Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
74ca73b8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
74ca73b8
编写于
5月 15, 2018
作者:
D
daminglu
提交者:
GitHub
5月 15, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update trainer api (#10674)
上级
6af0593c
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
103 addition
and
119 deletion
+103
-119
python/paddle/fluid/inferencer.py
python/paddle/fluid/inferencer.py
+13
-7
python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py
...d/tests/book/high-level-api/fit_a_line/test_fit_a_line.py
+8
-12
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_conv.py
...-level-api/recognize_digits/test_recognize_digits_conv.py
+36
-37
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py
...h-level-api/recognize_digits/test_recognize_digits_mlp.py
+36
-36
python/paddle/fluid/tests/book/high-level-api/word2vec/no_test_word2vec_new_api.py
.../book/high-level-api/word2vec/no_test_word2vec_new_api.py
+9
-11
python/paddle/fluid/trainer.py
python/paddle/fluid/trainer.py
+1
-16
未找到文件。
python/paddle/fluid/inferencer.py
浏览文件 @
74ca73b8
...
...
@@ -13,29 +13,35 @@
# limitations under the License.
import
core
import
framework
import
executor
import
framework
import
io
import
unique_name
from
trainer
import
check_and_get_place
__all__
=
[
'Inferencer'
,
]
class
Inferencer
(
object
):
def
__init__
(
self
,
param_path
,
place
=
None
):
def
__init__
(
self
,
infer_func
,
param_path
,
place
=
None
):
"""
:param param_path: the path where the inference model is saved by fluid.io.save_inference_model
:param infer_func: a function that will return predict Variable
:param param_path: the path where the inference model is saved by fluid.io.save_params
:param place: place to do the inference
"""
self
.
param_path
=
param_path
self
.
scope
=
core
.
Scope
()
self
.
inference_program
=
framework
.
Program
()
with
framework
.
program_guard
(
self
.
inference_program
):
with
unique_name
.
guard
():
self
.
predict_var
=
infer_func
()
self
.
exe
=
executor
.
Executor
(
check_and_get_place
(
place
))
with
executor
.
scope_guard
(
self
.
scope
):
# load params from param_path into scope
[
self
.
inference_program
,
_
,
self
.
fetch_targets
]
=
io
.
load_inference_model
(
executor
=
self
.
exe
,
dirname
=
param_path
)
io
.
load_params
(
self
.
exe
,
param_path
,
self
.
inference_program
)
def
infer
(
self
,
inputs
,
return_numpy
=
True
):
"""
...
...
@@ -51,7 +57,7 @@ class Inferencer(object):
with
executor
.
scope_guard
(
self
.
scope
):
results
=
self
.
exe
.
run
(
self
.
inference_program
,
feed
=
inputs
,
fetch_list
=
self
.
fetch_targets
,
fetch_list
=
[
self
.
predict_var
]
,
return_numpy
=
return_numpy
)
return
results
python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py
浏览文件 @
74ca73b8
...
...
@@ -48,12 +48,11 @@ def linear():
return
avg_loss
def
train
(
use_cuda
,
save_dirname
):
def
train
(
use_cuda
,
train_program
,
save_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
trainer
=
fluid
.
Trainer
(
train_func
=
linear
,
infer_func
=
inference_program
,
train_func
=
train_program
,
place
=
place
,
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
))
...
...
@@ -72,11 +71,7 @@ def train(use_cuda, save_dirname):
'''
if
float
(
test_metrics
[
0
])
<
20.0
:
if
save_dirname
is
not
None
:
# NOT clear yet
# fluid.io.save_inference_model(save_dirname, ['x'], [y_predict])
# trainer.save_params(save_dirname)
# https://github.com/PaddlePaddle/Paddle/pull/10445
trainer
.
save_inference_model
(
save_dirname
)
trainer
.
save_params
(
save_dirname
)
return
trainer
.
train
(
...
...
