fetch_v2_op.cc 8.7 KB
Newer Older
W
wanghuancoder 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>

#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device_context.h"

namespace paddle {
namespace framework {
class OpDesc;
class InferShapeContext;
template <typename T>
class EmptyGradOpMaker;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
}  // namespace paddle

namespace paddle {
namespace operators {

34
static void DeepCopy(const phi::DenseTensor &src_item,
W
wanghuancoder 已提交
35
                     const std::string &fetch_var_name,
36
                     phi::DenseTensor *dst_item) {
37
  if (src_item.IsInitialized()) {
W
wanghuancoder 已提交
38 39
#ifdef PADDLE_WITH_MKLDNN
    // Conversion from MKL-DNN to Paddle
40
    if (src_item.layout() == phi::DataLayout::ONEDNN) {
41
      phi::DenseTensor out;
W
wanghuancoder 已提交
42 43
      // Convert to desired Paddle layout, apart from grads of filter
      // as params are not a subject to paddle's data_format
44
      phi::funcs::TransDataLayoutFromOneDNN(
45 46
          src_item.layout(),
          fetch_var_name == framework::GradVarName("Filter")
47
              ? phi::DataLayout::kNCHW
48
              : phi::OneDNNContext::tls().get_cur_paddle_data_layout(),
49 50 51
          src_item,
          &out,
          platform::CPUPlace());
52
      paddle::framework::TensorCopySync(out, platform::CPUPlace(), dst_item);
W
wanghuancoder 已提交
53
    } else {
54 55
      paddle::framework::TensorCopySync(
          src_item, platform::CPUPlace(), dst_item);
W
wanghuancoder 已提交
56 57
    }
#else
58
    paddle::framework::TensorCopySync(src_item, platform::CPUPlace(), dst_item);
W
wanghuancoder 已提交
59 60
#endif
  } else {
61
    VLOG(4) << "No copy";
W
wanghuancoder 已提交
62 63 64 65 66 67 68 69 70 71 72
  }
  dst_item->set_lod(src_item.lod());
}

class FetchV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {}

 protected:
73
  phi::KernelKey GetKernelTypeForVar(
74
      const std::string &var_name,
75
      const phi::DenseTensor &tensor,
76
      const phi::KernelKey &expected_kernel_type) const override {
77
    if (!tensor.IsInitialized()) {
78 79 80
      return phi::KernelKey(phi::Backend::ALL_BACKEND,
                            expected_kernel_type.layout(),
                            expected_kernel_type.dtype());
81
    }
82 83
    return phi::KernelKey(
        tensor.place(), tensor.layout(), expected_kernel_type.dtype());
W
wanghuancoder 已提交
84 85
  }

86
  phi::KernelKey GetExpectedKernelType(
W
wanghuancoder 已提交
87
      const framework::ExecutionContext &ctx) const override {
88 89
    auto *fetch_var = ctx.InputVar("X");
    if (fetch_var == nullptr) {
90 91
      return phi::KernelKey(framework::proto::VarType::FP32,
                            platform::CPUPlace());
92 93
    }

94 95
    if (fetch_var->IsType<phi::DenseTensor>()) {
      auto &src_item = fetch_var->Get<phi::DenseTensor>();
96
      if (!src_item.IsInitialized()) {
97 98
        return phi::KernelKey(framework::proto::VarType::FP32,
                              platform::CPUPlace());
99
      }
100 101 102
    } else if (fetch_var->IsType<phi::SparseCooTensor>()) {
      auto &src_item = fetch_var->Get<phi::SparseCooTensor>();
      if (!src_item.initialized()) {
103 104
        return phi::KernelKey(framework::proto::VarType::FP32,
                              platform::CPUPlace());
105
      }
106 107 108
    } else {
      auto &src_item = fetch_var->Get<framework::LoDTensorArray>();
      if (src_item.empty() || !src_item[0].IsInitialized()) {
109 110
        return phi::KernelKey(framework::proto::VarType::FP32,
                              platform::CPUPlace());
111 112 113
      }
    }

114 115
    return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
                          platform::CPUPlace());
W
wanghuancoder 已提交
116 117 118
  }
};

