor);                                      \
  }

#define DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(               \
    name, functor_class, attr1, attr2)                      \
  template <typename T, typename Context>                   \
  void name##Kernel(const Context& dev_ctx,                 \
                    const DenseTensor& x,                   \
                    float attr1,                            \
                    float attr2,                            \
                    DenseTensor* out) {                     \
    funcs::functor_class<T> functor;                        \
    auto attrs = functor.GetAttrs();                        \
    *(attrs[0].second) = attr1;                             \
    *(attrs[1].second) = attr2;                             \
    ActivationGPUImpl<T, Context, funcs::functor_class<T>>( \
        dev_ctx, x, out, functor);                          \
  }

Y
YuanRisheng 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
DEFINE_GPU_ACTIVATION_KERNEL(Cos, CudaCosFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Tan, CudaTanFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Acos, CudaAcosFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Sin, CudaSinFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Asin, CudaAsinFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Atan, CudaAtanFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Sinh, CudaSinhFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Cosh, CudaCoshFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Asinh, CudaAsinhFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Acosh, CudaAcoshFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Atanh, CudaAtanhFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Relu, CudaReluFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Tanh, CudaTanhFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(TanhShrink, CudaTanhShrinkFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Silu, CudaSiluFunctor)
94 95 96 97 98 99
DEFINE_GPU_ACTIVATION_KERNEL(Exp, CudaExpFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Expm1, CudaExpm1Functor)
DEFINE_GPU_ACTIVATION_KERNEL(Reciprocal, CudaReciprocalFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Square, CudaSquareFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Sqrt, CudaSqrtFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Rsqrt, CudaRsqrtFunctor)
100
DEFINE_GPU_ACTIVATION_KERNEL(Softsign, CudaSoftsignFunctor)
Y
YuanRisheng 已提交
101 102
DEFINE_GPU_ACTIVATION_KERNEL(Sigmoid, CudaSigmoidFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(LogSigmoid, CudaLogSigmoidFunctor)
103 104 105 106
DEFINE_GPU_ACTIVATION_KERNEL(Log, CudaLogFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Log2, CudaLog2Functor)
DEFINE_GPU_ACTIVATION_KERNEL(Log10, CudaLog10Functor)
DEFINE_GPU_ACTIVATION_KERNEL(Log1p, CudaLog1pFunctor)
Y
YuanRisheng 已提交
107 108 109
DEFINE_GPU_ACTIVATION_KERNEL(Round, CudaRoundFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Floor, CudaFloorFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Ceil, CudaCeilFunctor)
110 111

DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(LeakyRelu, CudaLeakyReluFunctor, alpha)
112
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(LogitCUDA, CudaLogitFunctor, eps)
113 114 115
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(ThresholdedRelu,
                                     CudaThresholdedReluFunctor,
                                     threshold)
116
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(Relu6Raw, CudaRelu6Functor, threshold)
Y
YuanRisheng 已提交
117 118 119 120 121
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(HardShrink,
                                     CudaHardShrinkFunctor,
                                     threshold)
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(SoftShrink, CudaSoftShrinkFunctor, lambda)
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(Elu, CudaELUFunctor, alpha)
122
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(SwishRaw, CudaSwishFunctor, beta)
123
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(Mish, CudaMishFunctor, threshold)
Y
YuanRisheng 已提交
124
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(Celu, CudaCELUFunctor, alpha)
125

126 127 128 129
DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(HardTanh,
                                     CudaHardTanhFunctor,
                                     t_min,
                                     t_max)
130 131 132 133 134
DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(Stanh, CudaSTanhFunctor, scale_a, scale_b)
DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(Softplus,
                                     CudaSoftplusFunctor,
                                     beta,
                                     threshold)
Y
YuanRisheng 已提交
135 136 137 138
DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(HardSigmoid,
                                     CudaHardSigmoidFunctor,
                                     slope,
                                     offset)
139
DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(Selu, CudaSeluFunctor, scale, alpha)
140

Y
YuanRisheng 已提交
141
template <typename T, typename Context>
142 143 144
void HardSwishKernel(const Context& dev_ctx,
                     const DenseTensor& x,
                     DenseTensor* out) {
Y
YuanRisheng 已提交
145
  funcs::CudaHardSwishFunctor<T> functor;
146 147 148
  float threshold = 6;
  float scale = 6;
  float offset = 3;
Y
YuanRisheng 已提交
149 150 151 152 153 154 155 156
  auto attrs = functor.GetAttrs();
  *(attrs[0].second) = threshold;
  *(attrs[1].second) = scale;
  *(attrs[2].second) = offset;
  ActivationGPUImpl<T, Context, funcs::CudaHardSwishFunctor<T>>(
      dev_ctx, x, out, functor);
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
}  // namespace phi

#ifdef PADDLE_WITH_HIP
PD_REGISTER_KERNEL(relu,
                   GPU,
                   ALL_LAYOUT,
                   phi::ReluKernel,
                   float,
                   double,
                   phi::dtype::float16) {}
#else
PD_REGISTER_KERNEL(relu,
                   GPU,
                   ALL_LAYOUT,
                   phi::ReluKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
#endif
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

#define PD_REGISTER_ACTIVATION_KERNEL(name, func) \
  PD_REGISTER_KERNEL(name,                        \
                     GPU,                         \
                     ALL_LAYOUT,                  \
                     phi::func,                   \
                     float,                       \
                     double,                      \
                     phi::dtype::float16,         \
                     phi::dtype::bfloat16) {}