@@ -87,12 +82,13 @@ def train(use_cuda, save_dirname):
# infer
def
infer
(
use_cuda
,
save_dirname
=
None
):
def
infer
(
use_cuda
,
inference_program
,
save_dirname
=
None
):
if
save_dirname
is
None
:
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
param_path
=
save_dirname
,
place
=
place
)
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
save_dirname
,
place
=
place
)
batch_size
=
10
tensor_x
=
numpy
.
random
.
uniform
(
0
,
10
,
[
batch_size
,
13
]).
astype
(
"float32"
)
...
...
@@ -108,8 +104,8 @@ def main(use_cuda):
# Directory for saving the trained model
save_dirname
=
"fit_a_line.inference.model"
train
(
use_cuda
,
save_dirname
)
infer
(
use_cuda
,
save_dirname
)
train
(
use_cuda
,
linear
,
save_dirname
)
infer
(
use_cuda
,
inference_program
,
save_dirname
)
class
TestFitALine
(
unittest
.
TestCase
):
...
...
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_conv.py
浏览文件 @
74ca73b8
...
...
@@ -53,48 +53,40 @@ def train_program():
predict
=
inference_program
()
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
# acc = fluid.layers.accuracy(input=predict, label=label)
# return avg_cost, acc
return
avg_cost
acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
)
return
[
avg_cost
,
acc
]
def
train
(
use_cuda
,
save_dirname
):
def
train
(
use_cuda
,
train_program
,
save_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
trainer
=
fluid
.
Trainer
(
train_func
=
train_program
,
infer_func
=
inference_program
,
place
=
place
,
optimizer
=
optimizer
)
train_func
=
train_program
,
place
=
place
,
optimizer
=
optimizer
)
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
EndEpochEvent
):
# if (event.epoch + 1) % 10 == 0:
# trainer.save_params(save_dirname)
trainer
.
save_inference_model
(
save_dirname
)
# TODO: Uncomment this part once we are sure that .train is working
# test_reader = paddle.batch(
# paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
# test_metrics = trainer.test(reader=test_reader)
# avg_cost_set = test_metrics[0]
# acc_set = test_metrics[1]
#
# # get test acc and loss
# acc = numpy.array(acc_set).mean()
# avg_cost = numpy.array(avg_cost_set).mean()
#
# print("avg_cost: %s" % avg_cost)
# print("acc : %s" % acc)
#
# if float(acc) > 0.2: # Smaller value to increase CI speed
# trainer.save_params(save_dirname)
# else:
# print('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
# event.epoch + 1, float(avg_cost), float(acc)))
# if math.isnan(float(avg_cost)):
# sys.exit("got NaN loss, training failed.")
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
BATCH_SIZE
)
test_metrics
=
trainer
.
test
(
reader
=
test_reader
,
feed_order
=
[
'img'
,
'label'
])
avg_cost_set
=
test_metrics
[
0
]
acc_set
=
test_metrics
[
1
]
# get test acc and loss
acc
=
numpy
.
array
(
acc_set
).
mean
()
avg_cost
=
numpy
.
array
(
avg_cost_set
).
mean
()
print
(
"avg_cost: %s"
%
avg_cost
)
print
(
"acc : %s"
%
acc
)
if
float
(
acc
)
>
0.2
:
# Smaller value to increase CI speed
trainer
.
save_params
(
save_dirname
)
else
:
print
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
event
.
epoch
+
1
,
float
(
avg_cost
),
float
(
acc
)))
if
math
.
isnan
(
float
(
avg_cost
)):
sys
.
exit
(
"got NaN loss, training failed."
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
...
...
@@ -108,10 +100,11 @@ def train(use_cuda, save_dirname):
feed_order
=
[
'img'
,
'label'
])
def
infer
(
use_cuda
,
save_dirname
=
None
):
def
infer
(
use_cuda
,
inference_program
,
save_dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
param_path
=
save_dirname
,
place
=
place
)
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
save_dirname
,
place
=
place
)
batch_size
=
1
tensor_img
=
numpy
.
random
.
uniform
(
-
1.0
,
1.0
,
...