119
template <typename T, typename DeviceContext>
W
wanghuancoder 已提交
120 121 122 123 124 125 126 127
class FetchV2Kernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto fetch_var_name = ctx.InputName("X");
    auto *fetch_var = ctx.InputVar("X");
    if (fetch_var == nullptr) {
      return;
    }
128
    PADDLE_ENFORCE_EQ(
129 130
        ctx.HasOutput("Out"),
        true,
131
        platform::errors::NotFound("Output(Out) of fetch_v2_op is not found."));
W
wanghuancoder 已提交
132 133 134 135
    auto *out_var = ctx.OutputVar("Out");

    int col = ctx.Attr<int>("col");
    PADDLE_ENFORCE_GE(
136 137
        col,
        0,
138 139 140 141 142
        platform::errors::InvalidArgument(
            "Expected the column index (the attribute 'col' of "
            "operator 'Fetch') of current fetching variable to be "
            "no less than 0. But received column index = %d.",
            col));
143 144
    VLOG(3) << "Fetch variable " << fetch_var_name << "'s " << col
            << " column.";
W
wanghuancoder 已提交
145 146 147 148 149 150 151

    auto *fetch_list = out_var->GetMutable<framework::FetchList>();

    if (static_cast<size_t>(col) >= fetch_list->size()) {
      fetch_list->resize(col + 1);
    }

152 153
    bool deepcopy = ctx.Attr<bool>("deepcopy");

154 155
    if (fetch_var->IsType<phi::DenseTensor>()) {
      auto &src_item = fetch_var->Get<phi::DenseTensor>();
156 157 158
      if (!src_item.IsInitialized()) {
        return;
      }
159
      auto *dst_item = &(PADDLE_GET(phi::DenseTensor, fetch_list->at(col)));
160
      bool check_place = platform::is_cpu_place(src_item.place()) ||
161 162
                         platform::is_cuda_pinned_place(src_item.place()) ||
                         platform::is_custom_place(src_item.place());
163
      PADDLE_ENFORCE_EQ(
164 165
          check_place,
          true,
166 167
          platform::errors::InvalidArgument("Tensor's place of input(X) must "
                                            "be CPUPlace or CUDAPinnedPlace."));
168 169 170 171
      if (deepcopy) {
        DeepCopy(src_item, fetch_var_name, dst_item);
      } else {
        dst_item->ShareDataWith(src_item);
A
Aurelius84 已提交
172
        dst_item->set_lod(src_item.lod());
173
      }
174 175 176 177 178 179
    } else if (fetch_var->IsType<phi::SparseCooTensor>()) {
      auto &src_item = fetch_var->Get<phi::SparseCooTensor>();
      if (!src_item.initialized()) {
        return;
      }
      fetch_list->at(col) = src_item;
W
wanghuancoder 已提交
180 181 182 183 184
    } else {
      auto &src_item = fetch_var->Get<framework::LoDTensorArray>();
      framework::LoDTensorArray tmp(src_item.size());
      fetch_list->at(col) = tmp;
      auto &dst_item =
R
Ruibiao Chen 已提交
185
          PADDLE_GET(framework::LoDTensorArray, fetch_list->at(col));
W
wanghuancoder 已提交
186
      for (size_t i = 0; i < src_item.size(); ++i) {
187 188
        PADDLE_ENFORCE_EQ(platform::is_cpu_place(src_item[i].place()),
                          true,
189 190 191 192 193 194
                          platform::errors::InvalidArgument(
                              "Tensor's place of input(X) must be CPUPlace."));
        if (deepcopy) {
          DeepCopy(src_item[i], fetch_var_name, &dst_item[i]);
        } else {
          dst_item[i].ShareDataWith(src_item[i]);
A
Aurelius84 已提交
195
          dst_item[i].set_lod(src_item[i].lod());
196
        }
W
wanghuancoder 已提交
197 198 199 200 201 202 203 204 205
      }
    }
  }
};

class FetchV2OpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
206 207
             "(phi::DenseTensor) The resulted phi::DenseTensor which is "
             "expected to return "
W
wanghuancoder 已提交
208 209
             "to users.");
    AddOutput("Out",
210 211
              "(vector<phi::DenseTensor>) A fetching list of phi::DenseTensor "
              "which may have "
W
wanghuancoder 已提交
212 213
              "different dimension, shape and data type.");
    AddAttr<int>("col", "(int) The column index of fetching object.");
214 215
    AddAttr<bool>("deepcopy", "(bool) Whether deep copy is required.")
        .SetDefault(true);
W
wanghuancoder 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228
    AddComment(R"DOC(
FetchV2 Operator.
It should not be configured by users directly.
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OPERATOR(
229 230 231
    fetch_v2,
    ops::FetchV2Op,
    ops::FetchV2OpProtoMaker,
W
wanghuancoder 已提交
232 233 234
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
PD_REGISTER_STRUCT_KERNEL(fetch_v2,
                          CPU,
                          ALL_LAYOUT,
                          ops::FetchV2Kernel,
                          float,
                          double,
                          int,
                          int8_t,
                          int16_t,
                          int64_t,
                          uint8_t,
                          bool,
                          plat::float16,
                          plat::bfloat16,
                          plat::complex<float>,
                          plat::complex<double>) {}