PD_REGISTER_ACTIVATION_KERNEL(sin, SinKernel)
PD_REGISTER_ACTIVATION_KERNEL(cos, CosKernel)
PD_REGISTER_ACTIVATION_KERNEL(tan, TanKernel)
PD_REGISTER_ACTIVATION_KERNEL(acos, AcosKernel)
PD_REGISTER_ACTIVATION_KERNEL(asin, AsinKernel)
PD_REGISTER_ACTIVATION_KERNEL(atan, AtanKernel)
PD_REGISTER_ACTIVATION_KERNEL(sinh, SinhKernel)
PD_REGISTER_ACTIVATION_KERNEL(cosh, CoshKernel)
PD_REGISTER_ACTIVATION_KERNEL(asinh, AsinhKernel)
PD_REGISTER_ACTIVATION_KERNEL(acosh, AcoshKernel)
PD_REGISTER_ACTIVATION_KERNEL(atanh, AtanhKernel)
PD_REGISTER_ACTIVATION_KERNEL(tanh, TanhKernel)
Z
zyfncg 已提交
200
PD_REGISTER_ACTIVATION_KERNEL(hardtanh, HardTanhKernel)
201
PD_REGISTER_ACTIVATION_KERNEL(thresholded_relu, ThresholdedReluKernel)
202
PD_REGISTER_ACTIVATION_KERNEL(relu6_raw, Relu6RawKernel)
203
PD_REGISTER_ACTIVATION_KERNEL(leaky_relu, LeakyReluKernel)
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
PD_REGISTER_ACTIVATION_KERNEL(mish, MishKernel)
PD_REGISTER_ACTIVATION_KERNEL(stanh, StanhKernel)
PD_REGISTER_ACTIVATION_KERNEL(reciprocal, ReciprocalKernel)
PD_REGISTER_ACTIVATION_KERNEL(sqrt, SqrtKernel)
PD_REGISTER_ACTIVATION_KERNEL(rsqrt, RsqrtKernel)
PD_REGISTER_ACTIVATION_KERNEL(softplus, SoftplusKernel)

PD_REGISTER_KERNEL(exp,
                   GPU,
                   ALL_LAYOUT,
                   phi::ExpKernel,
                   float,
                   double,
                   int,
                   int64_t,
219 220
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
221 222 223 224 225 226
PD_REGISTER_KERNEL(expm1,
                   GPU,
                   ALL_LAYOUT,
                   phi::Expm1Kernel,
                   float,
                   double,
227 228
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
229 230 231 232 233 234 235 236 237 238
PD_REGISTER_KERNEL(square,
                   GPU,
                   ALL_LAYOUT,
                   phi::SquareKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
Y
YuanRisheng 已提交
239

Y
YuanRisheng 已提交
240
PD_REGISTER_ACTIVATION_KERNEL(hard_shrink, HardShrinkKernel)
241
PD_REGISTER_ACTIVATION_KERNEL(softshrink, SoftShrinkKernel)
Y
YuanRisheng 已提交
242 243 244
PD_REGISTER_ACTIVATION_KERNEL(tanh_shrink, TanhShrinkKernel)
PD_REGISTER_ACTIVATION_KERNEL(elu, EluKernel)
PD_REGISTER_ACTIVATION_KERNEL(silu, SiluKernel)
245
PD_REGISTER_ACTIVATION_KERNEL(softsign, SoftsignKernel)
Y
YuanRisheng 已提交
246 247 248
PD_REGISTER_ACTIVATION_KERNEL(sigmoid, SigmoidKernel)
PD_REGISTER_ACTIVATION_KERNEL(logsigmoid, LogSigmoidKernel)
PD_REGISTER_ACTIVATION_KERNEL(hard_sigmoid, HardSigmoidKernel)
249 250 251 252
PD_REGISTER_ACTIVATION_KERNEL(log, LogKernel)
PD_REGISTER_ACTIVATION_KERNEL(log2, Log2Kernel)
PD_REGISTER_ACTIVATION_KERNEL(log10, Log10Kernel)
PD_REGISTER_ACTIVATION_KERNEL(log1p, Log1pKernel)
253
PD_REGISTER_ACTIVATION_KERNEL(hardswish, HardSwishKernel)
254
PD_REGISTER_ACTIVATION_KERNEL(swish_raw, SwishRawKernel)
Y
YuanRisheng 已提交
255 256 257
PD_REGISTER_ACTIVATION_KERNEL(round, RoundKernel)
PD_REGISTER_ACTIVATION_KERNEL(floor, FloorKernel)
PD_REGISTER_ACTIVATION_KERNEL(ceil, CeilKernel)
Y
YuanRisheng 已提交
258
PD_REGISTER_ACTIVATION_KERNEL(celu, CeluKernel)
259 260
PD_REGISTER_ACTIVATION_KERNEL(logit, LogitCUDAKernel)

Y
YuanRisheng 已提交
261 262 263 264 265 266 267 268
PD_REGISTER_KERNEL(pow,
                   GPU,
                   ALL_LAYOUT,
                   phi::PowKernel,
                   float,
                   double,
                   int,
                   int64_t,
269 270 271 272 273 274 275 276
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
PD_REGISTER_KERNEL(selu,
                   GPU,
                   ALL_LAYOUT,
                   phi::SeluKernel,
                   float,
                   double,
277
                   phi::dtype::float16,
278
                   phi::dtype::bfloat16) {}