inferencer.py 3.8 KB
Newer Older
H
Helin Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import contextlib

19
from . import core
D
daminglu 已提交
20

21 22 23 24 25 26
from . import executor
from . import framework
from . import io
from . import parallel_executor
from . import unique_name
from .trainer import check_and_get_place
Q
Qiao Longfei 已提交
27

H
Helin Wang 已提交
28
__all__ = ['Inferencer', ]
H
Helin Wang 已提交
29 30 31


class Inferencer(object):
Q
qiaolongfei 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
    """
    Inferencer High Level API.

    Args:
        infer_func (Python func): Infer function that will return predict Variable
        param_path (str): The path where the inference model is saved by fluid.io.save_params
        place (Place): place to do the inference
        parallel (bool): use parallel_executor to run the inference, it will use multi CPU/GPU.

    Examples:
        .. code-block:: python

            def inference_program():
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                return y_predict

            place = fluid.CPUPlace()
            inferencer = fluid.Inferencer(
                infer_func=inference_program, param_path="/tmp/model", place=place)

    """

55
    def __init__(self, infer_func, param_path, place=None, parallel=False):
Q
Qiao Longfei 已提交
56
        self.param_path = param_path
H
Helin Wang 已提交
57
        self.scope = core.Scope()
58 59
        self.parallel = parallel
        self.place = check_and_get_place(place)
J
Jeff Wang 已提交
60

D
daminglu 已提交
61 62 63 64 65
        self.inference_program = framework.Program()
        with framework.program_guard(self.inference_program):
            with unique_name.guard():
                self.predict_var = infer_func()

66 67 68 69
        with self._prog_and_scope_guard():
            # load params from param_path into scope
            io.load_params(executor.Executor(self.place), param_path)

70
        if parallel:
71 72 73 74
            with self._prog_and_scope_guard():
                self.exe = parallel_executor.ParallelExecutor(
                    use_cuda=isinstance(self.place, core.CUDAPlace),
                    loss_name=self.predict_var.name)
75 76
        else:
            self.exe = executor.Executor(self.place)
Q
Qiao Longfei 已提交
77

78 79
        self.inference_program = self.inference_program.clone(for_test=True)

D
daminglu 已提交
80
    def infer(self, inputs, return_numpy=True):
Q
Qiao Longfei 已提交
81
        """
Q
qiaolongfei 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95
        Do Inference for Inputs

        Args:
            inputs (map): a map of {"input_name": input_var} that will be feed into the inference program
            return_numpy (bool): transform return value into numpy or not

        Returns:
            Tensor or Numpy: the predict value of the inference model for the inputs

        Examples:
            .. code-block:: python

                tensor_x = numpy.random.uniform(0, 10, [batch_size, 13]).astype("float32")
                results = inferencer.infer({'x': tensor_x})
Q
Qiao Longfei 已提交
96 97 98 99 100
        """
        if not isinstance(inputs, dict):
            raise ValueError(
                "inputs should be a map of {'input_name': input_var}")

101 102 103
        with self._prog_and_scope_guard():
            results = self.exe.run(feed=inputs,
                                   fetch_list=[self.predict_var.name],
D
daminglu 已提交
104
                                   return_numpy=return_numpy)
Q
Qiao Longfei 已提交
105 106

        return results
107 108 109 110 111 112

    @contextlib.contextmanager
    def _prog_and_scope_guard(self):
        with framework.program_guard(main_program=self.inference_program):
            with executor.scope_guard(self.scope):
                yield