...
@@ -126,8 +119,14 @@ def main(use_cuda):
save_dirname
=
"recognize_digits_conv.inference.model"
# call train() with is_local argument to run distributed train
train
(
use_cuda
=
use_cuda
,
save_dirname
=
save_dirname
)
infer
(
use_cuda
=
use_cuda
,
save_dirname
=
save_dirname
)
train
(
use_cuda
=
use_cuda
,
train_program
=
train_program
,
save_dirname
=
save_dirname
)
infer
(
use_cuda
=
use_cuda
,
inference_program
=
inference_program
,
save_dirname
=
save_dirname
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py
浏览文件 @
74ca73b8
...
...
@@ -40,47 +40,40 @@ def train_program():
predict
=
inference_program
()
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
# acc = fluid.layers.accuracy(input=predict, label=label)
# return avg_cost, acc
return
avg_cost
acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
)
return
[
avg_cost
,
acc
]
def
train
(
use_cuda
,
save_dirname
):
def
train
(
use_cuda
,
train_program
,
save_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
trainer
=
fluid
.
Trainer
(
train_func
=
train_program
,
infer_func
=
inference_program
,
place
=
place
,
optimizer
=
optimizer
)
train_func
=
train_program
,
place
=
place
,
optimizer
=
optimizer
)
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
EndEpochEvent
):
# if (event.epoch + 1) % 10 == 0:
trainer
.
save_inference_model
(
save_dirname
)
# TODO: Uncomment this part once we are sure that .train is working
# test_reader = paddle.batch(
# paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
# test_metrics = trainer.test(reader=test_reader)
# avg_cost_set = test_metrics[0]
# acc_set = test_metrics[1]
#
# # get test acc and loss
# acc = numpy.array(acc_set).mean()
# avg_cost = numpy.array(avg_cost_set).mean()
#
# print("avg_cost: %s" % avg_cost)
# print("acc : %s" % acc)
#
# if float(acc) > 0.2: # Smaller value to increase CI speed
# trainer.save_params(save_dirname)
# else:
# print('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
# event.epoch + 1, float(avg_cost), float(acc)))
# if math.isnan(float(avg_cost)):
# sys.exit("got NaN loss, training failed.")
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
BATCH_SIZE
)
test_metrics
=
trainer
.
test
(
reader
=
test_reader
,
feed_order
=
[
'img'
,
'label'
])
avg_cost_set
=
test_metrics
[
0
]
acc_set
=
test_metrics
[
1
]
# get test acc and loss
acc
=
numpy
.
array
(
acc_set
).
mean
()
avg_cost
=
numpy
.
array
(
avg_cost_set
).
mean
()
print
(
"avg_cost: %s"
%
avg_cost
)
print
(
"acc : %s"
%
acc
)
if
float
(
acc
)
>
0.2
:
# Smaller value to increase CI speed
trainer
.
save_params
(
save_dirname
)
else
:
print
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
event
.
epoch
+
1
,
float
(
avg_cost
),
float
(
acc
)))
if
math
.
isnan
(
float
(
avg_cost
)):
sys
.
exit
(
"got NaN loss, training failed."
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
...
...
@@ -94,10 +87,11 @@ def train(use_cuda, save_dirname):
feed_order
=
[
'img'
,
'label'
])
def
infer
(
use_cuda
,
save_dirname
=
None
):
def
infer
(
use_cuda
,
inference_program
,
save_dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
param_path
=
save_dirname
,
place
=
place
)
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
save_dirname
,
place
=
place
)
batch_size
=
1
tensor_img
=
numpy
.
random
.
uniform
(
-
1.0
,
1.0
,
...
...
