提交 feed94e2 编写于 作者: Q qiaolongfei

should load parameter before create parallel_executor

上级 e8d24aa1
......@@ -12,6 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import core
import executor
......@@ -41,31 +43,36 @@ class Inferencer(object):
with unique_name.guard():
self.predict_var = infer_func()
with self._prog_and_scope_guard():
# load params from param_path into scope
io.load_params(executor.Executor(self.place), param_path)
if parallel:
self.exe = parallel_executor.ParallelExecutor(
use_cuda=isinstance(self.place, core.CUDAPlace),
loss_name=self.predict_var.name)
with self._prog_and_scope_guard():
self.exe = parallel_executor.ParallelExecutor(
use_cuda=isinstance(self.place, core.CUDAPlace),
loss_name=self.predict_var.name)
else:
self.exe = executor.Executor(self.place)
with executor.scope_guard(self.scope):
# load params from param_path into scope
io.load_params(self.exe, param_path, self.inference_program)
def infer(self, inputs, return_numpy=True):
def infer(self, inputs):
"""
:param inputs: a map of {"input_name": input_var} that will be feed into the inference program
to get the predict value
:param return_numpy: if return numpy value for row tensor
:return: the predict value of the inference model
"""
if not isinstance(inputs, dict):
raise ValueError(
"inputs should be a map of {'input_name': input_var}")
with executor.scope_guard(self.scope):
results = self.exe.run(self.inference_program,
feed=inputs,
fetch_list=[self.predict_var],
return_numpy=return_numpy)
with self._prog_and_scope_guard():
results = self.exe.run(feed=inputs,
fetch_list=[self.predict_var.name])
return results
@contextlib.contextmanager
def _prog_and_scope_guard(self):
with framework.program_guard(main_program=self.inference_program):
with executor.scope_guard(self.scope):
yield
......@@ -94,7 +94,7 @@ def infer(use_cuda, inference_program, save_dirname=None):
tensor_x = numpy.random.uniform(0, 10, [batch_size, 13]).astype("float32")
results = inferencer.infer({'x': tensor_x})
print("infer results: ", results[0])
print("infer results: ", numpy.array(results[0]))
def main(use_cuda):
......
......@@ -118,7 +118,7 @@ def infer(use_cuda, inference_program, save_dirname=None):
results = inferencer.infer({'img': tensor_img})
print("infer results: ", results[0])
print("infer results: ", numpy.array(results[0]))
def main(use_cuda):
......
......@@ -99,7 +99,7 @@ def infer(use_cuda, inference_program, save_dirname=None):
results = inferencer.infer({'img': tensor_img})
print("infer results: ", results[0])
print("infer results: ", numpy.array(results[0]))
def main(use_cuda):
......
......@@ -127,14 +127,12 @@ def infer(use_cuda, inference_program, save_path):
third_word = create_random_lodtensor(lod, place, low=0, high=dict_size - 1)
fourth_word = create_random_lodtensor(lod, place, low=0, high=dict_size - 1)
result = inferencer.infer(
{
'firstw': first_word,
'secondw': second_word,
'thirdw': third_word,
'forthw': fourth_word
},
return_numpy=False)
result = inferencer.infer({
'firstw': first_word,
'secondw': second_word,
'thirdw': third_word,
'forthw': fourth_word
})
print(np.array(result[0]))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册