@@ -112,8 +106,14 @@ def main(use_cuda):
save_dirname
=
"recognize_digits_mlp.inference.model"
# call train() with is_local argument to run distributed train
train
(
use_cuda
=
use_cuda
,
save_dirname
=
save_dirname
)
infer
(
use_cuda
=
use_cuda
,
save_dirname
=
save_dirname
)
train
(
use_cuda
=
use_cuda
,
train_program
=
train_program
,
save_dirname
=
save_dirname
)
infer
(
use_cuda
=
use_cuda
,
inference_program
=
inference_program
,
save_dirname
=
save_dirname
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/book/high-level-api/word2vec/no_test_word2vec_new_api.py
浏览文件 @
74ca73b8
...
...
@@ -90,7 +90,7 @@ def train_program(is_sparse):
return
avg_cost
def
train
(
use_cuda
,
is_sparse
,
save_path
):
def
train
(
use_cuda
,
train_program
,
save_path
):
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
imikolov
.
train
(
word_dict
,
N
),
BATCH_SIZE
)
test_reader
=
paddle
.
batch
(
...
...
@@ -105,23 +105,21 @@ def train(use_cuda, is_sparse, save_path):
print
(
"loss= "
,
avg_cost
)
if
avg_cost
<
5.0
:
trainer
.
save_
inference_model
(
save_path
)
trainer
.
save_
params
(
save_path
)
return
if
math
.
isnan
(
avg_cost
):
sys
.
exit
(
"got NaN loss, training failed."
)
trainer
=
fluid
.
Trainer
(
partial
(
train_program
,
is_sparse
),
partial
(
inference_program
,
is_sparse
),
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
),
place
=
place
)
train_program
,
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
),
place
=
place
)
trainer
.
train
(
reader
=
train_reader
,
num_epochs
=
1
,
event_handler
=
event_handler
)
def
infer
(
use_cuda
,
i
s_sparse
,
save_path
):
def
infer
(
use_cuda
,
i
nference_program
,
save_path
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
param_path
=
save_path
,
place
=
place
)
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
save_path
,
place
=
place
)
lod
=
[
0
,
1
]
first_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
-
1
)
...
...
@@ -144,9 +142,9 @@ def main(use_cuda, is_sparse):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
save_path
=
"word2vec.
inference.model
"
train
(
use_cuda
,
is_sparse
,
save_path
)
infer
(
use_cuda
,
is_sparse
,
save_path
)
save_path
=
"word2vec.
params
"
train
(
use_cuda
,
partial
(
train_program
,
is_sparse
)
,
save_path
)
infer
(
use_cuda
,
partial
(
inference_program
,
is_sparse
)
,
save_path
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/trainer.py
浏览文件 @
74ca73b8
...
...
@@ -92,19 +92,13 @@ class Trainer(object):
place: The device place of this trainer.
"""
def
__init__
(
self
,
train_func
,
infer_func
,
optimizer
,
param_path
=
None
,
place
=
None
):
def
__init__
(
self
,
train_func
,
optimizer
,
param_path
=
None
,
place
=
None
):
# 1. we need to generate a framework.Program by calling
# program_func. Reference: fluid.program_guard in
# test_word2vec.py
if
not
isinstance
(
optimizer
,
opt_module
.
Optimizer
):
raise
TypeError
(
"The optimizer should be an instance of Optimizer"
)
self
.
infer_func
=
infer_func
self
.
scope
=
core
.
Scope
()
self
.
startup_program
=
framework
.
Program
()
...
...
@@ -226,15 +220,6 @@ class Trainer(object):
exe
=
executor
.
Executor
(
self
.
place
)
io
.
save_persistables
(
exe
,
dirname
=
param_path
)
def
save_inference_model
(
self
,
model_path
):
inference_program
=
framework
.
Program
()
with
framework
.
program_guard
(
inference_program
):
with
unique_name
.
guard
():
predict_var
=
self
.
infer_func
()
predict_var
=
self
.
train_program
.
block
(
0
).
var
(
predict_var
.
name
)
exe
=
executor
.
Executor
(
self
.
place
)
io
.
save_inference_model
(
model_path
,
[],
[
predict_var
],
exe
)
@
contextlib
.
contextmanager
def
_prog_and_scope_guard
(
self
):
with
framework
.
program_guard
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录